Practice Final Exam

Math 147, Fall 2018

Name:

Problem 1: Consider the topology τ_N on \mathbb{R} given by

$$\tau_N = \{(-x, x) | x > 0\} \cup \{\emptyset, \mathbb{R}\}$$

- (a) Show that τ_N does give a topology (satisfies the three axioms defining a topology).
 - 1. $\emptyset, \mathbb{R} \in \tau_N$ by definition.
 - 2. If $\{U_{\alpha}\}_{\alpha \in \mathcal{I}}$ is a collection of open sets in τ_N then for each α , $U_{\alpha} = (-x_{\alpha}, x_{\alpha})$ (if $U_{\alpha} = \emptyset, \mathbb{R}$ we can set $x_{\alpha} = 0, \infty$). Then

$$\bigcup_{\alpha \in \mathcal{I}} U_{\alpha} = \left(-(\sup_{\alpha} x_{\alpha}), \sup_{\alpha} x_{\alpha} \right)$$

which is in τ_N by definition if $\sup_{\alpha} x_{\alpha}$ is finite and is equal to \mathbb{R} if the supremum is infinite (and is the empty set if $\sup_{\alpha} x_{\alpha} = 0$ since all the U_{α} are empty).

3. If $U_1, \dots, U_n \in \tau_N$ then if any $U_i = \emptyset$, $U_1 \cap \dots \cap U_n = \emptyset$. Otherwise each $U_i = (-x_i, x_i)$ for $x_i > 0$ or $x_i = \infty$. Let $x = \min\{x_1, \dots, x_n\}$ then $U_1 \cap \dots \cap U_n = (-x, x) \in \tau_N$.

(b) Show that (\mathbb{R}, τ_N) is not Hausdorff

Consider the points $0, 1 \in \mathbb{R}$. If (\mathbb{R}, τ_N) were Hausdorff, then there would exist open sets $U, V \in \tau_N$ such that $0 \in U$, $1 \in V$ and $U \cap V = \emptyset$. However if V is an open set of τ_N containing 1, then V = (-x, x) where x > 1, so $0 \in V$. Therefore if U is an open set containing 0, $U \cap V$ cannot be empty. (c) Show that (\mathbb{R}, τ_N) is connected.

The open sets in (\mathbb{R}, τ_N) are the subsets in the topology described above in the problem statement. The closed sets in (\mathbb{R}, τ_N) are the complements of open sets, therefore the closed subsets of (\mathbb{R}, τ_N) are

$$\{(-\infty, -x] \cup [x, \infty) \mid x > 0\} \cup \{\mathbb{R}, \emptyset\}$$

Since these are all unbounded except for the empty set, and the open sets are all bounded except for \mathbb{R} , the only subsets of (\mathbb{R}, τ_N) which are both open and closed are \emptyset and \mathbb{R} .

(d) What is the closure of the set (3, 4) in (\mathbb{R}, τ_N) ?

The closure of (3, 4) is the set $(-\infty, -3] \cup [3, \infty)$. This is because the closure of a set A is the intersection of all closed sets containing A. We described all the closed subsets of (\mathbb{R}, τ_N) above, and the only ones which contain (3, 4) are \mathbb{R} and $(-\infty, -x] \cup [x, \infty)$ when $x \leq 3$. Since $(-\infty, -3] \cup [3, \infty)$ is contained in all of these, and is itself one of these closed subsets, the intersection of all these closed subsets which contain (3, 4) is as claimed.

(e) Show that (\mathbb{R}, τ_N) is not compact.

Consider the infinite collection of open sets $\{(-n,n)\}_{n\in\mathbb{N}}$ where $\mathbb{N} = \{1,2,3,\cdots\}$ denotes the natural numbers. Then

$$\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} (-n, n)$$

because for every number $x \in \mathbb{R}$, there exists a natural number $N = \lceil |x| \rceil$ such that N > |x| so $x \in (-N, N)$. Therefore $\{(-n, n)\}_{n \in \mathbb{N}}$ is an open cover.

If (\mathbb{R}, τ_N) were compact then there would be a finite subcover $\{(-n_1, n_1), \cdots, (-n_k, n_k)\}$ such that

$$\mathbb{R} \subseteq (-n_1, n_1) \cup \cdots \cup (-n_k, n_k)$$

but letting $N = \max\{n_1, \dots, n_k\}$ we find that $(-n_1, n_1) \cup \dots \cup (-n_k, n_k) = (-N, N)$ so $N+1 \in \mathbb{R}$ is an element which is not covered by this union and we get a contradiction.

(f) Let τ_{Euc} be the Euclidean topology on \mathbb{R} and let $f : (\mathbb{R}, \tau_N) \to (\mathbb{R}, \tau_{Euc})$ be the identity function defined by f(x) = x. Show that f is NOT continuous.

Suppose f were continuous. Then for every open subset U of (\mathbb{R}, τ_{Euc}) , $f^{-1}(U)$ would be open in (\mathbb{R}, τ_N) . Consider the interval (0, 1). This is open in the Euclidean topology on \mathbb{R} because it is the open ball of radius 1/2 centered at 1/2. However, $f^{-1}((0, 1)) =$ (0, 1), so if f were continuous, then (0, 1) would be open in τ_N , but it does not have the form of an open set in τ_N because for any open subset $V \in \tau_N$, if $x \in V$ then $-x \in V$, but $1/2 \in (0, 1)$ and $-1/2 \notin (0, 1)$. **Problem 2:** Let (X, d) be a metric space.

(a) For each $x \in X$ and $n \in \mathbb{N}$ a positive integer, let $B_{1/n}(x) = \{y \in X \mid d(x, y) < 1/n\}$. Let $\mathcal{B} = \{B_{1/n}(x)\}$ indexed over all $x \in X$ and $n \in \mathbb{N}$. Show that \mathcal{B} is a basis.

We must check two criterion:

- 1. Let $x \in X$, we need to show that there is a basis element in \mathcal{B} containing it. This is true because we can take for example n = 2, and center x, and then $x \in B_{1/2}(x) \in \mathcal{B}$.
- 2. Next we need to show that if $B_1, B_2 \in \mathcal{B}$ and $z \in B_1 \cap B_2$ then there exists $B_3 \in \mathcal{B}$ such that $z \in B_3 \subseteq B_1 \cap B_2$.

Let $B_1 = B_{1/n_1}(x_1)$ and $B_2 = B_{1/n_2}(x_2)$. If $z \in B_1 \cap B_2$ then $d(z, x_1) < 1/n_1$ and $d(z, x_2) < 1/n_2$. Let

$$\varepsilon = \min\left\{ \left(\frac{1}{n_1} - d(z, x_1) \right), \left(\frac{1}{n_2} - d(z, x_2) \right) \right\}.$$

Then $\varepsilon > 0$ and $B_{\varepsilon}(z) \subset B_{1/n_1}(x_1) \cap B_{1/n_2}(x_2)$ because for any $y \in B_{\varepsilon}(z)$,

$$d(y, x_1) \le d(y, z) + d(z, x_1) < \varepsilon + d(z, x_1) \le \frac{1}{n_1} - d(z, x_1) + d(z, x_1) \le \frac{1}{n_1}$$

and

$$d(y, x_2) \le d(y, z) + d(z, x_2) < \varepsilon + d(z, x_2) \le \frac{1}{n_2} - d(z, x_2) + d(z, x_2) \le \frac{1}{n_2}$$

Now choose an integer $N > 1/\varepsilon$ so $1/N < \varepsilon$. Then $B_3 = B_{1/N}(z) \in \mathcal{B}$ and $z \in B_3 \subset B_\varepsilon(z) \subset B_1 \cap B_2$.

(b) Let τ be the topology on X induced by the metric d. Let $x_0 \in X$ be any fixed point. Let $C = \{y \in X \mid d(y, x_0) = 5\}$. Show that C is closed.

We will show that $X \setminus C$ is open in the topology induced by the metric.

$$X \setminus C = \{ y \in X \mid d(y, x_0) < 5 \} \cup \{ y \in X \mid d(y, x_0) > 5 \}$$

The subset $U_1 = \{y \in X \mid d(y, x_0) < 5\}$ is open because for any $z \in U_1$, $d(z, x_0) < 5$. Let $\varepsilon = 5 - d(z, x_0)$ then $\varepsilon > 0$ and $B_{\varepsilon}(z) \subseteq U_1$ because for any $y \in B_{\varepsilon}(z)$,

$$d(y, x_0) \le d(y, z) + d(z, x_0) < \varepsilon + d(z, x_0) = 5 - d(z, x_0) + d(z, x_0) = 5$$

The subset $U_2 = \{y \in X \mid d(y, x_0) > 5\}$ is open because for any $z \in U_2$ $d(z, x_0) > 5$, so setting $\varepsilon = d(z, x_0) - 5$ we have $\varepsilon > 0$ and $B_{\varepsilon}(z) \subset U_2$ because for any $y \in B_{\varepsilon}(z)$,

$$d(x_0, z) \le d(x_0, y) + d(y, z).$$

Therefore

$$d(y, x_0) \ge d(x_0, z) - d(y, z) > d(x_0, z) - \varepsilon = d(x_0, z) - d(z, x_0) + 5 = 5$$

Therefore $X \setminus C = U_1 \cup U_2$ is the union of two open sets so it is open therefore C is the complement of an open set so it is closed.

Problem 3: Suppose (X, τ) is a topological space which is *compact*. Prove that if $C \subset X$ is a *closed subset*, then C is compact.

(Let $\{V_{\alpha}\}_{\alpha \in \mathcal{I}}$ be a collection of open subsets of C with the subspace topology such that $C \subset \bigcup_{\alpha \in \mathcal{I}} V_{\alpha}$. Then since V_{α} are open in the subspace topology, for each α there exists $U\alpha$ which is open in X such that $V_{\alpha} = U_{\alpha} \cap C$. Therefore...)

We have $\{U_{\alpha}\}$ a collection of open subsets of X such that $C \subset \bigcup_{\alpha \in \mathcal{I}} U_{\alpha}$. Since C is closed, $X \setminus C$ is open. Moreover,

 $X \subseteq (X \setminus C) \cup \cup_{\alpha \in \mathcal{I}} U_{\alpha}$

because any point in X is either in C in which case it is contained in some $U\alpha$ or it is not in C in which case it is contained in $X \setminus C$. Therefore, this is an open cover of X so since X is compact, it must have a finite subcover. The finite subcover either has the form:

$$X \subseteq (X \setminus C) \cup U_{\alpha_1} \cup \dots \cup U_{\alpha_n}$$

or

$$X \subseteq U_{\alpha_1} \cup \dots \cup U_{\alpha_r}$$

Either way, every point in C must be in at least one of $U_{\alpha_1}, \dots, U_{\alpha_n}$ since points in C cannot be in $X \setminus C$. Therefore

$$C \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$$

so $\{U_{\alpha_1}, \cdots, U_{\alpha_n}\}$ is a finite subcover of the cover $\{U_{\alpha}\}_{\alpha \in \mathcal{I}}$ of C

(and $V_{\alpha_1} = U_{\alpha_1} \cap C, \cdots, V_{\alpha_n} = U_{\alpha_n} \cap C$ is a finite subcover of the cover $\{V_\alpha\}_{\alpha \in \mathcal{I}}$ of C in the subspace topology.)

Problem 4: Let $X = \{(x, y) \in \mathbb{R}^2 \mid 1 \leq x^2 + y^2 \leq 4\}$ with the Euclidean topology. Define an equivalence relation on X by $(x, y) \sim (x', y')$ if and only if x' = cx and y' = cy for some c > 0. Let $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Prove that the quotient $X/_{\sim}$ is homeomorphic to S^1 by defining a map $f : X/ \sim \to S^1$ which is well-defined, continuous, and has a continuous inverse.

Let $f: X/_{\sim} \to S^1$ be defined by

$$f([(x,y)]) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$

Then f is well-defined on the equivalence classes because if (x', y') = (cx, cy) for c > 0 then

$$f([(cx, cy)]) = \left(\frac{cx}{\sqrt{(cx)^2 + (cy)^2}}, \frac{cy}{\sqrt{(cx)^2 + (cy)^2}}\right) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right) = f([(x, y)])$$

and f is well-defined into the circle S^1 because

$$\left(\frac{x}{\sqrt{x^2+y^2}}\right)^2 + \left(\frac{y}{\sqrt{x^2+y^2}}\right)^2 = \frac{x^2+y^2}{x^2+y^2} = 1$$

If $p: X \to X/_{\sim}$ is the projection map p((x, y)) = [(x, y)], then $f \circ p: X \to S^1$ is given by

$$f \circ p((x,y)) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$

This is a continuous function from a domain in \mathbb{R}^2 into a subset of \mathbb{R}^2 so it is a continuous function from X to S^1 using the subspace topologies. Therefore f is a continuous function using the quotient topology on $X/_{\sim}$.

f has an inverse function $f^{-1}: S^1 \to X/_{\sim}$ defined by $f^{-1}((x,y)) = [(x,y)]$. This is in fact an inverse because for $(x,y) \in S^1$,

$$f(f^{-1}((x,y))) = f([(x,y)]) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right) = (x,y)$$

because $\sqrt{x^2 + y^2} = 1$. Also,

$$f^{-1}(f([(x,y)])) = f^{-1}\left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right) = \left[\left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)\right] = [(x,y)]$$
 taking $c = \frac{1}{\sqrt{x^2 + y^2}}$.

To show that f^{-1} is continuous, note that $X \subset \mathbb{R}^2$ is closed and bounded so it is compact. Therefore since $p: X \to X/_{\sim}$ is a continuous surjective function, $X/_{\sim} = p(X)$ is compact. Therefore $f: X/_{\sim} \to S^1$ is a continuous bijective function whose domain is a compact set. Additionally S^1 is Hausdorff because it is a subspace of a metric space. Therefore f^{-1} is continuous so f is a homeomorphism. **Problem 5:** Let (X, τ_X) and (Y, τ_Y) be compact topological spaces and let $(X \times Y, \tau_{X \times Y})$ be the product space with the product topology. Let $y_0 \in Y$ be a point. Consider the subspace $X \times \{y_0\} \subset X \times Y$ with the subspace topology τ_{sub} . $(X \times \{y_0\} = \{(x, y_0) \mid x \in X\})$. Prove that (X, τ_X) is homeomorphic to $(X \times \{y_0\}, \tau_{sub})$ by defining a map $f : (X, \tau_X) \to$ $(X \times \{y_0\}, \tau_{sub})$ and showing that it is continuous and has continuous inverse.

Define $f: (X, \tau_X) \to (X \times \{y_0\}, \tau_{sub})$ by $f(x) = (x, y_0)$. Then f is bijective because the inverse is given by $f^{-1}(x, y_0) = x$ (clearly $f(f^{-1}(x, y_0)) = f(x) = (x, y_0)$ and $f^{-1}(f(x)) = f^{-1}(x, y_0) = x$). Therefore, we just need to show that f is continuous and f^{-1} is continuous.

Let $V \subset (X \times \{y_0\}, \tau_{sub})$ be an open subset in the subspace topology. Then $V = U \cap (X \times \{y_0\})$ where U is an open subset of $X \times Y$ with the product topology. Since the basis for the product topology is

$$\mathcal{B} = \{ U_1 \times U_2 \mid U_1 \in \tau_X, U_2 \in \tau_Y \}$$

U must be a union of basis elements so

$$U = \bigcup_{\alpha \in \mathcal{I}} U_1^{\alpha} \times U_2^{\alpha}$$

Now, $(U_1 \times U_2) \cap (X \times \{y_0\}) = U_1 \times \{y_0\}$ if $y_0 \in U_2$ and is the empty set if $y_0 \notin U_2$. Therefore

$$V = U \cap (X \times \{y_0\}) = \left(\bigcup_{\alpha \in \mathcal{I}} U_1^{\alpha} \times U_2^{\alpha}\right) \cap (X \times \{y_0\}) = \bigcup_{\alpha \in \mathcal{I}} \left(\left(U_1^{\alpha} \times U_2^{\alpha}\right) \cap (X \times \{y_0\})\right)$$
$$= \bigcup_{\alpha \in \mathcal{I} \text{ such that } y_0 \in U_2^{\alpha}} U_1^{\alpha} \times \{y_0\} = \left(\bigcup_{\alpha \in \mathcal{I} \text{ such that } y_0 \in U_2^{\alpha}} U_1^{\alpha}\right) \times \{y_0\}$$

Therefore

$$f^{-1}(V) = \left(\bigcup_{\alpha \in \mathcal{I} \text{ such that } y_0 \in U_2^{\alpha}} U_1^{\alpha}\right)$$

which is a union of open subsets $U_1^{\alpha} \in \tau_X$ so it is open in X.

To show that $f^{-1}: (X \times \{y_0\}, \tau_{sub}) \to (X, \tau_X)$ is continuous, let $U \subset X$ be an open subset of X. Then $(f^{-1})^{-1}(U) = U \times \{y_0\} = (U \times Y) \cap (X \times \{y_0\})$ which is open in the subspace topology since it is the intersection of an open set in the product topology with the subspace. **Problem 6:** Show that $f : (X, \tau_X) \to (Y, \tau_Y)$ is a continuous function if and only if for every *closed* subset of $Y, C \subset Y$, the preimage $f^{-1}(C)$ is closed in X.

Suppose f is continuous. Then for every open subset $U \subset Y$, $f^{-1}(U)$ is open. Let $C \subset Y$ be a closed subset. Then $Y \setminus C$ is open so $f^{-1}(Y \setminus C)$ is open. Now $x \in f^{-1}(C)$ if and only if $f(x) \in C$, so $x \in X \setminus (f^{-1}(C))$ if and only if $f(x) \in Y \setminus C$. Therefore $X \setminus f^{-1}(C) = f^{-1}(Y \setminus C)$ so $X \setminus f^{-1}(C)$ is open therefore $f^{-1}(C)$ is closed since its complement is open.

Now suppose we know that for every closed subset $C \subset Y$, $f^{-1}(C)$ is closed and we want to show that f is continuous. Let $U \subset Y$ be an open subset. Then $Y \setminus U$ is a closed subset so $f^{-1}(Y \setminus U)$ is closed by assumption. By the same reasoning as above, $X \setminus f^{-1}(U) = f^{-1}(Y \setminus U)$ so $X \setminus f^{-1}(U)$ is closed therefore $f^{-1}(U)$ is open.