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Problem 1: Let (X, τX) be a topological space. Let Y be a subspace of X with the subspace

topology τY . Let A ⊆ Y . Let A
X

denote the closure of A in (X, τX) and let A
Y

denote the
closure of A in (Y, τY ).

(a) Prove that A
Y ⊂ A

X
.

Suppose p ∈ AY
. Then either p ∈ A in which case p ∈ AX

by definition of the closure,
or p is a limit point of A in the subspace topology τY on Y . Therefore for every open
set V ∈ τY such that p ∈ V , V ∩ A 6= ∅. We will show that p is a limit point of A in
the topology τX on X. Let U ∈ τX be an open subset of X such that p ∈ U . Then
V = Y ∩ U is an open subset of Y : V ∈ τY . Therefore V ∩ A 6= ∅. Since V ⊆ U ,

U ∩ A 6= ∅. Therefore p is a limit point of A in τX so p ∈ AX
.

(b) Give an example where A
Y 6= A

X
.

Consider X = R where τX is the Euclidean topology and Y = (0, 2). Let A = (1, 2).

Then A
Y

= [1, 2) and A
X

= [1, 2] because 2 is a limit point of A in R but 2 /∈ Y so it
cannot be a limit point of A in Y with the subspace topology.
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Problem 2: Let X = R \ {0} = (−∞, 0)∪ (0,∞) with the Euclidean topology τ . Define an
equivalence relation ∼ on X by x1 ∼ x2 if and only if x1 = cx2 where c > 0. Let Y be the
set with two elements Y = {+,−}. Let τY be the discrete topology on Y . Construct a map
f : X/∼ → Y and show that f is well-defined, continuous and has an inverse. You do NOT
need to prove that f−1 is continuous (f−1 probably will be continuous, you just do not need
to prove it).

Define a map f : X/∼ → Y by f(x) = + if x > 0 and f(x) = − if x < 0.

f is well defined: If x1 = cx2 for c > 0 then x1 > 0 if and only if x2 > 0 (and x1 < 0 if
and only if x2 < 0) since multiplication by a positive number does not change the sign of a
number. Therefore if [x1] = [x2] and x1 > 0, f([x1]) = + = f([x2]), and if [x1] = [x2] and
x1 < 0 then f([x1]) = − = f([x2]).

f is continuous: Y = {+,−} with the discrete topology, so its open subsets are ∅, {+},
{−}, and {−,+}. From the fact that f : X/∼ → Y is a function, we know that f−1(∅) = ∅
and f−1(Y ) = X/∼ so these preimages are open. Therefore, to show that f is continuous,
we just need to check that f−1({+}) and f−1({−}) are open sets in X/∼.

By definition of f , f−1({+}) = {[x] | x > 0}. By definition of the quotient topology
{[x] | x > 0} is an open subset of X/∼ if and only if p−1({[x] | x > 0}) is open in X.
p−1({[x] | x > 0}) = (0,∞) which is open in R with the Euclidean topology so it is open in
R \ {0}.

Similarly, f−1({−}) = {[x] | x < 0} and p−1({[x] | x < 0}) = (−∞, 0). Since (−∞, 0) is
open in R \ {0}, f−1({−}) is open in X/∼ so f is continuous.

f has an inverse: Define f−1 : Y → R \ {0} by setting f−1(+) = [1] and f−1(−) = [−1].

Then f(f−1(+)) = f([1]) = + and f(f−1(−)) = f([−1]) = −.

If x > 0, f−1(f([x])) = f−1(+) = [1] and [1] = [x] because x = x · 1 so letting c = x, using
the fact that c = x > 0, we have x ∼ 1.

If x < 0, f−1(f([x])) = f−1(−) = [−1] and [−1] = [x] because x = (−x) · (−1) so letting
c = −x and using the fact that c = −x > 0, we have x ∼ −1.

Therefore f and f−1 are inverse functions.
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Problem 3: If X is a metric space, and τ is the topology induced by the metric (with basis
the open balls of positive radius), show that (X, τ) is Hausdorff.

Let x1, x2 ∈ X where x1 6= x2. Then d(x1, x2) > 0. Let ε = d(x1, x2). Let U1 = Bε/4(x1)
and U2 = Bε/4(x2). Then x1 ∈ U1, x2 ∈ U2, U1 and U2 are open in the topology induced by
the metric since they are basis elements. We will check that U1 ∩ U2 = ∅. This is because if
y ∈ U1 ∩ U2 then d(x1, y) < ε/4 and d(x2, y) < ε/4, therefore by the triangle inequality:

ε = d(x1, x2) ≤ d(x1, y) + d(y, x2) <
ε

4
+
ε

4
=
ε

2

which would imply that ε < ε/2 which is a contradiction so U1∩U2 = ∅ so (X, τ) is Hausdorff.
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Problem 4: Let A and B be subsets of a topological space (X, τ) such that (A, τA) and
(B, τB) are connected with the subspace topology. If A ∩ B 6= ∅ show that A ∪ B with the
subspace topology is connected.

Suppose for contradiction that A∪B is not connected. Then there exists a subset C ⊂ A∪B
such that C is open and closed in A∪B with the subspace topology, and C 6= ∅, C 6= A∪B.
Let C1 = A∩C and C2 = B ∩C. Then since a set is open in the subspace topology on A as
a subset of X if and only if it is open in the subspace topology on A as a subset of A ∪ B,
C1 is open in the subspace topology on A. Similarly C2 is open in the subspace topology on
B.

Since C is closed in A∪B, D = (A∪B)\C is open so D1 = A∩D is open in A and D2 = B∩D
is open in B. A \ C1 = D1 because x ∈ D1 if and only if x ∈ A and x ∈ (A ∪B) \ C, which
is true if and only if x ∈ A and x /∈ C so D1 = A \ C1. Since D1 is open, C1 is closed.
Similarly, since D2 is open and A \ C2 = D2, C2 is closed.

Therefore C1 is open and closed in A so since A is connected, C1 = ∅ or C1 = A. Similarly
since C2 is open and closed in B and B is connected, C2 = ∅ or C2 = B.

If C1 = ∅ then C ⊆ B so C = C2. Since C 6= ∅, C = B, but A ∩ B 6= ∅ so C ∩ A 6= ∅ which
contradicts the assumption that C1 = ∅.

Therefore C1 = A. Since A ∩B 6= ∅, C2 6= ∅, therefore C2 = B. Thus C = C1 ∪C2 = A ∪B
which contradicts the original assumption that C 6= A ∪B.

Therefore A ∪B is connected.

5


