## Discussion Sheet 3

1.) Compute  $z_x$  and  $z_y$  for each of the following functions.

a.) 
$$z = x^3y + y^4 - 2x + 5$$
 b.)  $z = f(x) + g(y)$  c.)  $z = f(x^3) + g(4y)$  d.)  $z = f(x^2 + y^3) + g(xy^2)$  e.)  $y^2 + z^2 + \sin(xz) = 4$ 

$$b.) z = f(x) + g(y)$$

c.) 
$$z = f(x^3) + g(4y)$$

d.) 
$$z = f(x^2 + y^3) + g(xy^2)$$

e.) 
$$y^2 + z^2 + \sin(xz) = 4$$

f.) 
$$z = f(u, v)$$
 where  $u = \ln(x - y)$  and  $v = e^{xy}$ 

2.) Find 
$$\frac{\partial w}{\partial t}$$
 and  $\frac{\partial w}{\partial s}$  if  $w = f(4t^2 - 3s)$  and  $f'(x) = \ln x$ .

3.) Assume that f is differentiable function of one variable with 
$$z = xf(xy)$$
. Show that  $xz_x - yz_y = z$ .

4.) Assume that 
$$f$$
 and  $g$  are twice differentiable functions of one variable. Show that  $u = f(x + at) + g(x - at)$  satisfies  $a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$ , where  $a$  is a constant.

5.) Find and classify critical points as determining relative maximums, relative minimums, or saddle points.

a.) 
$$z = 3x^2 - 6xy + y^2 + 12x - 16y + 1$$

b.) 
$$z = x^2y - x^2 - 2y^2$$

c.) 
$$z = x^2 - 8\ln(xy) + y^2$$

c.) 
$$z = x^2 - 8\ln(xy) + y^2$$
  
d.)  $z = 3x^2y - 6x^2 + y^3 - 6y^2$ 

6.) Determine the absolute extrema for each function on the indicated region.

a.) 
$$f(x,y) = 2x + 4y + 12$$
 on

i.) the triangle with vertices (0,0), (0,3),and (3,0).

ii.) the circle 
$$x^2 + y^2 = 4$$
.

b.) f(x,y) = xy - x - 3y on the triangle with vertices (0,0), (0,4), and (5,0).

c.) 
$$f(x,y) = x^2 - 3y^2 - 2x + 6y$$
 on the square with vertices  $(0,0), (0,2), (2,0)$  and  $(2,2)$ .

7.) Find the point on the plane x + 2y + 3z = 6 nearest the origin.

8.) Determine the minimum surface area of a closed rectangular box with volume 8 ft.<sup>3</sup>

## THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

9.) Divide the figure into four equal parts, each one of the same size and shape.

