Content Creation 2

The following is an example to help in the understanding of Lecture 18

Question: Find the eigenvalues and associated unit eigenvectors of the matrix M

$$
M=\left(\begin{array}{ccc}
3 & 2 & -5 \\
2 & -4 & 2 \\
-5 & 2 & 3
\end{array}\right)
$$

First we need to solve the equation $\operatorname{det}(M-\lambda I)=0$

$$
\operatorname{det}\left(\begin{array}{ccc}
3-\lambda & 2 & -5 \\
2 & -4-\lambda & 2 \\
-5 & 2 & 3-\lambda
\end{array}\right)=0
$$

$\Rightarrow \quad(3-\lambda)((-4-\lambda)(3-\lambda)-4)-2(2(3-\lambda)+10)$

$$
-5(4-(-5)(-4-\lambda))=0
$$

$\Rightarrow \quad-\lambda^{3}+2 \lambda^{2}+48 \lambda=0$
$\Rightarrow \quad-\lambda\left(\lambda^{2}-2 \lambda-48\right)=0$
$\Rightarrow \quad-\lambda(\lambda-8)(\lambda+6)=0$

The zeroes of $\operatorname{det}(\mathrm{M}-\lambda \mathrm{I})=0$ give the eigenvalues of the matrix.
Therefore $\lambda=-6,0,8$ are the eigenvalues of matrix M

Now we need to plug the three eigenvalues back into the matrix

$$
\left(\begin{array}{ccc}
3-\lambda & 2 & -5 \\
2 & -4-\lambda & 2 \\
-5 & 2 & 3-\lambda
\end{array}\right)
$$

to solve for the eigenvectors. Set the matrix equal to the zero vector and solve for x, y, and z . Note that if your solution has arbitrary values, set the arbitrary variable equal to 1 and solve for the remaining values.

For $\lambda=-6$
$\left(\begin{array}{ccc}9 & 2 & -5 \\ 2 & 2 & 2 \\ -5 & 2 & 9\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

Now apply row operations until the matrix is in RREF. Solving for x, y, and z you get

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
\mu \\
-2 \mu \\
1 \mu
\end{array}\right)=\mu\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

This is your eigenvector for eigenvalue $\lambda=-6$

Repeat for $\lambda=0$ which gives

$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
This is your eigenvector for eigenvalue $\lambda=0$

Repeat for $\lambda=8$ which gives
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$
This is your eigenvector for eigenvalue $\lambda=8$

To find the unit eigenvectors divide each vector by its magnitude.
Your final answer should look like the following
$\lambda=-6, \quad\left(\begin{array}{c}\frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}}\end{array}\right)$
$\lambda=0, \quad\left(\begin{array}{l}\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right)$
$\lambda=8, \quad\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{-1}{\sqrt{2}}\end{array}\right)$

An additional note on multiplicity and dimension:

The multiplicity of each eigenvalue is 1 for this example because each eigenvalue appeared only once from the factors of the characteristic polynomial (the polynomial found by computing $\operatorname{det}(\lambda I-M)=0)$

The dimension for each eigenspace is 1 for this example because each eigenvalue produced only 1 independent eigenvector

