Practice Final Exam

Math 147, Fall 2018

Name:

Problem 1: Consider the topology τ_{N} on \mathbb{R} given by

$$
\tau_{N}=\{(-x, x) \mid x>0\} \cup\{\emptyset, \mathbb{R}\}
$$

(a) Show that τ_{N} does give a topology (satisfies the three axioms defining a topology).

1. $\emptyset, \mathbb{R} \in \tau_{N}$ by definition.
2. If $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ is a collection of open sets in τ_{N} then for each $\alpha, U_{\alpha}=\left(-x_{\alpha}, x_{\alpha}\right)$ (if $U_{\alpha}=\emptyset, \mathbb{R}$ we can set $\left.x_{\alpha}=0, \infty\right)$. Then

$$
\cup_{\alpha \in \mathcal{I}} U_{\alpha}=\left(-\left(\sup _{\alpha} x_{\alpha}\right), \sup _{\alpha} x_{\alpha}\right)
$$

which is in τ_{N} by definition if $\sup _{\alpha} x_{\alpha}$ is finite and is equal to \mathbb{R} if the supremum is infinite (and is the empty set if $\sup _{\alpha} x_{\alpha}=0$ since all the U_{α} are empty).
3. If $U_{1}, \cdots, U_{n} \in \tau_{N}$ then if any $U_{i}=\emptyset, U_{1} \cap \cdots \cap U_{n}=\emptyset$. Otherwise each $U_{i}=\left(-x_{i}, x_{i}\right)$ for $x_{i}>0$ or $x_{i}=\infty$. Let $x=\min \left\{x_{1}, \cdots, x_{n}\right\}$ then $U_{1} \cap \cdots \cap U_{n}=$ $(-x, x) \in \tau_{N}$.
(b) Show that $\left(\mathbb{R}, \tau_{N}\right)$ is not Hausdorff

Consider the points $0,1 \in \mathbb{R}$. If $\left(\mathbb{R}, \tau_{N}\right)$ were Hausdorff, then there would exist open sets $U, V \in \tau_{N}$ such that $0 \in U, 1 \in V$ and $U \cap V=\emptyset$. However if V is an open set of τ_{N} containing 1 , then $V=(-x, x)$ where $x>1$, so $0 \in V$. Therefore if U is an open set containing $0, U \cap V$ cannot be empty.
(c) Show that $\left(\mathbb{R}, \tau_{N}\right)$ is connected.

The open sets in $\left(\mathbb{R}, \tau_{N}\right)$ are the subsets in the topology described above in the problem statement. The closed sets in $\left(\mathbb{R}, \tau_{N}\right)$ are the complements of open sets, therefore the closed subsets of $\left(\mathbb{R}, \tau_{N}\right)$ are

$$
\{(-\infty,-x] \cup[x, \infty) \mid x>0\} \cup\{\mathbb{R}, \emptyset\}
$$

Since these are all unbounded except for the empty set, and the open sets are all bounded except for \mathbb{R}, the only subsets of $\left(\mathbb{R}, \tau_{N}\right)$ which are both open and closed are \emptyset and \mathbb{R}.
(d) What is the closure of the set $(3,4)$ in $\left(\mathbb{R}, \tau_{N}\right)$?

The closure of $(3,4)$ is the set $(-\infty,-3] \cup[3, \infty)$. This is because the closure of a set A is the intersection of all closed sets containing A. We described all the closed subsets of $\left(\mathbb{R}, \tau_{N}\right)$ above, and the only ones which contain $(3,4)$ are \mathbb{R} and $(-\infty,-x] \cup[x, \infty)$ when $x \leq 3$. Since $(-\infty,-3] \cup[3, \infty)$ is contained in all of these, and is itself one of these closed subsets, the intersection of all these closed subsets which contain $(3,4)$ is as claimed.
(e) Show that $\left(\mathbb{R}, \tau_{N}\right)$ is not compact.

Consider the infinite collection of open sets $\{(-n, n)\}_{n \in \mathbb{N}}$ where $\mathbb{N}=\{1,2,3, \cdots\}$ denotes the natural numbers. Then

$$
\mathbb{R} \subseteq \cup_{n \in \mathbb{N}}(-n, n)
$$

because for every number $x \in \mathbb{R}$, there exists a natural number $N=\lceil|x|\rceil$ such that $N>|x|$ so $x \in(-N, N)$. Therefore $\{(-n, n)\}_{n \in \mathbb{N}}$ is an open cover.
If $\left(\mathbb{R}, \tau_{N}\right)$ were compact then there would be a finite subcover $\left\{\left(-n_{1}, n_{1}\right), \cdots,\left(-n_{k}, n_{k}\right)\right\}$ such that

$$
\mathbb{R} \subseteq\left(-n_{1}, n_{1}\right) \cup \cdots \cup\left(-n_{k}, n_{k}\right)
$$

but letting $N=\max \left\{n_{1}, \cdots, n_{k}\right\}$ we find that $\left(-n_{1}, n_{1}\right) \cup \cdots \cup\left(-n_{k}, n_{k}\right)=(-N, N)$ so $N+1 \in \mathbb{R}$ is an element which is not covered by this union and we get a contradiction.
(f) Let $\tau_{\text {Euc }}$ be the Euclidean topology on \mathbb{R} and let $f:\left(\mathbb{R}, \tau_{N}\right) \rightarrow\left(\mathbb{R}, \tau_{E u c}\right)$ be the identity function defined by $f(x)=x$. Show that f is NOT continuous.

Suppose f were continuous. Then for every open subset U of $\left(\mathbb{R}, \tau_{E u c}\right), f^{-1}(U)$ would be open in $\left(\mathbb{R}, \tau_{N}\right)$. Consider the interval $(0,1)$. This is open in the Euclidean topology on \mathbb{R} because it is the open ball of radius $1 / 2$ centered at $1 / 2$. However, $f^{-1}((0,1))=$ $(0,1)$, so if f were continuous, then $(0,1)$ would be open in τ_{N}, but it does not have the form of an open set in τ_{N} because for any open subset $V \in \tau_{N}$, if $x \in V$ then $-x \in V$, but $1 / 2 \in(0,1)$ and $-1 / 2 \notin(0,1)$.

Problem 2: Let (X, d) be a metric space.
(a) For each $x \in X$ and $n \in \mathbb{N}$ a positive integer, let $B_{1 / n}(x)=\{y \in X \mid d(x, y)<1 / n\}$. Let $\mathcal{B}=\left\{B_{1 / n}(x)\right\}$ indexed over all $x \in X$ and $n \in \mathbb{N}$. Show that \mathcal{B} is a basis.

We must check two criterion:

1. Let $x \in X$, we need to show that there is a basis element in \mathcal{B} containing it. This is true because we can take for example $n=2$, and center x, and then $x \in B_{1 / 2}(x) \in \mathcal{B}$.
2. Next we need to show that if $B_{1}, B_{2} \in \mathcal{B}$ and $z \in B_{1} \cap B_{2}$ then there exists $B_{3} \in \mathcal{B}$ such that $z \in B_{3} \subseteq B_{1} \cap B_{2}$.
Let $B_{1}=B_{1 / n_{1}}\left(x_{1}\right)$ and $B_{2}=B_{1 / n_{2}}\left(x_{2}\right)$. If $z \in B_{1} \cap B_{2}$ then $d\left(z, x_{1}\right)<1 / n_{1}$ and $d\left(z, x_{2}\right)<1 / n_{2}$. Let

$$
\varepsilon=\min \left\{\left(\frac{1}{n_{1}}-d\left(z, x_{1}\right)\right),\left(\frac{1}{n_{2}}-d\left(z, x_{2}\right)\right)\right\} .
$$

Then $\varepsilon>0$ and $B_{\varepsilon}(z) \subset B_{1 / n_{1}}\left(x_{1}\right) \cap B_{1 / n_{2}}\left(x_{2}\right)$ because for any $y \in B_{\varepsilon}(z)$,

$$
d\left(y, x_{1}\right) \leq d(y, z)+d\left(z, x_{1}\right)<\varepsilon+d\left(z, x_{1}\right) \leq \frac{1}{n_{1}}-d\left(z, x_{1}\right)+d\left(z, x_{1}\right) \leq \frac{1}{n_{1}}
$$

and

$$
d\left(y, x_{2}\right) \leq d(y, z)+d\left(z, x_{2}\right)<\varepsilon+d\left(z, x_{2}\right) \leq \frac{1}{n_{2}}-d\left(z, x_{2}\right)+d\left(z, x_{2}\right) \leq \frac{1}{n_{2}}
$$

Now choose an integer $N>1 / \varepsilon$ so $1 / N<\varepsilon$. Then $B_{3}=B_{1 / N}(z) \in \mathcal{B}$ and $z \in B_{3} \subset B_{\varepsilon}(z) \subset B_{1} \cap B_{2}$.
(b) Let τ be the topology on X induced by the metric d. Let $x_{0} \in X$ be any fixed point. Let $C=\left\{y \in X \mid d\left(y, x_{0}\right)=5\right\}$. Show that C is closed.
We will show that $X \backslash C$ is open in the topology induced by the metric.

$$
X \backslash C=\left\{y \in X \mid d\left(y, x_{0}\right)<5\right\} \cup\left\{y \in X \mid d\left(y, x_{0}\right)>5\right\}
$$

The subset $U_{1}=\left\{y \in X \mid d\left(y, x_{0}\right)<5\right\}$ is open because for any $z \in U_{1}, d\left(z, x_{0}\right)<5$. Let $\varepsilon=5-d\left(z, x_{0}\right)$ then $\varepsilon>0$ and $B_{\varepsilon}(z) \subseteq U_{1}$ because for any $y \in B_{\varepsilon}(z)$,

$$
d\left(y, x_{0}\right) \leq d(y, z)+d\left(z, x_{0}\right)<\varepsilon+d\left(z, x_{0}\right)=5-d\left(z, x_{0}\right)+d\left(z, x_{0}\right)=5
$$

The subset $U_{2}=\left\{y \in X \mid d\left(y, x_{0}\right)>5\right\}$ is open because for any $z \in U_{2} d\left(z, x_{0}\right)>5$, so setting $\varepsilon=d\left(z, x_{0}\right)-5$ we have $\varepsilon>0$ and $B_{\varepsilon}(z) \subset U_{2}$ because for any $y \in B_{\varepsilon}(z)$,

$$
d\left(x_{0}, z\right) \leq d\left(x_{0}, y\right)+d(y, z)
$$

Therefore

$$
d\left(y, x_{0}\right) \geq d\left(x_{0}, z\right)-d(y, z)>d\left(x_{0}, z\right)-\varepsilon=d\left(x_{0}, z\right)-d\left(z, x_{0}\right)+5=5
$$

Therefore $X \backslash C=U_{1} \cup U_{2}$ is the union of two open sets so it is open therefore C is the complement of an open set so it is closed.

Problem 3: Suppose (X, τ) is a topological space which is compact. Prove that if $C \subset X$ is a closed subset, then C is compact.
(Let $\left\{V_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ be a collection of open subsets of C with the subspace topology such that $C \subset \cup_{\alpha \in \mathcal{I}} V_{\alpha}$. Then since V_{α} are open in the subspace topology, for each α there exists $U \alpha$ which is open in X such that $V_{\alpha}=U_{\alpha} \cap C$. Therefore...)
We have $\left\{U_{\alpha}\right\}$ a collection of open subsets of X such that $C \subset \cup_{\alpha \in \mathcal{I}} U_{\alpha}$. Since C is closed, $X \backslash C$ is open. Moreover,

$$
X \subseteq(X \backslash C) \cup \cup_{\alpha \in \mathcal{I}} U_{\alpha}
$$

because any point in X is either in C in which case it is contained in some $U \alpha$ or it is not in C in which case it is contained in $X \backslash C$. Therefore, this is an open cover of X so since X is compact, it must have a finite subcover. The finite subcover either has the form:

$$
X \subseteq(X \backslash C) \cup U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{n}}
$$

or

$$
X \subseteq U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{n}}
$$

Either way, every point in C must be in at least one of $U_{\alpha_{1}}, \cdots, U_{\alpha_{n}}$ since points in C cannot be in $X \backslash C$. Therefore

$$
C \subset U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{n}}
$$

so $\left\{U_{\alpha_{1}}, \cdots, U_{\alpha_{n}}\right\}$ is a finite subcover of the cover $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ of C
(and $V_{\alpha_{1}}=U_{\alpha_{1}} \cap C, \cdots, V_{\alpha_{n}}=U_{\alpha_{n}} \cap C$ is a finite subcover of the cover $\left\{V_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ of C in the subspace topology.)

Problem 4: Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x^{2}+y^{2} \leq 4\right\}$ with the Euclidean topology. Define an equivalence relation on X by $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if and only if $x^{\prime}=c x$ and $y^{\prime}=c y$ for some $c>0$. Let $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. Prove that the quotient X / \sim is homeomorphic to S^{1} by defining a map $f: X / \sim \rightarrow S^{1}$ which is well-defined, continuous, and has a continuous inverse.

Let $f: X / \sim \rightarrow S^{1}$ be defined by

$$
f([(x, y)])=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)
$$

Then f is well-defined on the equivalence classes because if $\left(x^{\prime}, y^{\prime}\right)=(c x, c y)$ for $c>0$ then $f([(c x, c y)])=\left(\frac{c x}{\sqrt{(c x)^{2}+(c y)^{2}}}, \frac{c y}{\sqrt{(c x)^{2}+(c y)^{2}}}\right)=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)=f([(x, y)])$ and f is well-defined into the circle S^{1} because

$$
\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}+\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2}=\frac{x^{2}+y^{2}}{x^{2}+y^{2}}=1
$$

If $p: X \rightarrow X / \sim$ is the projection map $p((x, y))=[(x, y)]$, then $f \circ p: X \rightarrow S^{1}$ is given by

$$
f \circ p((x, y))=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)
$$

This is a continuous function from a domain in \mathbb{R}^{2} into a subset of \mathbb{R}^{2} so it is a continuous function from X to S^{1} using the subspace topologies. Therefore f is a continuous function using the quotient topology on X / \sim.
f has an inverse function $f^{-1}: S^{1} \rightarrow X / \sim$ defined by $f^{-1}((x, y))=[(x, y)]$. This is in fact an inverse because for $(x, y) \in S^{1}$,

$$
f\left(f^{-1}((x, y))\right)=f([(x, y)])=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)=(x, y)
$$

because $\sqrt{x^{2}+y^{2}}=1$. Also,

$$
f^{-1}(f([(x, y)]))=f^{-1}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)=\left[\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)\right]=[(x, y)]
$$

taking $c=\frac{1}{\sqrt{x^{2}+y^{2}}}$.
To show that f^{-1} is continuous, note that $X \subset \mathbb{R}^{2}$ is closed and bounded so it is compact. Therefore since $p: X \rightarrow X / \sim$ is a continuous surjective function, $X / \sim=p(X)$ is compact. Therefore $f: X / \sim \rightarrow S^{1}$ is a continuous bijective function whose domain is a compact set. Additionally S^{1} is Hausdorff because it is a subspace of a metric space. Therefore f^{-1} is continuous so f is a homeomorphism.

Problem 5: Let $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ be compact topological spaces and let $\left(X \times Y, \tau_{X \times Y}\right)$ be the product space with the product topology. Let $y_{0} \in Y$ be a point. Consider the subspace $X \times\left\{y_{0}\right\} \subset X \times Y$ with the subspace topology $\tau_{\text {sub }} .\left(X \times\left\{y_{0}\right\}=\left\{\left(x, y_{0}\right) \mid x \in X\right\}\right)$. Prove that $\left(X, \tau_{X}\right)$ is homeomorphic to $\left(X \times\left\{y_{0}\right\}, \tau_{\text {sub }}\right)$ by defining a map $f:\left(X, \tau_{X}\right) \rightarrow$ $\left(X \times\left\{y_{0}\right\}, \tau_{\text {sub }}\right)$ and showing that it is continuous and has continuous inverse.
Define $f:\left(X, \tau_{X}\right) \rightarrow\left(X \times\left\{y_{0}\right\}, \tau_{\text {sub }}\right)$ by $f(x)=\left(x, y_{0}\right)$. Then f is bijective because the inverse is given by $f^{-1}\left(x, y_{0}\right)=x$ (clearly $f\left(f^{-1}\left(x, y_{0}\right)\right)=f(x)=\left(x, y_{0}\right)$ and $f^{-1}(f(x))=$ $\left.f^{-1}\left(x, y_{0}\right)=x\right)$. Therefore, we just need to show that f is continuous and f^{-1} is continuous.

Let $V \subset\left(X \times\left\{y_{0}\right\}, \tau_{\text {sub }}\right)$ be an open subset in the subspace topology. Then $V=U \cap\left(X \times\left\{y_{0}\right\}\right)$ where U is an open subset of $X \times Y$ with the product topology. Since the basis for the product topology is

$$
\mathcal{B}=\left\{U_{1} \times U_{2} \mid U_{1} \in \tau_{X}, U_{2} \in \tau_{Y}\right\}
$$

U must be a union of basis elements so

$$
U=\cup_{\alpha \in \mathcal{I}} U_{1}^{\alpha} \times U_{2}^{\alpha}
$$

Now, $\left(U_{1} \times U_{2}\right) \cap\left(X \times\left\{y_{0}\right\}\right)=U_{1} \times\left\{y_{0}\right\}$ if $y_{0} \in U_{2}$ and is the empty set if $y_{0} \notin U_{2}$. Therefore

$$
\begin{gathered}
V=U \cap\left(X \times\left\{y_{0}\right\}\right)=\left(\bigcup_{\alpha \in \mathcal{I}} U_{1}^{\alpha} \times U_{2}^{\alpha}\right) \cap\left(X \times\left\{y_{0}\right\}\right)=\bigcup_{\alpha \in \mathcal{I}}\left(\left(U_{1}^{\alpha} \times U_{2}^{\alpha}\right) \cap\left(X \times\left\{y_{0}\right\}\right)\right) \\
=\bigcup_{\alpha \in \mathcal{I} \text { such that } y_{0} \in U_{2}^{\alpha}} U_{1}^{\alpha} \times\left\{y_{0}\right\}=\left(\bigcup_{\alpha \in \mathcal{I} \text { such that } y_{0} \in U_{2}^{\alpha}} U_{1}^{\alpha}\right) \times\left\{y_{0}\right\}
\end{gathered}
$$

Therefore

$$
f^{-1}(V)=\left(\bigcup_{\alpha \in \mathcal{I} \text { such that } y_{0} \in U_{2}^{\alpha}} U_{1}^{\alpha}\right)
$$

which is a union of open subsets $U_{1}^{\alpha} \in \tau_{X}$ so it is open in X.
To show that $f^{-1}:\left(X \times\left\{y_{0}\right\}, \tau_{\text {sub }}\right) \rightarrow\left(X, \tau_{X}\right)$ is continuous, let $U \subset X$ be an open subset of X. Then $\left(f^{-1}\right)^{-1}(U)=U \times\left\{y_{0}\right\}=(U \times Y) \cap\left(X \times\left\{y_{0}\right\}\right)$ which is open in the subspace topology since it is the intersection of an open set in the product topology with the subspace.

Problem 6: Show that $f:\left(X, \tau_{X}\right) \rightarrow\left(Y, \tau_{Y}\right)$ is a continuous function if and only if for every closed subset of $Y, C \subset Y$, the preimage $f^{-1}(C)$ is closed in X.
Suppose f is continuous. Then for every open subset $U \subset Y, f^{-1}(U)$ is open. Let $C \subset Y$ be a closed subset. Then $Y \backslash C$ is open so $f^{-1}(Y \backslash C)$ is open. Now $x \in f^{-1}(C)$ if and only if $f(x) \in C$, so $x \in X \backslash\left(f^{-1}(C)\right)$ if and only if $f(x) \in Y \backslash C$. Therefore $X \backslash f^{-1}(C)=f^{-1}(Y \backslash C)$ so $X \backslash f^{-1}(C)$ is open therefore $f^{-1}(C)$ is closed since its complement is open.

Now suppose we know that for every closed subset $C \subset Y, f^{-1}(C)$ is closed and we want to show that f is continuous. Let $U \subset Y$ be an open subset. Then $Y \backslash U$ is a closed subset so $f^{-1}(Y \backslash U)$ is closed by assumption. By the same reasoning as above, $X \backslash f^{-1}(U)=f^{-1}(Y \backslash U)$ so $X \backslash f^{-1}(U)$ is closed therefore $f^{-1}(U)$ is open.

