Math 17B

Kouba

Using Vectors to Determine Equations for Lines (in \mathbb{R}^2 and \mathbb{R}^3) and Planes (in \mathbb{R}^3)

EQUATIONS OF LINES IN R^2 and R^3

I.) Find an equation in parametric form of the line L passing through the point (x_0, y_0) and in the direction of (parallel to) vector $\begin{pmatrix} a \\ b \end{pmatrix}$. Let (x, y) be a random point on line L. Form vectors $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ and $\begin{pmatrix} x \\ y \end{pmatrix}$. Then

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + t \begin{pmatrix} a \\ b \end{pmatrix}$$
 (vector equation of line L) for some $t \in R$ \longrightarrow

$$\left(egin{array}{c} x \ y \end{array}
ight) = \left(egin{array}{c} x_0 \ y_0 \end{array}
ight) + \left(egin{array}{c} at \ bt \end{array}
ight) \quad \longrightarrow$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_0 + at \\ y_0 + bt \end{pmatrix} \longrightarrow$$

$$igspace: \left\{ egin{array}{l} x=x_0+at \ y=y_0+bt \ \ ext{for } t\in R \end{array}
ight. \ \ ext{(equation of line in parametric form)} \end{array}
ight.$$

II.) Find an equation in parametric form of the line L passing through the point (x_0, y_0, z_0) and in the direction of (parallel to) vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Let (x, y, z) be a random $\begin{pmatrix} x_0 \\ x_0 \end{pmatrix} \begin{pmatrix} x \\ x_0 \end{pmatrix}$

point on line L. Form vectors $\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ and $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Then

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + t \begin{pmatrix} a \\ b \\ c \end{pmatrix} \quad \text{(vector equation of line L) for some $t \in R$} \longrightarrow$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \begin{pmatrix} at \\ bt \\ c \end{pmatrix} \longrightarrow$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 + at \\ y_0 + bt \\ z_0 + ct \end{pmatrix} \longrightarrow$$

EQUATIONS OF PLANES IN \mathbb{R}^3

Find an equation of the plane passing through the point (x_0, y_0, z_0) and which is perpendicular to (normal to) the vector $N = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Let (x, y, z) be a random point on

the plane. Form vector $V = \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix}$, which lies in the plane. Then

$$N \perp V \longrightarrow N \cdot V = 0 \longrightarrow$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \bullet \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} = 0 \longrightarrow$$

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$