Midterm 1 Solutions

Math 147, Fall 2018

Problem 1: Let X be a set.
(a) For any $x, y \in X$ define the function $d: X \times X \rightarrow \mathbb{R}$ by

$$
\left\{\begin{array}{l}
d(x, x)=0 \\
d(x, y)=1 \quad \text { if } x \neq y
\end{array}\right.
$$

Show that d is a metric.
(1) Positive definite: $d(x, y) \in\{0,1\}$ so $d(x, y) \geq 0$ for all $x, y \in X . d(x, y)=0$ only when $x=y$ by definition.
(2) Symmetric: If $x=y, d(x, y)=0$ and $d(y, x)=0$. If $x \neq y$ then $d(x, y)=1$ and $d(y, x)=1$ so in all cases $d(x, y)=d(y, x)$.
(3) Triangle inequality. If $x, y, z \in X$, we want to show that

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

To show this, first consider the case when $x=z$. Then $d(x, z)=0$ and $d(x, y) \geq 0$ and $d(y, z) \geq 0$ so $d(x, z)=0 \leq d(x, y)+d(y, z)$. Next consider the case when $x \neq z$ so $d(x, z)=1$.
If $x=y$ then $y \neq z$ so $d(x, y)=0$ and $d(y, z)=1$ so $d(x, z)=1 \leq 0+1=$ $d(x, y)+d(y, z)$.

Similarly, if $y=z$ then $x \neq y$ so $d(x, y)=1$ and $d(y, z)=0$ so $d(x, z)=1 \leq$ $1+0=d(x, y)+d(y, z)$.
Finally if $x \neq y$ and $y \neq z$ then $d(x, y)=d(y, z)=1$ so $d(x, z)=1 \leq 1+1=$ $d(x, y)+d(y, z)$.
(b) Show that every subset $A \subset X$ is an open subset in the metric space topology, so this metric induces the discrete topology on X.

Suppose $A \subset X$. Let $a \in A$ and let $r=1 / 2$ so in particular, $r>0$. Then $B_{r}(a)=$ $\left\{x \in X \left\lvert\, d(x, a)<r=\frac{1}{2}\right.\right\}$. Since $d(x, a)=1>\frac{1}{2}$ whenever $x \neq a, B_{r}(a)=\{a\}$. Therefore $a \in B_{r}(a)=\{a\} \subset A$ so A is open.

Problem 2: Suppose X is a topological space. Let A be a subset of X. Suppose that for each $x \in A$ there is an open set U_{x} containing x such that $U \subset A$. Show that A is open in X (i.e. A is in the topology) without quoting any topology theorems we have proven, (you should use the axioms in the definition of a topology and you can use set theory statements).

Let $U=\cup_{x \in A} U_{x}$. Then U is an open subset of X because each U_{x} is open in X and U is a union of open subsets.

We first show that $U \subseteq A$. This is true because for each $u \in U, u \in U_{x}$ for some $x \in A$ and $U_{x} \subset A$. Therefore, $u \in U_{x} \subset A$ so $u \in A$.
Next we show that $A \subseteq U$. This is true because for each $a \in A, a \in U_{a}$ so $a \in \cup_{x \in A} U_{x}$.
Therefore $U \subseteq A \subseteq U$ so $A=U$. Since U is open, A is open.

Problem 3: Let $\tau_{Z a r}$ be the Zariski topology on \mathbb{R}, a subset is open $U \in \tau_{Z a r}$ if and only if $\mathbb{R} \backslash U$ is a finite set or all of \mathbb{R}.
(a) Prove that $\tau_{Z a r}$ is a topology (satisfies the 3 axioms).
(1) $\emptyset, \mathbb{R} \in \tau_{\text {Zar }}$ because $\mathbb{R} \backslash \emptyset=\mathbb{R}$ which is allowed by the definition and $\mathbb{R} \backslash \mathbb{R}=\emptyset$ which has 0 elements so it is a finite set.
(2) If $U_{\alpha} \in \tau_{Z a r}$ for all $\alpha \in \mathcal{I}$ then $\mathbb{R} \backslash U_{\alpha}$ is a finite set for each α. We want to show that $\cup_{\alpha \in \mathcal{I}} U \alpha$ is open in $\tau_{\text {Zar }}$. To show this we use DeMorgan's laws to show that

$$
\mathbb{R} \backslash\left(\bigcup_{\alpha \in \mathcal{I}} U_{\alpha}\right)=\bigcap_{\alpha \in \mathcal{I}}\left(\mathbb{R} \backslash U_{\alpha}\right)
$$

The intersection of finite sets is finite, therefore $\mathbb{R} \backslash\left(\cup_{\alpha} U_{\alpha}\right)$ is a finite set so $\cup_{\alpha} U_{\alpha} \in \tau_{Z a r}$.
(3) If $U_{1}, \cdots, U_{n} \in \tau_{Z a r}$ then $\mathbb{R} \backslash U_{i}$ is a finite set for $i=1, \cdots, n$. Again using DeMorgan's laws we have

$$
\mathbb{R} \backslash\left(U_{1} \cap \cdots \cap U_{n}\right)=\left(\mathbb{R} \backslash U_{1}\right) \cup \cdots \cup\left(\mathbb{R} \backslash U_{n}\right)
$$

The finite union of finite sets is finite so $\mathbb{R} \backslash\left(U_{1} \cap \cdots \cap U_{n}\right)$ is finite so $U_{1} \cap \cdots \cap U_{n} \in$ $\tau_{\text {Zar }}$.
(b) What is the closure of the subset $(0,1)$ in the topology $\tau_{Z a r}$? Prove it.

The closure of $(0,1)$ in $\tau_{Z a r}$ is \mathbb{R}. Here is the proof.
The closure of a subset $A \subseteq X$ is the intersection of all closed subsets $C \subseteq X$ such that $A \subseteq C$. A subset $C \subseteq \mathbb{R}$ is closed in the topology $\tau_{\text {Zar }}$ if and only if $\mathbb{R} \backslash C \in \tau_{\text {Zar }}$. $\mathbb{R} \backslash C \in \tau_{\text {Zar }}$ if and only if $\mathbb{R} \backslash(\mathbb{R} \backslash C)$ is a finite set or all of $\mathbb{R} . C=\mathbb{R} \backslash(\mathbb{R} \backslash C)$ so C is a closed set in $\tau_{Z a r}$ if and only if C is a finite subset or $C=\mathbb{R}$. Since $(0,1)$ contains infinitely many elements (for example it contains $1 / n$ for all natural numbers n), if $(0,1) \subset C, C$ cannot be a finite set. Therefore the only closed subset of \mathbb{R} in the topology $\tau_{\text {Zar }}$ such that $(0,1) \subseteq C$ is when $C=\mathbb{R}$. Therefore $\overline{(0,1)}=\mathbb{R}$.

Problem 4: Let $X=\{1,2,3\}$ with the topology $\tau_{X}=\{\emptyset,\{1\},\{2,3\},\{1,2,3\}\}$. Let $Y=$ $\{A, B, C\}$.

Let $f: X \rightarrow Y$ be the bijective function defined by $f(1)=A, f(2)=B$ and $f(3)=C$.
(a) Suppose τ_{Y} is some topology on Y such that the function $f:\left(X, \tau_{X}\right) \rightarrow\left(Y, \tau_{Y}\right)$ defined above is continuous using these topologies. Show that $\{B\} \notin \tau_{Y}$.

Suppose for sake of contradiction that $\{B\} \in \tau_{Y}$. Then since f is continuous, $f^{-1}(\{B\}) \in$ τ_{X}. However, looking at the definition of f, we see that the only point which f maps to B is 2 . Therefore $f^{-1}(\{B\})=\{2\}$. Since $\{2\} \notin \tau_{X}$, we reach a contradiction.
(b) Give an example of a topology τ_{Y} on Y such that $f:\left(X, \tau_{X}\right) \rightarrow\left(Y, \tau_{Y}\right)$ is a continuous function, but is not a homeomorphism.
Let $\tau_{Y}=\{\emptyset, Y\}$ be the trivial topology. Then since $f^{-1}(\emptyset)=\emptyset$ and $f^{-1}(Y)=X$, and $\emptyset, X \in \tau_{X}, f$ is continuous.
f is a bijection so it has an inverse $f^{-1}: Y \rightarrow X$ defined by $f^{-1}(A)=1, f^{-1}(B)=2$ and $f^{-1}(C)=3$. We will show f^{-1} is not continuous. Consider the open subset $\{1\} \in \tau_{X}$. Then looking at the definition of the function we see $\left(f^{-1}\right)^{-1}(\{1\})=\{A\}$. But $\{A\} \neq Y$ and $\{A\} \neq \emptyset$ so $\{A\} \notin \tau_{Y}$. Therefore f^{-1} is not continuous so f is not a homeomorphism.

