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Problem 1: Let (X, τX) be a topological space.

(a) Let A ⊂ X be an open subset in X (A ∈ τX). Let τA be the subspace topology on A.
Let U ⊆ A. Show that U ∈ τA if and only if U ∈ τX .

By definition of the subspace topology, U ∈ τA if and only if U = V ∩ A for V ∈ τX .
Since A is open in X and V is open in X, U = V ∩ A is open in X.

Conversely, if U ⊆ A and U ∈ τX then U = U ∩ A so U ∈ τA.

(b) If (X, τ) = (R, τEuc) is the real line with the Euclidean topology and A = [0, 1], give
an example of a subset U ⊂ [0, 1] which is open in the subspace topology (A, τA), but
not open in (R, τEuc).

Let U = (1
2
, 1]. Then U is open in the subspace topology because U = (1

2
, 3
2
) ∩ [0, 1],

but U is not open in (R, τEuc) because 1 ∈ U but for any ε > 0, Bε(1) = (1− ε, 1 + ε)
is not contained in U , so U cannot be open in R.
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Problem 2: Let X = R2 with the Euclidean topology. Define an equivalence relation ∼
on X by (x1, y1) ∼ (x2, y2) if and only if y1 − x1 = y2 − x2. Let Y = R with the Euclidean
topology. Construct a map f : X/∼ → Y and show that f is well-defined, continuous and
has an inverse. You do NOT need to prove that f−1 is continuous (f−1 probably will be
continuous, you just do not need to prove it).

Define f : R2/∼ → R be defined by

f([(x, y)]) = y − x

f is well-defined: Suppose [(x1, y1)] = [(x2, y2)] then y1 − x1 = y2 − x2 so

f([(x1, y1)]) = y1 − x1 = y2 − x2 = f([(x2, y2)])

so f is well-defined on equivalence classes.

f is continuous: Let p : R2 → R2/∼ be the quotient map. We use the fact that f : R2/∼ →
R is continuous if and only if f ◦ p is continuous.

f ◦ p((x, y)) = f([(x, y)]) = y − x.

Therefore f◦p : R2 → R is a polynomial function between Euclidean spaces so it is continuous
by standard real analysis arguments.

f is invertible: Define f−1 : R→ R2/∼ by

f−1(y) = [(0, y)]

Then f(f−1(y)) = f([(0, y)]) = y − 02 = y and

f−1(f([(x, y)])) = f−1(y − x2) = [(0, y − x2)]

and we can verify that [(x, y)] = [(0, y − x2)] because (x, y) ∼ (0, y − x2) since y − x2 =
(y − x2)− 02.
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Problem 3: Let (X, τX) and (Y, τY ) be Hausdorff topological spaces. Prove that the product
space (X × Y, τX×Y ) is Hausdorff.

Let (x1, y1), (x2, y2) ∈ X × Y where (x1, y1) 6= (x2, y2). Then either x1 6= x2 or y1 6= y2 (or
both).

If x1 6= x2 then since (X, τX) is Hausdorff, there exist open subsets U1, U2 ∈ τX such that
x1 ∈ U1, x2 ∈ U2 and U1∩U2 = ∅. Then U1×Y ∈ τX×Y and U2×Y ∈ τX×Y . (x1, y1) ∈ U1×Y
because x1 ∈ U1 and y1 ∈ Y . (x2, y2) ∈ U2 × Y because x2 ∈ U2 and y2 ∈ Y . Finally,
(U1 × Y ) × (U2 × Y ) = ∅ because if (x, y) ∈ (U1 × Y ) ∩ (U2 × Y ) then x ∈ U1, y ∈ Y , and
x ∈ U2, y ∈ Y . Therefore x ∈ U1 ∩ U2 but U1 ∩ U2 = ∅ so this is impossible.

Similarly, if y1 6= y2 then there are open sets V1, V2 ∈ τY such that y1 ∈ V1, y2 ∈ V2 and
V1 ∩ V2 = ∅. Then X × V1 and X × V2 provide disjoint open subsets containing (x1, y1) and
(x2, y2) respectively.
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Problem 4: Let X = {a, b, c, d} with the topology

τ2 = {∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}}

Prove that (X, τ2) is connected.

If A ⊂ X is open and closed, then A ∈ τ2 and X \ A ∈ τ2. Every subset which is open in
the topology τ2 is either the empty set or it contains a. If a ∈ A then a /∈ X \A so the only
possibility is that either A or X \A is the empty set. Therefore A = ∅ or A = X. Therefore
(X, τ2) is connected.
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