article document
PROBLEM 1: Compute the area of the enclosed region bounded by the graphs of the equations $y=x, y=2 x$, and $x=4$.

SOLUTION 1: Compute the area of the enclosed region bounded by the graphs of the equations $y=x$, $y=2 x$ and $x=4$. Begin by finding the points of intersection of the two graphs. From $y=x$ and $y=2 x$ we get that

$$
\begin{array}{ll}
x=2 x & \longrightarrow \\
-x=0 & \longrightarrow \\
-x=0 & \longrightarrow \\
x=0 & \longrightarrow
\end{array}
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{0}^{4}(\text { top }- \text { bottom }) d x \\
& =\int_{0}^{4}(2 x-x) d x \\
& =\int_{0}^{4} x d x \\
& =\left.x^{2} 2\right|_{0} ^{4} \\
& =4^{2} 2-0^{2} 2 \\
& =8-0 \\
& =8
\end{aligned}
$$

PROBLEM 2: Compute the area of the enclosed region bounded by the graphs of the equations $y=x^{2}$ and $y=x+2$.

SOLUTION 2: Compute the area of the enclosed region bounded by the graphs of the equations $y=x^{2}$ and $y=x+2$. Begin by finding the points of intersection of the two graphs. From $y=x^{2}$ and $y=x+2$ we get that

$$
\begin{aligned}
& x^{2}=x+2 \quad \longrightarrow \\
& x^{2}-x-2=0 \quad \longrightarrow \\
& (x-2)(x+1)=0 \\
& x=2 \text { or } x=-1
\end{aligned}
$$

Using vertical cross-sections we get that

$$
\mathrm{AREA}=\int_{-1}^{2}(\text { top }- \text { bottom }) d x
$$

$$
\begin{aligned}
& =\int_{-1}^{2}\left((x+2)-x^{2}\right) d x \\
& =\left.\left(\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right)\right|_{-1} ^{2} \\
& =\left(\frac{2^{2}}{2}+2(2)-\frac{2^{3}}{3}\right)-\left(\frac{(-1)^{2}}{2}+2(-1)-\frac{(-1)^{3}}{3}\right) \\
& =\left(2+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right) \\
& =\left(6-\frac{8}{3}\right)-\left(\frac{3}{6}-\frac{12}{6}+\frac{2}{6}\right) \\
& =\left(\frac{36}{6}-\frac{16}{6}\right)-\left(\frac{-7}{6}\right) \\
& =\frac{20}{6}+\frac{7}{6} \\
& =\frac{27}{6} .
\end{aligned}
$$

PROBLEM 3: Compute the area of the enclosed region bounded by the graphs of the equations $y=e^{x}, y=e^{-x}$, and $x=\ln 3$.

SOLUTION 3: Compute the area of the enclosed region bounded by the graphs of the equations $y=e^{x}$, $y=e^{-x}$, and $x=\ln 3$. Begin by finding the points of intersection of the two graphs. From $y=e^{x}$ and $y=e^{-x}$ we get that

$$
\begin{array}{ll}
e^{x}=e^{-x} & \longrightarrow \\
e^{2 x}=1 & \longrightarrow \\
x=0 & \longrightarrow
\end{array}
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{0}^{\ln 3}(\text { top }- \text { bottom }) d x \\
& =\int_{0}^{\ln 3}\left(e^{x}-e^{-x}\right) d x \\
& =\left.\left(e^{x}-\left(-e^{-x}\right)\right)\right|_{0} ^{\ln 3} \\
& =\left.\left(e^{x}+e^{-x}\right)\right|_{0} ^{\ln 3} \\
& =\left(e^{\ln 3}+e^{-\ln 3}\right)-\left(e^{0}+e^{-0}\right) \\
& =(3+13)-(1+1) \\
& =(103)-(2)
\end{aligned}
$$

$$
\begin{aligned}
& =103-63 \\
& =43
\end{aligned}
$$

PROBLEM 4: Compute the area of the enclosed region bounded by the graphs of the equations $y=x^{2}$ and $y=-x^{2}+4 x+6$.

SOLUTION 4: Compute the area of the enclosed region bounded by the graphs of the equations $y=x^{2}$ and $y=-x^{2}+4 x+6$. Begin by finding the points of intersection of the two graphs. From $y=x^{2}$ and $y=-x^{2}+4 x+6$ we get that

$$
\begin{array}{ll}
x^{2}=-x^{2}+4 x+6 & \longrightarrow \\
2 x^{2}-4 x-6=0 & \longrightarrow \\
x^{2}-2 x-3=0 & \longrightarrow \\
(x-3)(x+1)=0 & \longrightarrow \\
x=3 \text { or } x=-1 &
\end{array}
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{-1}^{3}(\text { top }- \text { bottom }) d x \\
& =\int_{-1}^{3}\left(\left(-x^{2}+4 x+6\right)-\left(x^{2}\right)\right) d x \\
& =\int_{-1}^{3}\left(-x^{2}+4 x+6\right) d x \\
& =\left.\left(-2 x^{3} 3+4 x^{2} 2+6 x\right)\right|_{-1} ^{3} \\
& =\left.\left(-23 x^{3}+2 x^{2}+6 x\right)\right|_{-1} ^{3} \\
& =\left(-23(3)^{3}+2(3)^{2}+6(3)\right)-\left(-23(-1)^{3}+2(-1)^{2}+6(-1)\right) \\
& =(-18+18+18)-(23+2-6) \\
& =(18)-(23-63-183) \\
& =(18)-(-223) \\
& =18+223 \\
& =543+223 \\
& =763
\end{aligned}
$$

PROBLEM 5: Compute the area of the enclosed region bounded by the graphs of the equations $y=x^{3}+x^{2}$ and $y=3 x^{2}+3 x$.

SOLUTION 2: Compute the area of the enclosed region bounded by the graphs of the equations $y=x^{3}+x^{2}$ and $y=3 x^{2}+3 x$. Begin by finding the points of intersection of the two graphs. From $y=x^{3}+x^{2}$ and $y=3 x^{2}+3 x$ we get that

$$
\begin{array}{ll}
x^{3}+x^{2}=3 x^{2}+3 x & \longrightarrow \\
x^{3}-2 x^{2}-3 x=0 & \longrightarrow \\
x\left(x^{2}-2 x-3\right)=0 & \longrightarrow \\
x(x-3)(x+1)=0 & \longrightarrow \\
x=0, x=3, \text { or } x=-1
\end{array}
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{-1}^{0}(\text { top }- \text { bottom }) d x+\int_{0}^{3}(\text { top }- \text { bottom }) d x \\
& =\int_{-1}^{0}\left(\left(x^{3}+x^{2}\right)-\left(3 x^{2}+3 x\right)\right) d x+\int_{0}^{3}\left(\left(3 x^{2}+3 x\right)-\left(x^{3}+x^{2}\right)\right) d x \\
& =\int_{-1}^{0}\left(x^{3}-2 x^{2}-3 x\right) d x+\int_{0}^{3}\left(-x^{3}+2 x^{2}+3 x\right) d x \\
& =\left.\left(x^{4} 4-2 x^{3} 3-3 x^{2} 2\right)\right|_{-1} ^{0}+\left.\left(-x^{4} 4+2 x^{3} 3+3 x^{2} 2\right)\right|_{0} ^{3} \\
& =\left(0^{4} 4-2(0)^{3} 3-3(0)^{2} 2\right)-\left((-1)^{4} 4-2(-1)^{3} 3-3(-1)^{2} 2\right)+\left(-3^{4} 4+2(3)^{3} 3+3(3)^{2} 2\right) \\
& \quad-\left(-0^{4} 4+2(0)^{3} 3+3(0)^{2} 2\right) \\
& =(0)-(14+23-32)+(-814+18+272)-(0) \\
& =-(312+812-1812)+(-814+724+544) \\
& =-(-712)+(454) \\
& =712+454 \\
& =712+13512 \\
& =14212 \\
& =716
\end{aligned}
$$

PROBLEM 6: Compute the area of the enclosed region bounded by the graphs of the equations $y=\ln x, y=1$, and $x=e^{2}$.

SOLUTION 6: Compute the area of the enclosed region bounded by the graphs of the equations $y=\ln x$, $y=1$ and $y=e^{2}$. Begin by finding the points of intersection of the two graphs. From $y=\ln x$ and $y=1$ we get that

$$
\begin{aligned}
& \ln x=1 \quad \longrightarrow \\
& e^{\ln x}=e^{1} \\
& x=e
\end{aligned}
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{e}^{e^{2}}(\text { top }- \text { bottom }) d x \\
& =\int_{e}^{e^{2}}(\ln x-1) d x \\
& =\int_{e}^{e^{2}} \ln x d x-\int_{e}^{e^{2}} 1 d x
\end{aligned}
$$

Let $A=\int \ln x d x$.
Use integration by parts. Let $u=\ln x$ and $d v=d x$ such that $d u=1 x d x$ and $v=x$.

$$
\begin{aligned}
& A=x \ln x-\int(1 x)(x) d x \\
& =x \ln x-\int d x \\
& =x \ln x-x+C \\
& A-\int_{e}^{e^{2}} 1 d x \\
& =\left.(x \ln x-x-x)\right|_{e} ^{e^{2}} \\
& =\left.(x \ln x-2 x)\right|_{e} ^{e^{2}} \\
& =\left(e^{2} \ln e^{2}-2 e^{2}\right)-(e \ln e-2 e) \\
& =\left(e^{2}(2)-2 e^{2}\right)-(e-2 e) \\
& =(0)-(-e) \\
& =e
\end{aligned}
$$

PROBLEM 7: Compute the area of the enclosed region bounded by the graphs of the equations $y=\cos x, y=\sin x$, and $x=0$.

SOLUTION 7: Compute the area of the enclosed region bounded by the graphs of the equations $y=\cos x$, $y=\sin x$ and $x=0$. Begin by finding the points of intersection of the two graphs. From $y=x^{2}$ and $y=x+2$ we get that

$$
\begin{aligned}
& \cos x=\sin x \\
& \cos x \sin x=1 \\
& \cot x=1 \quad \longrightarrow \\
& x=\pi 4
\end{aligned}
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{0}^{\pi / 4}(\text { top }- \text { bottom }) d x \\
& =\int_{0}^{\pi / 4}(\cos x-\sin x) d x \\
& =\left.(\sin x-(-\cos x))\right|_{0} ^{\pi / 4} \\
& =\left.(\sin x+\cos x)\right|_{0} ^{\pi / 4} \\
& =(\sin \pi 4+\cos \pi 4)-(\sin 0+\cos 0) \\
& =(\sqrt{2} 2+\sqrt{2} 2)-(0+1) \\
& =\sqrt{2}-1
\end{aligned}
$$

PROBLEM 8: Compute the area of the enclosed region bounded by the graphs of the equations $y=8 / x, y=2 x$, and $y=2$.

SOLUTION 8: Compute the area of the enclosed region bounded by the graphs of the equations $y=8 x$, $y=2 x$ and $y=2$. Begin by finding the points of intersection of the two graphs. From $y=8 x$ and $y=2 x$ we get that

$$
\begin{aligned}
& 8 x=2 x \quad \longrightarrow \\
& 8=2 x^{2} \quad \longrightarrow \\
& 4=x^{2} \quad \longrightarrow \\
& x=2 \text { or } x=-2 \quad \longrightarrow \\
& y=4 \text { or } y=-4
\end{aligned}
$$

Using horizontal cross-sections such that $x=8 y$ and $x=y 2$ we get that

$$
\mathrm{AREA}=\int_{2}^{4}(\text { right }-l e f t) d y
$$

$$
\begin{aligned}
& \int_{2}^{4}(8 y-y 2) d y \\
& =\left.\left(8 \ln y-y^{2} 4\right)\right|_{2} ^{4} \\
& =\left(8 \ln 4-4^{2} 4\right)-\left(8 \ln 2-2^{2} 4\right) \\
& =(8 \ln 4-4)-(8 \ln 2-1) \\
& =\left(8 \ln 2^{2}-4\right)-(8 \ln 2-1) \\
& =(16 \ln 2-4)-(8 \ln 2-1) \\
& =8 \ln 2-3
\end{aligned}
$$

PROBLEM 9: Compute the area of the enclosed region bounded by the graphs of the equations $y=\ln x$ and $y=(\ln x)^{2}$.

SOLUTION 9: Compute the area of the enclosed region bounded by the graphs of the equations $y=\ln x$ and $y=(\ln x)^{2}$. Begin by finding the points of intersection of the two graphs. From $y=\ln x$ and $y=(\ln x)^{2}$ we get that

$$
\begin{aligned}
& \ln x=(\ln x)^{2} \quad \longrightarrow \\
& \ln x-(\ln x)^{2}=0 \quad \longrightarrow \\
& \ln x(1-\ln x) \quad \longrightarrow \\
& \ln x=0 \text { or } \ln x=1 \quad \longrightarrow \\
& x=1 \text { or } x=e
\end{aligned}
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{1}^{e}(\text { top }- \text { bottom }) d x \\
& =\int_{1}^{e}\left(\ln x-(\ln x)^{2}\right) d x \\
& =\int_{1}^{e} \ln x d x-\int_{1}^{e}(\ln x)^{2} d x
\end{aligned}
$$

Let $A=\int_{1}^{e} \ln x d x$ and $B=\int(\ln x)^{2} d x$.
(Recall from PROBLEM 6 that $\int \ln x d x=x \ln -x+C$)

$$
\begin{aligned}
& A=\left.(x \ln x-x)\right|_{1} ^{e} \\
& =(e \ln e-1 \ln 1)-(e-1)
\end{aligned}
$$

$$
\begin{aligned}
& =(e-0)-(e-1) \\
& =1
\end{aligned}
$$

Use integration by parts. Let $u=(\ln x)^{2}$ and $d v=d x$ such that $d u=2 \ln x(1 x) d x$ and $v=x$.

$$
\begin{aligned}
& B=\left.\left(x(\ln x)^{2}\right)\right|_{1} ^{e}-\int_{1}^{e} 2 \ln x d x \\
& =\left.\left(x(\ln x)^{2}\right)\right|_{1} ^{e}-\left.2(x \ln x-x)\right|_{1} ^{e} \\
& =\left(e(\ln e)^{2}-1(\ln 1)^{2}\right)-2((e \ln e-e)-(1 \ln 1-1)) \\
& =((e-0))-2((e-e)-(0-1)) \\
& =e-2 \\
& A-B=1-(e-2) \\
& =3-e
\end{aligned}
$$

PROBLEM 10: Compute the area of the enclosed region bounded by the graphs of the equations $y=\tan ^{2} x, y=0$ and $x=1$.

SOLUTION 10: Compute the area of the enclosed region bounded by the graphs of the equations $y=\tan ^{2} x, y=0$, and $x=1$. Begin by finding the points of intersection of the two graphs. From $y=\tan ^{2} x$ and $y=0$ we get that

$$
\begin{array}{ll}
\tan ^{2} x=0 & \longrightarrow \\
\tan x=0 & \longrightarrow
\end{array}
$$

$$
x=0
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{0}^{1}(\text { top }- \text { bottom }) d x \\
& =\int_{0}^{1} \tan ^{2} x d x \\
& =\int_{0}^{1}\left(\sec ^{2} x-1\right) d x \\
& =\left.(\tan x-x)\right|_{0} ^{1} \\
& =(\tan 1-1)-(\tan 0-0) \\
& =\tan 1-1
\end{aligned}
$$

PROBLEM 11: Compute the area of the enclosed region bounded by the graphs of the equations $y=x, y=2 x$, and $y=6-x$.

SOLUTION 11: Compute the area of the enclosed region bounded by the graphs of the equations $y=x$, $y=2 x$, and $y=6-x$. Begin by finding the points of intersection of the two graphs.

From $y=x$ and $y=2 x$ we get that

$$
\begin{array}{ll}
x=2 x & \longrightarrow \\
-x=0 & \longrightarrow \\
x=0 &
\end{array}
$$

From $y=x$ and $y=6-x$ we get that

$$
\begin{aligned}
& x=6-x \quad \longrightarrow \\
& 2 x=6 \quad \longrightarrow \\
& x=3
\end{aligned}
$$

From $y=2 x$ and $y=6-x$ we get that

$$
\begin{aligned}
& 2 x=6-x \quad \longrightarrow \\
& 3 x=6 \quad \longrightarrow \\
& x=2
\end{aligned}
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{0}^{2}(\text { top }- \text { bottom }) d x+\int_{2}^{3}(\text { top }- \text { bottom }) d x \\
& =\int_{0}^{2}(2 x-x) d x+\int_{2}^{3}((6-x)-x) d x \\
& =\int_{0}^{2} x d x+\int_{2}^{3}(6-2 x) d x \\
& =\left.x^{2} 2\right|_{0} ^{2}+\left.\left(6 x-2 x^{2} 2\right)\right|_{2} ^{3} \\
& =\left.x^{2} 2\right|_{0} ^{2}+\left.\left(6 x-x^{2}\right)\right|_{2} ^{3} \\
& =\left(2^{2} 2-0^{2} 2\right)+\left(\left(6 \cdot 3-3^{2}\right)-\left(6 \cdot 2-2^{2}\right)\right) \\
& =(2-0)+(9-8) \\
& =2+1 \\
& =3
\end{aligned}
$$

PROBLEM 12: Compute the area of the enclosed region bounded by the graphs of the equations
$y=\sin \sqrt{x}, y=0$, and $x=\pi / 2$.

SOLUTION 12: Compute the area of the enclosed region bounded by the graphs of the equations $y=\sin \sqrt{x}, y=0$, and $x=\pi / 2$. Begin by finding the points of intersection of the two graphs. From $y=\sin \sqrt{x}$ and $y=0$ we get that

$$
\begin{aligned}
& \sin \sqrt{x}=0 \quad \longrightarrow \\
& x=0
\end{aligned}
$$

Using vertical cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{0}^{\pi / 2}(\text { top }- \text { bottom }) d x \\
& =\int_{0}^{\pi / 2}(\sin \sqrt{x}) d x
\end{aligned}
$$

Use integration by parts. Let $u=\sin \sqrt{x}$ and $d v=d x$ such that $d u=\cos \sqrt{x} \cdot 12 \sqrt{x} d x$ and $v=x$.

$$
\begin{aligned}
& =\left.x \sin \sqrt{x}\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2} \cos \sqrt{x} \cdot 12 \sqrt{x} \cdot x d x \\
& =((\pi 2) \sin \sqrt{\pi 2}-(0) \sin \sqrt{0})-\int_{0}^{\pi / 2} \cos \sqrt{x} \cdot 12 \sqrt{x} \cdot x d x \\
& =\pi 2 \sin \sqrt{\pi 2}-\int_{0}^{\pi / 2} \cos \sqrt{x} \cdot 12 \sqrt{x} \cdot x d x
\end{aligned}
$$

Use substitution. Let

$$
w=\sqrt{x}
$$

so that

$$
\begin{aligned}
& d w=12 \sqrt{x} d x=\sqrt{x} 2 x d x \\
& x d w=\sqrt{x} 2 d x \quad \longrightarrow \\
& w^{2} d w=\sqrt{x} 2 d x \\
& =\pi 2 \sin \sqrt{\pi 2}-\int_{0}^{\sqrt{\pi / 2}} \cos w \cdot w^{2} d w
\end{aligned}
$$

Use integration by parts. Let $u^{\prime}=w^{2}$ and $d v^{\prime}=\cos w d w$ such that $d u^{\prime}=2 w d w$ and $v^{\prime}=\sin w$.

$$
\begin{aligned}
& =\pi 2 \sin \sqrt{\pi 2}-\left(\left.w^{2} \sin w\right|_{0} ^{\sqrt{\pi / 2}}-\int_{0}^{\sqrt{\pi / 2}} 2 w \sin w d w\right) \\
& =\pi 2 \sin \sqrt{\pi 2}-\left.w^{2} \sin w\right|_{0} ^{\sqrt{\pi / 2}}+\int_{0}^{\sqrt{\pi / 2}} 2 w \sin w d w \\
& =\pi 2 \sin \sqrt{\pi 2}-\left((\sqrt{\pi 2})^{2} \sin \sqrt{\pi 2}-(0)^{2} \sin 0\right)+\int_{0}^{\sqrt{\pi / 2}} 2 w \sin w d w
\end{aligned}
$$

$$
\begin{aligned}
& =\pi 2 \sin \sqrt{\pi 2}-\pi 2 \sin \sqrt{\pi 2}+\int_{0}^{\sqrt{\pi / 2}} 2 w \sin w d w \\
& =\int_{0}^{\sqrt{\pi / 2}} 2 w \sin w d w
\end{aligned}
$$

Use integration by parts. Let $u "=2 w$ and $d v "=\sin w d w$ such that $d u "=2 d w$ and $v "=-\cos w$

$$
\begin{aligned}
& =-\left.2 w \cos w\right|_{0} ^{\sqrt{\pi / 2}}+\int_{0}^{\sqrt{\pi / 2}} 2 \cos w d w \\
& =-2((\sqrt{\pi 2}) \cos \sqrt{\pi 2}-(0) \cos 0)+\left.2 \sin w\right|_{0} ^{\sqrt{\pi 2}} \\
& =-2(\sqrt{\pi 2}) \cos \sqrt{\pi 2}+2(\sin \sqrt{\pi 2}-\sin 0) \\
& =-\sqrt{2 \pi} \cos \sqrt{\pi 2}+2 \sin \sqrt{\pi 2}
\end{aligned}
$$

PROBLEM 13: Compute the area of the enclosed region bounded by the graphs of the equations $x=y^{2}$ and $x=4$.

SOLUTION 13: Compute the area of the enclosed region bounded by the graphs of the equations $x=y^{2}$ and $x=4$. Begin by finding the points of intersection of the two graphs. From $x=y^{2}$ and $x=4$ we get that

$$
\begin{aligned}
& y^{2}=4 \quad \longrightarrow \\
& y=-2 \text { or } y=2
\end{aligned}
$$

Using horizontal cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{-2}^{2}(\text { right }- \text { left }) d y \\
& =\int_{-2}^{2}\left(4-y^{2}\right) d y \\
& =\left.\left(4 y-y^{3} 3\right)\right|_{-2} ^{2} \\
& =\left(4 \cdot 2-2^{3} 3\right)-\left(4 \cdot(-2)-(-2)^{3} 3\right) \\
& =(8-83)-(-8+83) \\
& =16-163 \\
& =483-163 \\
& =323
\end{aligned}
$$

PROBLEM 14: Compute the area of the enclosed region bounded by the graphs of the equations $x=y+3$ and $x=y^{2}-y$.

SOLUTION 14: Compute the area of the enclosed region bounded by the graphs of the equations $x=y+3$ and $x=y^{2}-y$. Begin by finding the points of intersection of the two graphs. From $x=y+3$ and $x=y^{2}-y$ we get that

$$
\begin{array}{ll}
y+3=y^{2}-y & \longrightarrow \\
0=y^{2}-2 y-3 \\
0=(y-3)(y+1) & \longrightarrow \\
y=3 \text { or } y=-1
\end{array} \quad \longrightarrow \begin{aligned}
& \longrightarrow \\
& \\
& y=(y)
\end{aligned}
$$

Using horizontal cross-sections we get that

$$
\begin{aligned}
& \text { AREA }=\int_{-1}^{3}(\text { right }- \text { left }) d y \\
& =\int_{-1}^{3}\left((y+3)-\left(y^{2}-y\right)\right) d y \\
& =\int_{-1}^{3}\left(-y^{2}+2 y+3\right) d y \\
& =\left.\left(-y^{3} 3+2 y^{2} 2+3 y\right)\right|_{-1} ^{3} \\
& =\left.\left(-y^{3} 3+y^{2}+3 y\right)\right|_{-1} ^{3} \\
& =\left(-3^{3} 3+3^{2}+3(3)\right)-\left(-(-1)^{3} 3+(-1)^{2}+3(-1)\right) \\
& =(-9+9+9)-(13+1-3) \\
& =(-9+9+9)-(13+33-93) \\
& =(9)-(-53) \\
& =273+53 \\
& =323
\end{aligned}
$$

PROBLEM 15: Compute the area of the enclosed region bounded by the graphs of the equations $x=y^{3}$ and $x=y^{2}+2 y$.

SOLUTION 15: Compute the area of the enclosed region bounded by the graphs of the equations $x=y^{3}$ and $x=y^{2}+2 y$. Begin by finding the points of intersection of the two graphs. From $x=y^{3}$ and $x=y^{2}+2 y$ we get that

$$
\begin{array}{ll}
y^{3}=y^{2}+2 y \quad \longrightarrow \\
y^{3}-y^{2}-2 y=0 & \longrightarrow \\
y\left(y^{2}-y-2\right)=0 & \longrightarrow
\end{array}
$$

$$
\begin{aligned}
& y(y-2)(y+1)=0 \\
& y=0, y=2, \text { or } y=-1
\end{aligned}
$$

Using horizontal cross-sections we get that
$\mathrm{AREA}=\int_{-1}^{0}($ right $-l e f t) d y+\int_{0}^{2}($ right $-l e f t) d y$
$=\int_{-1}^{0}\left(y^{3}-\left(y^{2}+2 y\right)\right) d y+\int_{0}^{2}\left(y^{2}+2 y-y^{3}\right) d y$
$=\int_{-1}^{0}\left(y^{3}-y^{2}-2 y\right) d y+\int_{0}^{2}\left(y^{2}+2 y-y^{3}\right) d y$
$=\left.\left(y^{4} 4-y^{3} 3-2 y^{2} 2\right)\right|_{-1} ^{0}+\left.\left(y^{3} 3+2 y^{2} 2-y^{4} 4\right)\right|_{0} ^{2}$
$=\left.\left(y^{4} 4-y^{3} 3-y^{2}\right)\right|_{-1} ^{0}+\left.\left(y^{3} 3+y^{2}-y^{4} 4\right)\right|_{0} ^{2}$
$=\left(0^{4} 4-0^{3} 3-0^{2}\right)-\left((-1)^{4} 4-(-1)^{3} 3-(-1)^{2}\right)+\left(2^{3} 3+2^{2}-2^{4} 4\right)-\left(0^{3} 3+0^{2}-0^{4} 4\right)$
$=(0)-(14+13-1)+(83+4-4)-(0)$
$=-(-712)+(83)$
$=712+83$
$=712+3212$
$=3912$

