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Problem 1: Consider the topology τN on R given by

τN = {(−x, x)|x > 0} ∪ {∅,R}

(a) Show that τN does give a topology (satisfies the three axioms defining a topology).

1. ∅,R ∈ τN by definition.

2. If {Uα}α∈I is a collection of open sets in τN then for each α, Uα = (−xα, xα) (if
Uα = ∅,R we can set xα = 0,∞). Then

∪α∈IUα = (−(sup
α
xα), sup

α
xα)

which is in τN by definition if supα xα is finite and is equal to R if the supremum
is infinite (and is the empty set if supα xα = 0 since all the Uα are empty).

3. If U1, · · · , Un ∈ τN then if any Ui = ∅, U1 ∩ · · · ∩ Un = ∅. Otherwise each
Ui = (−xi, xi) for xi > 0 or xi =∞. Let x = min{x1, · · · , xn} then U1∩· · ·∩Un =
(−x, x) ∈ τN .

(b) Show that (R, τN) is not Hausdorff

Consider the points 0, 1 ∈ R. If (R, τN) were Hausdorff, then there would exist open
sets U, V ∈ τN such that 0 ∈ U , 1 ∈ V and U ∩ V = ∅. However if V is an open set of
τN containing 1, then V = (−x, x) where x > 1, so 0 ∈ V . Therefore if U is an open
set containing 0, U ∩ V cannot be empty.
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(c) Show that (R, τN) is connected.

The open sets in (R, τN) are the subsets in the topology described above in the problem
statement. The closed sets in (R, τN) are the complements of open sets, therefore the
closed subsets of (R, τN) are

{(−∞,−x] ∪ [x,∞) | x > 0} ∪ {R, ∅}

Since these are all unbounded except for the empty set, and the open sets are all
bounded except for R, the only subsets of (R, τN) which are both open and closed are
∅ and R.

(d) What is the closure of the set (3, 4) in (R, τN)?

The closure of (3, 4) is the set (−∞,−3]∪ [3,∞). This is because the closure of a set A
is the intersection of all closed sets containing A. We described all the closed subsets
of (R, τN) above, and the only ones which contain (3, 4) are R and (−∞,−x] ∪ [x,∞)
when x ≤ 3. Since (−∞,−3] ∪ [3,∞) is contained in all of these, and is itself one of
these closed subsets, the intersection of all these closed subsets which contain (3, 4) is
as claimed.
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(e) Show that (R, τN) is not compact.

Consider the infinite collection of open sets {(−n, n)}n∈N where N = {1, 2, 3, · · · }
denotes the natural numbers. Then

R ⊆ ∪n∈N(−n, n)

because for every number x ∈ R, there exists a natural number N = d|x|e such that
N > |x| so x ∈ (−N,N). Therefore {(−n, n)}n∈N is an open cover.

If (R, τN) were compact then there would be a finite subcover {(−n1, n1), · · · , (−nk, nk)}
such that

R ⊆ (−n1, n1) ∪ · · · ∪ (−nk, nk)

but letting N = max{n1, · · · , nk} we find that (−n1, n1)∪· · ·∪(−nk, nk) = (−N,N) so
N +1 ∈ R is an element which is not covered by this union and we get a contradiction.

(f) Let τEuc be the Euclidean topology on R and let f : (R, τN)→ (R, τEuc) be the identity
function defined by f(x) = x. Show that f is NOT continuous.

Suppose f were continuous. Then for every open subset U of (R, τEuc), f−1(U) would
be open in (R, τN). Consider the interval (0, 1). This is open in the Euclidean topology
on R because it is the open ball of radius 1/2 centered at 1/2. However, f−1((0, 1)) =
(0, 1), so if f were continuous, then (0, 1) would be open in τN , but it does not have the
form of an open set in τN because for any open subset V ∈ τN , if x ∈ V then −x ∈ V ,
but 1/2 ∈ (0, 1) and −1/2 /∈ (0, 1).

4



Problem 2: Let (X, d) be a metric space.

(a) For each x ∈ X and n ∈ N a positive integer, let B1/n(x) = {y ∈ X | d(x, y) < 1/n}.
Let B = {B1/n(x)} indexed over all x ∈ X and n ∈ N. Show that B is a basis.

We must check two criterion:

1. Let x ∈ X, we need to show that there is a basis element in B containing it.
This is true because we can take for example n = 2, and center x, and then
x ∈ B1/2(x) ∈ B.

2. Next we need to show that if B1, B2 ∈ B and z ∈ B1∩B2 then there exists B3 ∈ B
such that z ∈ B3 ⊆ B1 ∩B2.

Let B1 = B1/n1(x1) and B2 = B1/n2(x2). If z ∈ B1 ∩B2 then d(z, x1) < 1/n1 and
d(z, x2) < 1/n2. Let

ε = min{
(

1

n1

− d(z, x1)

)
,

(
1

n2

− d(z, x2)

)
}.

Then ε > 0 and Bε(z) ⊂ B1/n1(x1) ∩B1/n2(x2) because for any y ∈ Bε(z),

d(y, x1) ≤ d(y, z) + d(z, x1) < ε+ d(z, x1) ≤
1

n1

− d(z, x1) + d(z, x1) ≤
1

n1

and

d(y, x2) ≤ d(y, z) + d(z, x2) < ε+ d(z, x2) ≤
1

n2

− d(z, x2) + d(z, x2) ≤
1

n2

.

Now choose an integer N > 1/ε so 1/N < ε. Then B3 = B1/N(z) ∈ B and
z ∈ B3 ⊂ Bε(z) ⊂ B1 ∩B2.
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(b) Let τ be the topology on X induced by the metric d. Let x0 ∈ X be any fixed point.
Let C = {y ∈ X | d(y, x0) = 5}. Show that C is closed.

We will show that X \ C is open in the topology induced by the metric.

X \ C = {y ∈ X | d(y, x0) < 5} ∪ {y ∈ X | d(y, x0) > 5}

The subset U1 = {y ∈ X | d(y, x0) < 5} is open because for any z ∈ U1, d(z, x0) < 5.
Let ε = 5− d(z, x0) then ε > 0 and Bε(z) ⊆ U1 because for any y ∈ Bε(z),

d(y, x0) ≤ d(y, z) + d(z, x0) < ε+ d(z, x0) = 5− d(z, x0) + d(z, x0) = 5

The subset U2 = {y ∈ X | d(y, x0) > 5} is open because for any z ∈ U2 d(z, x0) > 5,
so setting ε = d(z, x0)− 5 we have ε > 0 and Bε(z) ⊂ U2 because for any y ∈ Bε(z),

d(x0, z) ≤ d(x0, y) + d(y, z).

Therefore

d(y, x0) ≥ d(x0, z)− d(y, z) > d(x0, z)− ε = d(x0, z)− d(z, x0) + 5 = 5

Therefore X \ C = U1 ∪ U2 is the union of two open sets so it is open therefore C is
the complement of an open set so it is closed.
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Problem 3: Suppose (X, τ) is a topological space which is compact. Prove that if C ⊂ X
is a closed subset, then C is compact.

(Let {Vα}α∈I be a collection of open subsets of C with the subspace topology such that
C ⊂ ∪α∈IVα. Then since Vα are open in the subspace topology, for each α there exists Uα
which is open in X such that Vα = Uα ∩ C. Therefore...)

We have {Uα} a collection of open subsets of X such that C ⊂ ∪α∈IUα. Since C is closed,
X \ C is open. Moreover,

X ⊆ (X \ C) ∪ ∪α∈IUα
because any point in X is either in C in which case it is contained in some Uα or it is not
in C in which case it is contained in X \ C. Therefore, this is an open cover of X so since
X is compact, it must have a finite subcover. The finite subcover either has the form:

X ⊆ (X \ C) ∪ Uα1 ∪ · · · ∪ Uαn

or
X ⊆ Uα1 ∪ · · · ∪ Uαn

Either way, every point in C must be in at least one of Uα1 , · · · , Uαn since points in C cannot
be in X \ C. Therefore

C ⊂ Uα1 ∪ · · · ∪ Uαn
so {Uα1 , · · · , Uαn} is a finite subcover of the cover {Uα}α∈I of C

(and Vα1 = Uα1 ∩C, · · · , Vαn = Uαn ∩C is a finite subcover of the cover {Vα}α∈I of C in the
subspace topology.)
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Problem 4: Let X = {(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 4} with the Euclidean topology. Define
an equivalence relation on X by (x, y) ∼ (x′, y′) if and only if x′ = cx and y′ = cy for some
c > 0. Let S1 = {(x, y) ∈ R2 | x2+y2 = 1}. Prove that the quotient X/∼ is homeomorphic to
S1 by defining a map f : X/ ∼→ S1 which is well-defined, continuous, and has a continuous
inverse.

Let f : X/∼ → S1 be defined by

f([(x, y)]) =

(
x√

x2 + y2
,

y√
x2 + y2

)
Then f is well-defined on the equivalence classes because if (x′, y′) = (cx, cy) for c > 0 then

f([(cx, cy)]) =

(
cx√

(cx)2 + (cy)2
,

cy√
(cx)2 + (cy)2

)
=

(
x√

x2 + y2
,

y√
x2 + y2

)
= f([(x, y)])

and f is well-defined into the circle S1 because(
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

=
x2 + y2

x2 + y2
= 1

If p : X → X/∼ is the projection map p((x, y)) = [(x, y)], then f ◦ p : X → S1 is given by

f ◦ p((x, y)) =

(
x√

x2 + y2
,

y√
x2 + y2

)
This is a continuous function from a domain in R2 into a subset of R2 so it is a continuous
function from X to S1 using the subspace topologies. Therefore f is a continuous function
using the quotient topology on X/∼.

f has an inverse function f−1 : S1 → X/∼ defined by f−1((x, y)) = [(x, y)]. This is in fact
an inverse because for (x, y) ∈ S1,

f(f−1((x, y))) = f([(x, y)]) =

(
x√

x2 + y2
,

y√
x2 + y2

)
= (x, y)

because
√
x2 + y2 = 1. Also,

f−1(f([(x, y)])) = f−1

(
x√

x2 + y2
,

y√
x2 + y2

)
=

[(
x√

x2 + y2
,

y√
x2 + y2

)]
= [(x, y)]

taking c = 1√
x2+y2

.

To show that f−1 is continuous, note that X ⊂ R2 is closed and bounded so it is compact.
Therefore since p : X → X/∼ is a continuous surjective function, X/∼ = p(X) is compact.
Therefore f : X/∼ → S1 is a continuous bijective function whose domain is a compact set.
Additionally S1 is Hausdorff because it is a subspace of a metric space. Therefore f−1 is
continuous so f is a homeomorphism.
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Problem 5: Let (X, τX) and (Y, τY ) be compact topological spaces and let (X×Y, τX×Y ) be
the product space with the product topology. Let y0 ∈ Y be a point. Consider the subspace
X × {y0} ⊂ X × Y with the subspace topology τsub. (X × {y0} = {(x, y0) | x ∈ X}).
Prove that (X, τX) is homeomorphic to (X × {y0}, τsub) by defining a map f : (X, τX) →
(X × {y0}, τsub) and showing that it is continuous and has continuous inverse.

Define f : (X, τX) → (X × {y0}, τsub) by f(x) = (x, y0). Then f is bijective because the
inverse is given by f−1(x, y0) = x (clearly f(f−1(x, y0)) = f(x) = (x, y0) and f−1(f(x)) =
f−1(x, y0) = x). Therefore, we just need to show that f is continuous and f−1 is continuous.

Let V ⊂ (X×{y0}, τsub) be an open subset in the subspace topology. Then V = U∩(X×{y0})
where U is an open subset of X×Y with the product topology. Since the basis for the product
topology is

B = {U1 × U2 | U1 ∈ τX , U2 ∈ τY }

U must be a union of basis elements so

U = ∪α∈IUα
1 × Uα

2

Now, (U1×U2)∩(X×{y0}) = U1×{y0} if y0 ∈ U2 and is the empty set if y0 /∈ U2. Therefore

V = U ∩ (X × {y0}) =

(⋃
α∈I

Uα
1 × Uα

2

)
∩ (X × {y0}) =

⋃
α∈I

((Uα
1 × Uα

2 ) ∩ (X × {y0}))

=
⋃

α∈I such that y0∈Uα2

Uα
1 × {y0} =

 ⋃
α∈I such that y0∈Uα2

Uα
1

× {y0}
Therefore

f−1(V ) =

 ⋃
α∈I such that y0∈Uα2

Uα
1


which is a union of open subsets Uα

1 ∈ τX so it is open in X.

To show that f−1 : (X × {y0}, τsub) → (X, τX) is continuous, let U ⊂ X be an open subset
of X. Then (f−1)−1(U) = U × {y0} = (U × Y ) ∩ (X × {y0}) which is open in the subspace
topology since it is the intersection of an open set in the product topology with the subspace.
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Problem 6: Show that f : (X, τX) → (Y, τY ) is a continuous function if and only if for
every closed subset of Y , C ⊂ Y , the preimage f−1(C) is closed in X.

Suppose f is continuous. Then for every open subset U ⊂ Y , f−1(U) is open. Let C ⊂ Y be
a closed subset. Then Y \ C is open so f−1(Y \ C) is open. Now x ∈ f−1(C) if and only if
f(x) ∈ C, so x ∈ X\(f−1(C)) if and only if f(x) ∈ Y \C. Therefore X\f−1(C) = f−1(Y \C)
so X \ f−1(C) is open therefore f−1(C) is closed since its complement is open.

Now suppose we know that for every closed subset C ⊂ Y , f−1(C) is closed and we want to
show that f is continuous. Let U ⊂ Y be an open subset. Then Y \ U is a closed subset so
f−1(Y \U) is closed by assumption. By the same reasoning as above, X\f−1(U) = f−1(Y \U)
so X \ f−1(U) is closed therefore f−1(U) is open.
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