Practice Midterm 1

Math 147, Fall 2018

Problem 1:

(a) Let (X, τ) be a topological space. Suppose V_{α} is closed in (X, τ) for each $\alpha \in \mathcal{I}$. Prove that the intersection $\cap_{\alpha} V_{\alpha}$ is closed.

(b) Consider \mathbb{R} with the Euclidean topology. Give an example of a infinite collection of closed subsets V_i such that the infinite union $V = \bigcup_i V_i$ is not closed. (Prove V is not closed in your example.)

Problem 2: Let S^1 be the unit circle in \mathbb{R}^2 with the Euclidean metric topology given by

$$S^{1} = \{ (x_{1}, x_{2}) \mid d_{Euc}((x_{1}, x_{2}), (0, 0)) = 1 \}.$$

Show that S^1 is a closed subset of \mathbb{R}^2 .

Problem 3: We define a topology on \mathbb{R} by $\tau_N = \{(-x, x) \mid x > 0\} \cup \{\emptyset, \mathbb{R}\}.$

(a) Prove that τ_N is a topology (satisfies the 3 axioms).

(b) What is the closure of the subset (5, 6) in the topology τ_N ?

Problem 4: Let \mathcal{B} be the collection of open parallelograms in \mathbb{R}^2 of the form $B_{a,b,c,d} = \{(x,y) \in \mathbb{R}^2 \mid y+a < x < y+b, \ c < y < d\}$ where $a, b, c, d \in \mathbb{R}$ are constants.

(a) Prove that \mathcal{B} is a basis on \mathbb{R}^2 (satisfies the two axioms).

(b) Prove that the unit square $\{(x, y) \mid 0 < x < 1, 0 < y < 1\}$ is open in the topology generated by \mathcal{B} .