Extra Practice for Midterm 1

Math 147, Fall 2018

Problem 1: Suppose $f: X \rightarrow Y$ is a function between sets X and Y. Suppose \mathcal{B}_{Y} is a basis for a topology on Y.
(a) Show that if we define the collection

$$
\mathcal{B}_{X}=\left\{f^{-1}(B) \mid B \in \mathcal{B}_{Y}\right\}
$$

then \mathcal{B}_{X} is a basis on X.
The first axiom for a basis: Let $x \in X$. Then $f(x) \in Y$. Since \mathcal{B}_{Y} is a basis, there exists $B \in \mathcal{B}_{Y}$ such that $f(x) \in B$. Therefore $x \in f^{-1}(B) \in \mathcal{B}_{X}$.
The second axiom for a basis: Let $x \in f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$ for $B_{1}, B_{2} \in \mathcal{B}_{Y}$. Then $f(x) \in B_{1} \cap B_{2}$. Since $B_{1}, B_{2} \in \mathcal{B}_{Y}$, which is a basis, there exists $B_{3} \in \mathcal{B}_{Y}$ such that $f(x) \in B_{3} \subset B_{1} \cap B_{2}$. Then $x \in f^{-1}\left(B_{3}\right) \subset f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$ so we prove the second basis axiom for \mathcal{B}_{X}.
(b) If we give X the topology τ_{X} generated by the basis \mathcal{B}_{X} and Y the topology generated by the basis \mathcal{B}_{Y}, show that $f:\left(X, \tau_{X}\right) \rightarrow\left(Y, \tau_{Y}\right)$ is a continuous function.
It suffices to check that the preimage of each basis element of \mathcal{B}_{Y} is open in the topology τ_{X}. If $B \in \mathcal{B}_{Y}$ then $f^{-1}(B) \in \mathcal{B}_{X}$. Basis elements are always open in the topology generated by the basis because if $u \in f^{-1}(B)$ then $u \in f^{-1}(B) \subseteq f^{-1}(B)$. Therefore f is continuous.

Problem 2: Let d_{X} be a metric on a set X and d_{Y} be a metric on a set Y.
(a) Show that the function $d:(X \times Y) \times(X \times Y) \rightarrow \mathbb{R}$ defined by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\}
$$

is a metric on $X \times Y$.
(1) Positive definite: Since $d_{X}\left(x_{1}, x_{2}\right) \geq 0$ and $d_{Y}\left(y_{1}, y_{2}\right) \geq 0, \max \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\} \geq$ 0 . If $\max \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\}=0$ then $d_{X}\left(x_{1}, x_{2}\right)=0$ and $d_{Y}\left(y_{1}, y_{2}\right)=0$, therefore by positive definiteness of d_{X} and $d_{Y}, x_{1}=x_{2}$ and $y_{1}=y_{2}$ therefore $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.
(2) Symmetric: Since d_{X} and d_{Y} are symmetric $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\}=$ $\max \left\{d_{X}\left(x_{2}, x_{1}\right), d_{Y}\left(y_{2}, y_{1}\right)\right\}=d\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right)$.
(3) Triangle inequality: Consider three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$. Now

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)=\max \left\{d_{X}\left(x_{1}, x_{3}\right), d_{Y}\left(y_{1}, y_{3}\right)\right\}
$$

By the triangle inequality for d_{X}, we know that

$$
\begin{aligned}
d_{X}\left(x_{1}, x_{3}\right) & \leq d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right) \\
& \leq \max \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\}+\max \left\{d_{X}\left(x_{2}, x_{3}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right\} \\
& =d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)+d\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)
\end{aligned}
$$

and by the triangle inequality for d_{Y} we know that

$$
\begin{aligned}
d_{Y}\left(y_{1}, y_{3}\right) & \leq d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right) \\
& \leq \max \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\}+\max \left\{d_{X}\left(x_{2}, x_{3}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right\} \\
& =d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)+d\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)
\end{aligned}
$$

Since $d\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)=d_{X}\left(x_{1}, x_{3}\right)$ or $d_{Y}\left(y_{1}, y_{3}\right)$ and both are less than or equal to $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)+d\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)$, the triangle inequality holds.
(b) Show that in this metric $B_{\varepsilon}((x, y))=B_{\varepsilon}(x) \times B_{\varepsilon}(y)$.

Suppose $(a, b) \in B_{\varepsilon}((x, y))$ then $d((a, b),(x, y))<\varepsilon$ so $\max \left\{d_{X}(a, x), d_{Y}(b, y)\right\}<\varepsilon$. Therefore $d_{X}(a, x)<\varepsilon$ and $d_{Y}(b, y)<\varepsilon$. Therefore $a \in B_{\varepsilon}(x)$ and $b \in B_{\varepsilon}(y)$ so $(a, b) \in B_{\varepsilon}(x) \times B_{\varepsilon}(y)$. We conclude that $B_{\varepsilon}((x, y)) \subseteq B_{\varepsilon}(x) \times B_{\varepsilon}(y)$.
For the other direction, suppose $(a, b) \in B_{\varepsilon}(x) \times B_{\varepsilon}(y)$. Then $d_{X}(a, x)<\varepsilon$ and $d_{Y}(b, y)<\varepsilon$. Therefore $\max \left\{d_{X}(a, x), d_{Y}(b, y)\right\}<\varepsilon$ so $d((a, b),(x, y))<\varepsilon$ so $(a, b) \in$ $B_{\varepsilon}((x, y))$. Therefore $B_{\varepsilon}(x) \times B_{\varepsilon}(y) \subseteq B_{\varepsilon}((x, y))$. Since we have both sets are subsets of each other they must be equal.

Problem 3: Let $f:\left(\mathbb{R}, \tau_{1}\right) \rightarrow\left(\mathbb{R}, \tau_{2}\right)$ be the function $f(x)=2 x$.
(a) If τ_{1} is the discrete topology and τ_{2} is the Euclidean topology, determine whether or not f is continuous and prove it.
f is continuous. For the proof, let $U \in \tau_{2}$ be an open subset. Then $f^{-1}(U) \subset \mathbb{R}$ is a subset of \mathbb{R} so it is open in the discrete topology. Therefore the preimage of any open set is open so f is continuous.
(b) If τ_{1} is the Euclidean topology and τ_{2} is the discrete topology, determine whether or not f is continuous and prove it.
f is not continuous. To prove this, consider the set $\{1\} \subset \mathbb{R}$. This is open in the discrete topology because it is a subset. $f^{-1}(\{1\})=\left\{\frac{1}{2}\right\}$. Since τ_{1} is the Euclidean topology, $\left\{\frac{1}{2}\right\}$ is not an open subset because if $\varepsilon>0, B_{\varepsilon}\left(\frac{1}{2}\right)$ is not contained in $\left\{\frac{1}{2}\right\}$ because the ball contains other points such as $\frac{1}{2}+\frac{\varepsilon}{2}$. Therefore f is not continuous.
(c) If τ_{1} is the trivial topology defined by $\tau_{1}=\{\emptyset, \mathbb{R}\}$ and τ_{2} is the Euclidean topology, determine whether or not f is continuous and prove it.
f is not continuous. To prove this, consider the open interval $(0,1)$ in the Euclidean topology. Then $f^{-1}((0,1))=\left(0, \frac{1}{2}\right)$. Since $\left(0, \frac{1}{2}\right) \neq \emptyset$ and $\left(0, \frac{1}{2}\right) \neq \mathbb{R},\left(0, \frac{1}{2}\right) \notin \tau_{2}$. Therefore f is not continuous.

Problem 4: Let $A \subset X$ be a subset of a topological space. Show that $B \operatorname{dry}(A)=\emptyset$ if and only if A is both open and closed in X.

See solutions to Homework 4.

