Math 21A

Kouba

Challenge Discussion Sheet 2

1.) Write the surface area of a cube with edge length x as a function of the volume of the cube.

2.) Determine the following limits.

a.)
$$\lim_{x \to 0} x^4 \sin(1/x)$$

a.)
$$\lim_{x \to 0} x^4 \sin(1/x)$$
 b.) $\lim_{x \to 0^-} \frac{x + \sin x}{\sqrt{x^2 + 9x}}$

c.)
$$\lim_{x \to -\infty} \frac{x^3 - x^2 + x - 1}{1 - x + x^2 - x^3}$$

c.)
$$\lim_{x \to -\infty} \frac{x^3 - x^2 + x - 1}{1 - x + x^2 - x^3}$$
 d.) $\lim_{x \to \infty} \arcsin\left(\frac{x^2 + 4x}{2x^2 + 4}\right)$

e.)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 4x} - \sqrt{x^2 - 4} \right)$$
 f.) $\lim_{x \to -\infty} \left(2x - \sqrt{x^2 + 16} \right)$

f.)
$$\lim_{x \to -\infty} \left(2x - \sqrt{x^2 + 16} \right)$$

3.) Let
$$f(x) = \begin{cases} \frac{x^3 + x^2 - 2x}{x^2 - 2x}, & \text{if } x \neq 0, x \neq 2\\ 1, & \text{if } x = 0\\ -3, & \text{if } x = 2. \end{cases}$$

- i.) Show that f is continuous at x = 0.
- ii.) Show that f is not continuous at x = 2.
- iii.) Is f continuous for all values of x not equal to 0 and not equal to 2? Why?
- iv.) Sketch the graph of f.
- 4.) For what values of x is each of the following functions continuous? Briefly explain.

1

a.)
$$y = (x^2 + x + 1)^{100}$$

b.)
$$f(x) = (\ln x)^4 + \sin x$$

5.) Use the Intermediate Value Theorem to prove that

a.)
$$x^5 = x^2 + 1$$
 has at least one solution.

b.)
$$x^4 = 3^x$$
 has at least three solutions.