Midterm 2

Math 147, Fall 2018

Name:

Problem 1: Let $\left(X, \tau_{X}\right)$ be a topological space.
(a) Let $A \subset X$ be an open subset in $X\left(A \in \tau_{X}\right)$. Let τ_{A} be the subspace topology on A. Let $U \subseteq A$. Show that $U \in \tau_{A}$ if and only if $U \in \tau_{X}$.

By definition of the subspace topology, $U \in \tau_{A}$ if and only if $U=V \cap A$ for $V \in \tau_{X}$. Since A is open in X and V is open in $X, U=V \cap A$ is open in X.

Conversely, if $U \subseteq A$ and $U \in \tau_{X}$ then $U=U \cap A$ so $U \in \tau_{A}$.
(b) If $(X, \tau)=\left(\mathbb{R}, \tau_{E u c}\right)$ is the real line with the Euclidean topology and $A=[0,1]$, give an example of a subset $U \subset[0,1]$ which is open in the subspace topology $\left(A, \tau_{A}\right)$, but not open in $\left(\mathbb{R}, \tau_{E u c}\right)$.

Let $U=\left(\frac{1}{2}, 1\right]$. Then U is open in the subspace topology because $U=\left(\frac{1}{2}, \frac{3}{2}\right) \cap[0,1]$, but U is not open in $\left(\mathbb{R}, \tau_{E u c}\right)$ because $1 \in U$ but for any $\varepsilon>0, B_{\varepsilon}(1)=(1-\varepsilon, 1+\varepsilon)$ is not contained in U, so U cannot be open in \mathbb{R}.

Problem 2: Let $X=\mathbb{R}^{2}$ with the Euclidean topology. Define an equivalence relation \sim on X by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if $y_{1}-x_{1}=y_{2}-x_{2}$. Let $Y=\mathbb{R}$ with the Euclidean topology. Construct a map $f: X / \sim \rightarrow Y$ and show that f is well-defined, continuous and has an inverse. You do NOT need to prove that f^{-1} is continuous (f^{-1} probably will be continuous, you just do not need to prove it).

Define $f: \mathbb{R}^{2} / \sim \rightarrow \mathbb{R}$ be defined by

$$
f([(x, y)])=y-x
$$

f is well-defined: Suppose $\left[\left(x_{1}, y_{1}\right)\right]=\left[\left(x_{2}, y_{2}\right)\right]$ then $y_{1}-x_{1}=y_{2}-x_{2}$ so

$$
f\left(\left[\left(x_{1}, y_{1}\right)\right]\right)=y_{1}-x_{1}=y_{2}-x_{2}=f\left(\left[\left(x_{2}, y_{2}\right)\right]\right)
$$

so f is well-defined on equivalence classes.
f is continuous: Let $p: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / \sim$ be the quotient map. We use the fact that $f: \mathbb{R}^{2} / \sim \rightarrow$ \mathbb{R} is continuous if and only if $f \circ p$ is continuous.

$$
f \circ p((x, y))=f([(x, y)])=y-x
$$

Therefore $f \circ p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a polynomial function between Euclidean spaces so it is continuous by standard real analysis arguments.
f is invertible: Define $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}^{2} / \sim$ by

$$
f^{-1}(y)=[(0, y)]
$$

Then $f\left(f^{-1}(y)\right)=f([(0, y)])=y-0^{2}=y$ and

$$
f^{-1}(f([(x, y)]))=f^{-1}\left(y-x^{2}\right)=\left[\left(0, y-x^{2}\right)\right]
$$

and we can verify that $[(x, y)]=\left[\left(0, y-x^{2}\right)\right]$ because $(x, y) \sim\left(0, y-x^{2}\right)$ since $y-x^{2}=$ $\left(y-x^{2}\right)-0^{2}$.

Problem 3: Let $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ be Hausdorff topological spaces. Prove that the product space $\left(X \times Y, \tau_{X \times Y}\right)$ is Hausdorff.
Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ where $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. Then either $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$ (or both).

If $x_{1} \neq x_{2}$ then since $\left(X, \tau_{X}\right)$ is Hausdorff, there exist open subsets $U_{1}, U_{2} \in \tau_{X}$ such that $x_{1} \in U_{1}, x_{2} \in U_{2}$ and $U_{1} \cap U_{2}=\emptyset$. Then $U_{1} \times Y \in \tau_{X \times Y}$ and $U_{2} \times Y \in \tau_{X \times Y .}\left(x_{1}, y_{1}\right) \in U_{1} \times Y$ because $x_{1} \in U_{1}$ and $y_{1} \in Y .\left(x_{2}, y_{2}\right) \in U_{2} \times Y$ because $x_{2} \in U_{2}$ and $y_{2} \in Y$. Finally, $\left(U_{1} \times Y\right) \times\left(U_{2} \times Y\right)=\emptyset$ because if $(x, y) \in\left(U_{1} \times Y\right) \cap\left(U_{2} \times Y\right)$ then $x \in U_{1}, y \in Y$, and $x \in U_{2}, y \in Y$. Therefore $x \in U_{1} \cap U_{2}$ but $U_{1} \cap U_{2}=\emptyset$ so this is impossible.

Similarly, if $y_{1} \neq y_{2}$ then there are open sets $V_{1}, V_{2} \in \tau_{Y}$ such that $y_{1} \in V_{1}, y_{2} \in V_{2}$ and $V_{1} \cap V_{2}=\emptyset$. Then $X \times V_{1}$ and $X \times V_{2}$ provide disjoint open subsets containing (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ respectively.

Problem 4: Let $X=\{a, b, c, d\}$ with the topology

$$
\tau_{2}=\{\emptyset,\{a\},\{a, b\},\{a, b, c\},\{a, b, c, d\}\}
$$

Prove that $\left(X, \tau_{2}\right)$ is connected.
If $A \subset X$ is open and closed, then $A \in \tau_{2}$ and $X \backslash A \in \tau_{2}$. Every subset which is open in the topology τ_{2} is either the empty set or it contains a. If $a \in A$ then $a \notin X \backslash A$ so the only possibility is that either A or $X \backslash A$ is the empty set. Therefore $A=\emptyset$ or $A=X$. Therefore $\left(X, \tau_{2}\right)$ is connected.

