Math 21C

Kouba

Problems Using (*) and (*)(*) from the Integral Test Handout

- 1.) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Use (*) to put a lower and an upper bound on the partial sum
 - a.) s_{10} , the sum of the first 10 terms of this series.
 - b.) s_{1000} , the sum of the first 1000 terms of this series.
 - c.) $s_{1,000,000}$, the sum of the first 1,000,000 terms of this series.
- 2.) The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.
 - a.) Compute the partial sum $s_{10} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{10^2} = \sum_{i=1}^{10} \frac{1}{i^2}$.
- b.) Use (*)(*) to put a lower and an upper bound on the error (remainder) $R_{10} = \frac{1}{11^2} + \frac{1}{12^2} + \frac{1}{13^2} + \cdots$ for the partial sum s_{10} .
- c.) Use (*)(*) to put a lower and an upper bound on the error (remainder) $R_{100} = \frac{1}{101^2} + \frac{1}{102^2} + \frac{1}{103^2} + \cdots$ for the partial sum s_{100} .
- d.) What should n be so that the partial sum $s_n = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} = \sum_{i=1}^n \frac{1}{i^2}$ estimates the exact value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ with an error R_n of at most 0.0001?
- 3.) The series $\sum_{n=1}^{\infty} (2/3)^{n-1}$ converges.
 - a.) Compute the partial sum $s_{10} = 1 + (2/3) + (2/3)^2 + \dots + (2/3)^9 = \sum_{i=1}^{10} (2/3)^{i-1}$.
- b.) Use (*)(*) to put a lower and an upper bound on the error (remainder) $R_{10} = (2/3)^{10} + (2/3)^{11} + (2/3)^{12} + (2/3)^{13} + \cdots$.
 - c.) Compute the exact value of $R_{10} = (2/3)^{10} + (2/3)^{11} + (2/3)^{12} + (2/3)^{13} + \cdots$
 - d.) What should n be so that the partial sum
- $s_n = 1 + (2/3) + (2/3)^2 + \dots + (2/3)^{n-1} = \sum_{i=1}^n (2/3)^{i-1}$ estimates the exact value of $\sum_{n=1}^\infty (2/3)^{n-1}$ with an error R_n of at most 0.0001?
 - e.) What is the exact value of the series $\sum_{n=1}^{\infty} (2/3)^{n-1}$?