
Midterm 1 Solutions

Math 147, Fall 2018
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Problem 1: Let X be a set.

(a) For any x, y ∈ X define the function d : X ×X → R by{
d(x, x) = 0

d(x, y) = 1 if x 6= y

Show that d is a metric.

(1) Positive definite: d(x, y) ∈ {0, 1} so d(x, y) ≥ 0 for all x, y ∈ X. d(x, y) = 0 only
when x = y by definition.

(2) Symmetric: If x = y, d(x, y) = 0 and d(y, x) = 0. If x 6= y then d(x, y) = 1 and
d(y, x) = 1 so in all cases d(x, y) = d(y, x).

(3) Triangle inequality. If x, y, z ∈ X, we want to show that

d(x, z) ≤ d(x, y) + d(y, z).

To show this, first consider the case when x = z. Then d(x, z) = 0 and d(x, y) ≥ 0
and d(y, z) ≥ 0 so d(x, z) = 0 ≤ d(x, y) + d(y, z). Next consider the case when
x 6= z so d(x, z) = 1.

If x = y then y 6= z so d(x, y) = 0 and d(y, z) = 1 so d(x, z) = 1 ≤ 0 + 1 =
d(x, y) + d(y, z).

Similarly, if y = z then x 6= y so d(x, y) = 1 and d(y, z) = 0 so d(x, z) = 1 ≤
1 + 0 = d(x, y) + d(y, z).

Finally if x 6= y and y 6= z then d(x, y) = d(y, z) = 1 so d(x, z) = 1 ≤ 1 + 1 =
d(x, y) + d(y, z).

(b) Show that every subset A ⊂ X is an open subset in the metric space topology, so this
metric induces the discrete topology on X.

Suppose A ⊂ X. Let a ∈ A and let r = 1/2 so in particular, r > 0. Then Br(a) =
{x ∈ X | d(x, a) < r = 1

2
}. Since d(x, a) = 1 > 1

2
whenever x 6= a, Br(a) = {a}.

Therefore a ∈ Br(a) = {a} ⊂ A so A is open.
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Problem 2: Suppose X is a topological space. Let A be a subset of X. Suppose that for
each x ∈ A there is an open set Ux containing x such that U ⊂ A. Show that A is open in
X (i.e. A is in the topology) without quoting any topology theorems we have proven, (you
should use the axioms in the definition of a topology and you can use set theory statements).

Let U = ∪x∈AUx. Then U is an open subset of X because each Ux is open in X and U is a
union of open subsets.

We first show that U ⊆ A. This is true because for each u ∈ U , u ∈ Ux for some x ∈ A and
Ux ⊂ A. Therefore, u ∈ Ux ⊂ A so u ∈ A.

Next we show that A ⊆ U . This is true because for each a ∈ A, a ∈ Ua so a ∈ ∪x∈AUx.

Therefore U ⊆ A ⊆ U so A = U . Since U is open, A is open.
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Problem 3: Let τZar be the Zariski topology on R, a subset is open U ∈ τZar if and only if
R \ U is a finite set or all of R.

(a) Prove that τZar is a topology (satisfies the 3 axioms).

(1) ∅,R ∈ τZar because R \ ∅ = R which is allowed by the definition and R \ R = ∅
which has 0 elements so it is a finite set.

(2) If Uα ∈ τZar for all α ∈ I then R \ Uα is a finite set for each α. We want to show
that ∪α∈IUα is open in τZar. To show this we use DeMorgan’s laws to show that

R \ (
⋃
α∈I

Uα) =
⋂
α∈I

(R \ Uα)

The intersection of finite sets is finite, therefore R \ (∪αUα) is a finite set so
∪αUα ∈ τZar.

(3) If U1, · · · , Un ∈ τZar then R \ Ui is a finite set for i = 1, · · · , n. Again using
DeMorgan’s laws we have

R \ (U1 ∩ · · · ∩ Un) = (R \ U1) ∪ · · · ∪ (R \ Un)

The finite union of finite sets is finite so R\(U1∩· · ·∩Un) is finite so U1∩· · ·∩Un ∈
τZar.

(b) What is the closure of the subset (0, 1) in the topology τZar? Prove it.

The closure of (0, 1) in τZar is R. Here is the proof.

The closure of a subset A ⊆ X is the intersection of all closed subsets C ⊆ X such
that A ⊆ C. A subset C ⊆ R is closed in the topology τZar if and only if R \C ∈ τZar.
R \ C ∈ τZar if and only if R \ (R \ C) is a finite set or all of R. C = R \ (R \ C)
so C is a closed set in τZar if and only if C is a finite subset or C = R. Since (0, 1)
contains infinitely many elements (for example it contains 1/n for all natural numbers
n), if (0, 1) ⊂ C, C cannot be a finite set. Therefore the only closed subset of R in the
topology τZar such that (0, 1) ⊆ C is when C = R. Therefore (0, 1) = R.
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Problem 4: Let X = {1, 2, 3} with the topology τX = {∅, {1}, {2, 3}, {1, 2, 3}}. Let Y =
{A,B,C}.

Let f : X → Y be the bijective function defined by f(1) = A, f(2) = B and f(3) = C.

(a) Suppose τY is some topology on Y such that the function f : (X, τX)→ (Y, τY ) defined
above is continuous using these topologies. Show that {B} /∈ τY .

Suppose for sake of contradiction that {B} ∈ τY . Then since f is continuous, f−1({B}) ∈
τX . However, looking at the definition of f , we see that the only point which f maps
to B is 2. Therefore f−1({B}) = {2}. Since {2} /∈ τX , we reach a contradiction.

(b) Give an example of a topology τY on Y such that f : (X, τX)→ (Y, τY ) is a continuous
function, but is not a homeomorphism.

Let τY = {∅, Y } be the trivial topology. Then since f−1(∅) = ∅ and f−1(Y ) = X, and
∅, X ∈ τX , f is continuous.

f is a bijection so it has an inverse f−1 : Y → X defined by f−1(A) = 1, f−1(B) = 2
and f−1(C) = 3. We will show f−1 is not continuous. Consider the open subset
{1} ∈ τX . Then looking at the definition of the function we see (f−1)−1({1}) = {A}.
But {A} 6= Y and {A} 6= ∅ so {A} /∈ τY . Therefore f−1 is not continuous so f is not
a homeomorphism.
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