Mean Value Theorem for Integrals: If f is a continuous function on the closed interval [a,b], then there is at least one number c, $a \le c \le b$, so that

$$f(c)(b-a) = \int_a^b f(x) dx.$$

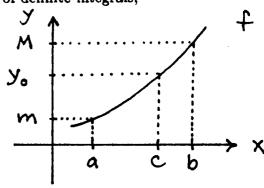
nterval [a,b], by the Maximum- and

 $\frac{Proof}{Minimum}$: Since f is a continuous function on the closed interval [a,b], by the Maximum- and $\overline{Minimum}$ -Value Theorems, f has a maximum value M and a minimum value m on [a,b], i.e., $m \le f(x) \le M$ on [a,b]. By property h. of definite integrals,

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a) ,$$

so that

$$m \le \underbrace{\frac{1}{b-a} \int_a^b f(x) \, dx}_{\text{call this number } y_a} \le M ,$$



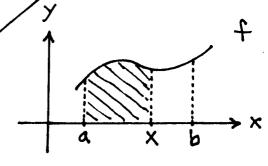
By the Intermediate Value Theorem that

there is at least one number c , $a \le c \le b$, so

$$f(c) = y_o$$
, i.e., $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$,

so that

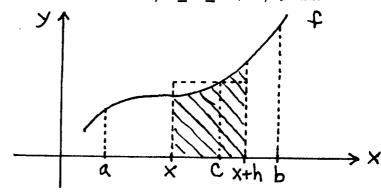
$$f(c)(b-a)=\int_a^b f(x)\,dx.$$



First Fundamental Theorem of Calculus (FTC1): Assume that f is a continuous function on the closed interval [a,b] and that $F(x) = \int_a^x f(t) dt$. Then F'(x) = f(x).

 \underline{Proof} : Consider $F(x)=\int_a^x f(t)\,dt$ as the area under the graph of f above the interval [a,x]. Then F(x+h) is the area under the graph of f above the interval [a,x+h] and F(x+h)-F(x) is the area of the "thin strip" from x to x+h, i.e., $F(x+h)-F(x)=\int_x^{x+h} f(t)\,dt$. By the Mean Value Theorem for integrals there is at least one number c, $x \le c \le x+h$, so that

$$f(c)\cdot h = \int_{x}^{x+h} f(t) dt$$



The derivative of F(x) can now be computed as

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x}^{x+h} f(t) dt}{h}$$

$$= \lim_{h \to 0} \frac{f(c) h}{h}$$

$$= \lim_{h \to 0} f(c) \quad (\text{Recall that } x \le c \le x + h.)$$

$$= f(x)$$

<u>Second Fundamental Theorem of Calculus</u> (FTC2): Let f be a continuous function on the closed interval [a,b]. Assume that F(x) is an antiderivative of f(x), i.e., assume that F'(x) = f(x). Then

$$\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) - F(a) .$$

 \underline{Proof} : Let $A(x) = \int_a^x f(t) dt$. Then A(a) = 0, $A(b) = \int_a^b f(t) dt$, and A'(x) = f(x) by FTC1. But F'(x) = f(x). By Corollary to the Mean Value Theorem F(x) = A(x) + C for any constant C, or

$$A(x) = F(x) - C.$$

Then

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$$

$$= A(b)$$

$$= A(b) - A(a)$$

$$= (F(b) - C) - (F(a) - C)$$

$$= F(b) - F(a)$$

$$= F(x) \Big|_{a}^{b}.$$