Math 17B Kouba

Discussion Sheet 4

- 1.) Compute the Midpoint Estimate, M_6 , for $\int_0^1 \frac{1}{x^2+1} dx$. Compare your answer with the exact value of the integral.
- 2.) Compute the Trapezoidal Estimate, M_5 , for $\int_{-1}^1 \sqrt{1-x} \, dx$. Compare your answer with the exact value of the integral.
- 3.) Determine the value of n so that the Trapezoidal Estimate, T_n , estimates the exact value of $\int_0^{1/2} e^{-2x^2} dx$ with absolute error at most 0.00001.
- 4.) Determine the value of n so that the Midpoint Estimate, T_n , estimates the exact value of $\int_0^3 \frac{x+1}{x+5} dx$ with absolute error at most 0.00001.
- 5.) Compute the following improper integrals.

$$\begin{aligned} &\text{a.}) \int_{0}^{4} \frac{1}{\sqrt{x}} \ dx & \text{b.}) \int_{1}^{\infty} \frac{3}{x^{2}} \ dx & \text{c.}) \int_{0}^{1} \frac{3}{x^{2}} \ dx \\ &\text{d.}) \int_{\sqrt{3}}^{\infty} \frac{1}{1+x^{2}} \ dx & \text{e.}) \int_{e}^{\infty} \frac{1}{x \ln x} \ dx & \text{f.}) \int_{-\infty}^{0} \frac{e^{x}}{1+e^{2x}} \ dx \\ &\text{g.}) \int_{1}^{\infty} \frac{1}{x(x+4)} \ dx & \text{h.}) \int_{-\infty}^{0} e^{3x} \ dx & \text{i.}) \int_{-1}^{\infty} \frac{1}{\sqrt{x+1}} \ dx \\ &\text{j.}) \int_{-\infty}^{\sqrt{3}} \frac{1}{x^{2}+9} \ dx & \text{k.}) \int_{1}^{e^{2}+1} \frac{7}{x-1} \ dx \end{aligned}$$

- 6.) Consider the region R (in the first quadrant) bounded by the graphs of $y = \frac{1}{x}$, x = 1, and y = 0.
 - a.) Determine if R has finite or infinite area.
- b.) Form a solid by revolving R about the x-axis. Determine if the resulting volume is finite or infinite.
- 7.) Find the following Taylor polynomials of degree n about a = 0, $P_n(x)$, for the indicated functions.

a.)
$$f(x) = x^4 + x^3 - x^2 + 3x - 5$$
, $n = 2$ b.) $f(x) = x^4 + x^3 - x^2 + 3x - 5$, $n = 4$ c.) $f(x) = xe^x$, $n = 3$ d.) $f(x) = \sqrt{x+4}$, $n = 2$ d.) $f(x) = \ln(x+1)$, $n = 3$

8.) Find the following Taylor polynomials about a=0 for the function $f(x)=\frac{x-2}{x+1}$:

1

 $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$. Compare the values of the function and its Taylor polynomials at x=0.1 and x=2. What conclusion do you draw?

9.) It is well known that the integral $\int_0^1 e^{x^2} dx$ has no closed-form anti-derivative. Replace $f(x) = e^{x^2}$ with $P_4(x)$, its fourth-degree Taylor Polynomial centered at x = 0, to get an estimate for this definite integral. Compare this value with one obtained by a calculator which computes definite integrals and determine the absolute percentage error in your estimate.

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

10.) A nonnegative integer I is a perfect square, triangular (PST) number if I is equal to the square of a nonnegative integer AND is also equal to one-half the product of consecutive nonnegative integers. Find the first four PST numbers.