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MVT and FTC's

Mean Value Theorem for Integrals : If f is a continuous function on the closed interval
[a,b], then there is at least one number ¢ ,a < ¢ < b, so that
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Proof : Since f is a continuous function on the closed interval [a,b] , by the Maximum- and
Minimum-Value Theorems, f has a maximum vaule M and a minimum value m on [a,b], i.e.,
m < f(z) < M on [a,b] . By property 6.) (p. 31 of definite integrals,
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By the Intermediate Value Theorem (p. 99) there is at least one number c,a <c<b,so0

that
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First Fundamental Theorem of Calculus (FTC1) : Assume that f is a continuous function

z
on the closed interval [a,b] and that F(z) = / f(t)dt . Then F'(z) = f(z) .
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Proof : Consider F(z) = f(t) dt as the area under the graph of f above the interval [a,z].

Then F(z+h) is the area under the graph of f above the interval [a,z+h] and F(z+h)— F(z)
z+h

is the area of the “ thin strip ” from z to z +h, i.e., F(z + h) - F(z) = / f(t)dt . By the

Mean Value Theorem for integrals there is at least one number ¢,z < ¢ zs z + h , sp that
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The derivative of F(z) can now be computed as

F(z +h) - F(z)
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Second Fundamental Theorem of Calculus (FTC2) : Let f be a continuous function on
the closed interval [a,b]. Assume that F(z) is an antiderivative of f(z), i.e., assume that
F'(z) = f(z). Then
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_=F(b) - F(a).
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Proof : Let A(z) = /x f(t)dt . Then A(a) = 0, A(b) = /b f(t)dt, and A'(z) = f(z) by

FTC1. But F'(z) = ftz:z:) . By Corollary 2 (p.Q33) to the Mean Value Theorem F(z) =
A(z) + C for any constant C, or

A(z)=F(z)-C .
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