Math 22A
Kouba
Vector Spaces and Subspaces

DEFINITION: Let V be any set of objects on which two operations are defined: vector addition and scalar multiplication. If all of the following statements are satisfied for all $\vec{u}, \vec{v}, \vec{w} \in V$ and for all scalars $k, l \in R$, then we call V a vector space and its object vectors.
1.) If $\vec{u}, \vec{v} \in V$, then $\vec{u} \oplus \vec{v} \in V . \quad$ (Closure under Vector Addition)
2.) $\vec{u} \oplus \vec{v}=\vec{v} \oplus \vec{u}$. (Commutative Property)
3.) $(\vec{u} \oplus \vec{v}) \oplus \vec{w}=\vec{u} \oplus(\vec{v} \oplus \vec{w})$. (Associative Property)
4.) There is a vector $\overrightarrow{0} \in V$ so that $\vec{u} \oplus \overrightarrow{0}=\overrightarrow{0} \oplus \vec{u}=\vec{u}$. It is called the zero vector. (Zero Vector Property)
5.) For each $\vec{u} \in V$ there is a vector $\vec{v} \in V$ so that $\vec{u} \oplus \vec{v}=\vec{v} \oplus \vec{u}=\overrightarrow{0}$. We write $\vec{v}=-\vec{u}$ and call it the negative of \vec{u}. (Additive Inverse Property)
6.) If $k \in R$ and $\vec{u} \in V$, then $k \vec{u} \in V$. (Closure under Scalar Multiplication)
7.) $k(\vec{u} \oplus \vec{v})=k \vec{u} \oplus k \vec{v}, \quad$ (Distributive Property)
8.) $(k+l) \vec{u}=k \vec{u} \oplus l \vec{u} . \quad$ (Distributive Property)
9.) $k(l \vec{u})=(k l) \vec{u}$. (Associative Property)
10.) $1 \vec{u}=\vec{u} . \quad$ (Scalar Identity Property)

EXAMPLE 1: Consider all n-dimensional vectors in R^{n} under standard vector addition and scalar multiplication. Properties 1.) through 10.) are satisfied, so R^{n} is a vector space.

EXAMPLE 2: Let $V=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}$ under standard matrix addition and scalar multiplication. Properties 1.) through 10.) are satisfied, so V is a vector space.

EXAMPLE 3: Let $V=\left\{\left.\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in R\right.$ and $\left.a, b, c, d>0\right\}$ under standard matrix addition and scalar multiplication. Properties 1.) through 3.) and 6.) through 10.) are satisfied, but properties 4.) and 5.) fail, so V is NOT a vector space.

EXAMPLE 4: Let $V=\{$ functions $f(t) \mid f$ is continuous for all values of $t\}$ under standard point-wise addition and scalar multiplication. Properties 1.) through 10.) are
satisfied, so V is a vector space.

EXAMPLE 5:

Let $V=\{$ functions $f(t) \mid f$ is continuous for all values of t, and $f(0)=1\}$ under standard point-wise addition and scalar multiplication. Properties 1.), 4.), 5.), and 6.) are NOT satisfied, so V is NOT a vector space.

EXAMPLE 6: Let $V=\{\overrightarrow{(x, y)} \mid x+y=0\}$ under standard vector addition and scalar multiplication. Properties 1.) through 10.) are satisfied, so V is a vector space.

EXAMPLE 7: Let $V=\{\overrightarrow{(x, y)} \mid x+y=2\}$ under standard vector addition and scalar multiplication. Properties 1.), 4.), 5.), and 6.) are NOT satisfied, so V is NOT a vector space.

DEFINITION: If W is a subset of V and both W and V are vector spaces, then we say W is a subspace of V.

EXAMPLE 8: Set V in EXAMPLE 6 is a subspace of R^{2}.

EXAMPLE 9: The set W of all 2×2 upper triangular matrices is a subspace of the vector space in EXAMPLE 2.

THEOREM: Assume that V is a vector space and W is a subset of V. Then W is a subspace of V iff the following two statements are true.
a.) If $\vec{u}, \vec{v} \in V$, then $\vec{u} \oplus \vec{v} \in V$.
b.) If $k \in R$ and $\vec{u} \in V$, then $k \vec{u} \in V$.

