Extra Practice for Midterm 2

Math 147, Fall 2018

Name:

Problem 1: Let $\left(\mathbb{R}, \tau_{E u c}\right)$ be the real line with the Euclidean topology.
(a) Give an example of a subspace A of \mathbb{R} where A has the subspace topology τ_{A}, and a subset $U \subset A$ such that the interior of U as a subset of A is the same as the interior of U as a subset of \mathbb{R}.
$A=(0,2), U=(0,1) . U$ is open in \mathbb{R} and $U=A \cap U$ is open in A so its interior in \mathbb{R} is itself and its interior in A is also itself.
(b) Give an example of a subspace B of \mathbb{R} where A has the subspace topology τ_{B}, and a subset $V \subset B$ such that the interior of B as a subset of B is different than the interior of V as a subset of \mathbb{R}.
$B=[0,2], U=(1,2]$. The open interval $(1,3)$ is open in \mathbb{R} and $U=(1,3) \cap B$ so U is open in B. Therefore the interior of U as a subset of B is U itself. However, the interior of U in \mathbb{R} is $(1,2)$ because 2 is not an interior point of U in the topology on \mathbb{R} since any open subset of \mathbb{R} containing 2 contains $(2-\varepsilon, 2+\varepsilon)$ for some $\varepsilon>0$ and so it contains $2+\varepsilon / 2$ which is not contained in U. $(1,2)$ is open in \mathbb{R} so each point in $(1,2)$ is in the interior of U as a subset of \mathbb{R}.

Problem 2: Let $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ be regular spaces. Prove that the product ($X \times Y, \tau_{X} \times$ τ_{Y}) is regular. [Hint: use the equivalent definition of regularity, that a space is regular if and only if for every point x and open set U containing x, there is an open subset V such that $x \in V$ and $\bar{V} \subset U$.]

Let $(x, y) \in X \times Y$ be any point and U be an open subset of $X \times Y$ such that $(x, y) \in U$. Since a basis for the product topology is given by subsets of the form $U_{1} \times U_{2}$ where $U_{1} \subset X$ is open in τ_{X} and $U_{2} \subset Y$ is open in τ_{Y}, there exists such a $U_{1} \times U_{2}$ such that $(x, y) \in U_{1} \times U_{2} \subset U$. Then since X is regular and $x \in U_{1}$, there exists an open subset $V_{1} \subset X$ such that $x \in V_{1}$ and $\overline{V_{1}} \subset U_{1}$. Similarly, since Y is regular and $y \in U_{2}$, there exists an open subset $V_{2} \subset Y$ such that $y \in V_{2}$ and $\overline{V_{2}} \subset U_{2}$. Therefore $V_{1} \times V_{2}$ is an open subset of $X \times Y$ such that $(x, y) \in V_{1} \times V_{2}$ and $\overline{V_{1}} \times \overline{V_{2}} \subset U_{1} \times U_{2} \subset U$. Since $\overline{V_{1} \times V_{2}}=\overline{V_{1}} \times \overline{V_{2}}, V_{1} \times V_{2}$ provides the necessary open subset to verify the criterion to ensure that $X \times Y$ is regular.
To prove that $\overline{V_{1} \times V_{2}}=\overline{V_{1}} \times \overline{V_{2}}$, let (a, b) be a limit point of $V_{1} \times V_{2}$. Then for any open subset $W_{1} \subset X$ such that $a \in W_{1}$ and any open subset $W_{2} \subset Y$ such that $b \in W_{2}, W_{1} \times W_{2}$ is an open subset of $X \times Y$ containing (a, b) so $W_{1} \times W_{2} \cap V_{1} \times V_{2} \neq \emptyset$. Therefore there exists a point $(c, d) \in W_{1} \times W_{2} \cap V_{1} \times V_{2}$ so $W_{1} \cap V_{1} \neq \emptyset$ since $c \in W_{1} \times V_{1}$ and $W_{2} \cap V_{2} \neq \emptyset$ because $d \in W_{2} \cap V_{2}$. Therefore a is a limit point of V_{1} and b is a limit point of V_{2} so $\overline{V_{1} \times V_{2}} \subset \overline{V_{1}} \times \overline{V_{2}}$.

For the other direction suppose a is a limit point of V_{1} and b is a limit point of V_{2}, we will try to show (a, b) is a limit point of $V_{1} \times V_{2}$. Let $U \subset X \times Y$ be an open subset containing (a, b). Then by the definition of the basis for the product topology there exists $U_{1} \subset X$ and $U_{2} \subset Y$ open in their respective topologies such that $(a, b) \in U_{1} \times U_{2} \subset U$. Then $a \in U_{1}$ so $U_{1} \cap V_{1} \neq \emptyset$ and $b \in U_{2}$ so $U_{2} \cap V_{2} \neq \emptyset$. Therefore $\left(U_{1} \times U_{2}\right) \cap\left(V_{1} \times V_{2}\right) \neq \emptyset$ so (a, b) is a limit point of $V_{1} \times V_{2}$, so $\overline{V_{1}} \times \overline{V_{2}} \subset \overline{V_{1} \times V_{2}}$.

Problem 3: Let X be the set of natural numbers $1,2,3, \cdots$. We define a topology τ^{\prime} on X as follows. $U \subset X$ is open in τ^{\prime} if and only if either one or both of the following two conditions hold

1. $X \backslash U$ is finite
2. $1 \in X \backslash U$

Prove that X with the topology τ^{\prime} is not connected.
Let $A=X \backslash\{2\}$. Then A is open because $X \backslash A$ is finite (only the number 2). $X \backslash A=\{2\}$ is open because $1 \in X \backslash(X \backslash A)$. Therefore A is also closed. $A \neq \emptyset$ and $A \neq X$ so X is not connected.

Problem 4: Let $X=\mathbb{R}^{2}$ with the Euclidean topology. Define an equivalence relation \sim on X by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if $x_{1}+2 y_{1}^{2}=x_{2}+2 y_{2}^{2}$. Let $Y=\mathbb{R}$ with the Euclidean topology. Construct a map $f: X / \sim \rightarrow Y$ and show that f is well-defined, continuous and has an inverse. You do NOT need to prove that f^{-1} is continuous (f^{-1} probably will be continuous, you just do not need to prove it).
Let $f([(x, y)])=x+2 y^{2}$.
f is well defined: If $\left[\left(x_{1}, y_{1}\right)\right]=\left[\left(x_{2}, y_{2}\right)\right]$ then $x_{1}+2 y_{1}^{2}=x_{2}+2 y_{2}^{2}$ so $f\left(\left[\left(x_{1}, y_{1}\right)\right]\right)=$ $f\left(\left[\left(x_{2}, y_{2}\right)\right]\right)$.
f is continuous: Let $p: X \rightarrow X / \sim$ be the quotient map. Then $f \circ p(x, y)=x+2 y^{2}$ is a polynomial map so it is continuous. Therefore $f: X / \sim \rightarrow Y$ is continuous.
f has an inverse: Let $f^{-1}: Y \rightarrow X / \sim$ be defined by $f^{-1}(s)=[(s, 0)]$.

$$
\begin{gathered}
f\left(f^{-1}(s)\right)=f([(s, 0)])=s \\
f^{-1}(f([(x, y)]))=f^{-1}\left(x+2 y^{2}\right)=\left[\left(x+2 y^{2}, 0\right)\right]
\end{gathered}
$$

and $[(x, y)]=\left[\left(x+2 y^{2}, 0\right)\right]$ because $x+2 y^{2}=x+2 y^{2}+0^{2}$.
Therefore f^{-1} is an inverse function for f.

