Practice Midterm 1

Math 147, Fall 2018

Problem 1:

(a) Let (X, τ) be a topological space. Suppose V_{α} is closed in (X, τ) for each $\alpha \in \mathcal{I}$. Prove that the intersection $\cap_{\alpha} V_{\alpha}$ is closed.
V_{α} is closed if and only if $X \backslash V_{\alpha}$ is open.

$$
X \backslash\left(\cap_{\alpha} V_{\alpha}\right)=\cup_{\alpha}\left(X \backslash V_{\alpha}\right)
$$

The union of any collection of open sets is open so $X \backslash\left(\cap_{\alpha} V_{\alpha}\right)$ is an open subset. Therefore $\cap_{\alpha} V_{\alpha}$ is closed.
(b) Consider \mathbb{R} with the Euclidean topology. Give an example of a infinite collection of closed subsets V_{i} such that the infinite union $V=\cup_{i} V_{i}$ is not closed. (Prove V is not closed in your example.)

Let $V_{i}=\{1 / i\}$ for $i \in\{1,2,3, \cdots\}$. To show that $V=\cup_{i=1}^{\infty} V_{i}$ is not closed, we show that it does not contain all of its limit points. Observe that $0 \neq 1 / i$ for any i. However, we will show that 0 is a limit point of V. To show this we need to verify that for any open subset $U \subset \mathbb{R}$ containing $0, U \cap V \neq \emptyset$. Let $U \subset \mathbb{R}$ be an open subset containing 0 . Then there is an open ball $B_{\varepsilon}(0)=(-\varepsilon, \varepsilon)$ such that $0 \in(-\varepsilon, \varepsilon) \subseteq U$. Choose an integer $N>1 / \varepsilon$. Then $1 / N \in(-\varepsilon, \varepsilon) \cap V$. Therefore $1 / N \in U \cap V$ so $U \cap V \neq \emptyset$.

Problem 2: Let S^{1} be the unit circle in \mathbb{R}^{2} with the Euclidean metric topology given by

$$
S^{1}=\left\{\left(x_{1}, x_{2}\right) \mid d_{\text {Euc }}\left(\left(x_{1}, x_{2}\right),(0,0)\right)=1\right\}
$$

Show that S^{1} is a closed subset of \mathbb{R}^{2}.
We show that the complement of S^{1} is open. $\mathbb{R}^{2} \backslash S^{1}=A \cup B$ where

$$
A=\left\{\left(x_{1}, x_{2}\right) \mid d_{E u c}\left(\left(x_{1}, x_{2}\right),(0,0)\right)<1\right\}
$$

and

$$
B=\left\{\left(x_{1}, x_{2}\right) \mid d_{E u c}\left(\left(x_{1}, x_{2}\right),(0,0)\right)>1\right\}
$$

We will show that both A and B are open subsets of \mathbb{R}^{2} with the Euclidean topology, so $A \cup B$ is open so S^{1} is closed.
To show that A is open, let $x \in A$. We will use the short-hand letting 0 denote the origin $(0,0) \in \mathbb{R}^{2}$. Then $d(x, 0)<1$. Let $\varepsilon=1-d(x, 0)>0$. We claim that $x \in B_{\varepsilon}(x) \subset A$. To verify this, let $y \in B_{\varepsilon}(x)$. Then $d(x, y)<\varepsilon=1-d(x, 0)$. By the triangle inequality and symmetry of the metric,

$$
d(y, 0) \leq d(y, x)+d(x, 0)=d(x, y)+d(x, 0)<\varepsilon+d(x, 0)=1-d(x, 0)+d(x, 0)=1
$$

so $d(y, 0)<1$ so $y \in A$.
To show that B is open, let $x \in B$. Then $d(x, 0)>1$. Let $\delta=d(x, 0)-1>0$. We claim that $x \in B_{\delta}(x) \subset B$. To verify this, let $y \in B_{\delta}(x)$. Then $d(y, x)<\delta=d(x, 0)-1$. By the triangle inequality, $d(x, 0) \leq d(x, y)+d(y, 0)$, so

$$
d(y, 0) \geq d(x, 0)-d(x, y)>d(x, 0)-\delta=d(x, 0)-(d(x, 0)-1)=1
$$

so $d(y, 0)>1$ so $y \in B$.

Problem 3: We define a topology on \mathbb{R} by $\tau_{N}=\{(-x, x) \mid x>0\} \cup\{\emptyset, \mathbb{R}\}$.
(a) Prove that τ_{N} is a topology (satisfies the 3 axioms).
(1) $\emptyset, \mathbb{R} \in \tau_{N}$ by definition.
(2) If $U_{\alpha} \in \tau_{N}$ for all $\alpha \in \mathcal{I}$ then $U_{\alpha}=\left(-x_{\alpha}, x_{\alpha}\right)$ for some $x_{\alpha}>0$ or $U_{\alpha}=\emptyset$ or \mathbb{R}. If we take a union of subsets of \mathbb{R} where at least one of the subsets is all of \mathbb{R}, the union will be \mathbb{R} which is open. Taking the union with the empty set has no effect, so we can assume that all of the U_{α} have the form $\left(-x_{\alpha}, x_{\alpha}\right)$. Then

$$
\cup_{\alpha \in \mathcal{I}} U_{\alpha}=\cup_{\alpha \in \mathcal{I}}\left(-x_{\alpha}, x_{\alpha}\right)=(-x, x)
$$

where $x=\sup _{\alpha \in \mathcal{I}} x_{\alpha}$, if this supremum is finite. $(-x, x) \in \tau_{N}$. If $\sup _{\alpha \in \mathcal{I}} x_{\alpha}=\infty$ then $\cup_{\alpha \in \mathcal{I}} U_{\alpha}=\mathbb{R}$. In both cases, the union is an element of the topology τ_{N}.
(3) If $U_{1}, \cdots, U_{n} \in \tau_{N}$ then either $U_{i}=\left(-x_{i}, x_{i}\right)$ or $U_{i}=\emptyset$ or \mathbb{R}. If all of the $U_{i}=\left(-x_{i}, x_{i}\right)$ or \mathbb{R} then $U_{1} \cap \cdots \cap U_{n}=(-x, x)$ where $x=\min _{i}\left\{x_{i}\right\}$. If any $U_{i}=\emptyset$ then $U_{1} \cap \cdots U_{n}=\emptyset$ so in both cases the finite intersection is an open set in τ_{N}.
(b) What is the closure of the subset $(5,6)$ in the topology τ_{N} ?

The closure of the subset $(5,6)$ is the intersection of all closed subsets of $\left(\mathbb{R}, \tau_{N}\right)$ which contain $(5,6) . C \subset \mathbb{R}$ is closed using the topology τ_{N} if and only if $\mathbb{R} \backslash C \in \tau_{N}$. Therefore C is closed if and only if $C=(-\infty, x] \cup[x, \infty)$ for some $x>0$ or $C=\mathbb{R}$ or \emptyset. The subsets of this form which contain $(5,6)$ are $(-\infty, x] \cup[x, \infty)$ for $0<x \leq 5$ and \mathbb{R}. Therefore

$$
\overline{(5,6)}=\cap_{0<x \leq 5}(-\infty, x] \cup[x, \infty) \cap \mathbb{R}=(-\infty, 5] \cup[5, \infty)
$$

Problem 4: Let \mathcal{B} be the collection of open parallelograms in \mathbb{R}^{2} of the form $B_{a, b, c, d}=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid y+a<x<y+b, c<y<d\right\}$ where $a, b, c, d \in \mathbb{R}$ are constants.
(a) Prove that \mathcal{B} is a basis on \mathbb{R}^{2} (satisfies the two axioms).
(1) Suppose $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. We will find a basis element which contains it.

Let $c=y_{0}-1, d=y_{0}+1, a=x_{0}-y_{0}-1$ and $b=x_{0}-y_{0}+1$. Then $\left(x_{0}, y_{0}\right) \in B_{a, b, c, d}$ because $y_{0}-1<y_{0}<y_{0}+1$ and $y_{0}+\left(x_{0}-y_{0}-1\right)<x_{0}<y_{0}+\left(x_{0}-y_{0}+1\right)$.
(2) Suppose $\left(x_{0}, y_{0}\right) \in B_{1} \cap B_{2}$ where $B_{1}=B_{a_{1}, b_{1}, c_{1}, d_{1}}$ and $B_{2}=B_{a_{2}, b_{2}, c_{2}, d_{2}}$. We will find ($a_{3}, b_{3}, c_{3}, d_{3}$) such that $B_{a_{3}, b_{3}, c_{3}, d_{3}}=B_{a_{1}, b_{1}, c_{1}, d_{1}} \cap B_{a_{2}, b_{2}, c_{2}, d_{2}}$ so we satisfy the second basis axiom: $\left(x_{0}, y_{0}\right) \in B_{3} \subseteq B_{1} \cap B_{2}$. Let $a_{3}=\max \left\{a_{1}, a_{2}\right\}, b_{3}=$ $\min \left\{b_{1}, b_{2}\right\}, c_{3}=\max \left\{c_{1}, c_{2}\right\}$ and $d_{3}=\min \left\{d_{1}, d_{2}\right\}$. Then $(x, y) \in B_{1} \cap B_{2}$ if and only if $c_{1}<y<d_{1}$ and $c_{2}<y<d_{2}$ and $y+a_{1}<x<y+b_{1}$ and $y+a_{2}<x<y+b_{2}$. $y>c_{1}$ and $y>c_{2}$ if and only if $y>\max \left\{c_{1}, c_{2}\right\}=c_{3}$. Similarly, $y<d_{1}$ and $y<d_{2}$ if and only if $y<\min \left\{d_{1}, d_{2}\right\}=d_{3}$.

In the same way, $x>y+a_{1}$ and $x>y+a_{2}$ if and only if $x>y+\max \left\{a_{1}, a_{2}\right\}=$ $y+a_{3}$. Finally, $x<y+b_{1}$ and $x<y+b_{2}$ if and only if $x<y+\min \left\{b_{1}, b_{2}\right\}=y+b_{3}$. This verifies that if $B_{3}=B_{a_{3}, b_{3}, c_{3}, d_{3}}$ then $B_{3}=B_{1} \cap B_{2}$ so for any $\left(x_{0}, y_{0}\right) \in B_{1} \cap B_{2}$, $\left(x_{0}, y_{0}\right) \in B_{3} \subseteq B_{1} \cap B_{2}$.
(b) Prove that the unit square $\{(x, y) \mid 0<x<1,0<y<1\}$ is open in the topology generated by \mathcal{B}.

Let $Q=\{(x, y) \mid 0<x<1,0<y<1\}$ denote the unit square. We will show that for every point $\left(x_{0}, y_{0}\right) \in Q$, there is a basis element $B_{a, b, c, d}$ such that $\left(x_{0}, y_{0}\right) \in B \subset Q$. Let $\left(x_{0}, y_{0}\right) \in Q$ so $0<x_{0}<1$ and $0<y_{0}<1$. Let

$$
\varepsilon=\min \left\{x_{0}-0,1-x_{0}, y_{0}-0,1-y_{0}\right\}
$$

Note that $\varepsilon>0$ because $\left(x_{0}, y_{0}\right) \in Q$. Let $a=x_{0}-y_{0}-\varepsilon / 2, b=x_{0}-y_{0}+\varepsilon / 2$, $c=y_{0}-\varepsilon / 2$ and $d=y_{0}+\varepsilon / 2$. We will check that $\left(x_{0}, y_{0}\right) \in B_{a, b, c, d} \subset Q$. First, to show $\left(x_{0}, y_{0}\right) \in B_{a, b, c, d}$ we just check that plugging in $\left(x_{0}, y_{0}\right)$ satisfies the inequalities $a+y<x<b+y$ and $c<y<d$. Indeed $\left(x_{0}-y_{0}-\varepsilon / 2\right)+y_{0}<x_{0}<\left(x_{0}-y_{0}+\varepsilon / 2\right)+y_{0}$ and $y_{0}-\varepsilon / 2<y_{0}<y_{0}+\varepsilon / 2$. so $\left(x_{0}, y_{0}\right) \in B_{a, b, c, d}$.

Next we show that $B_{a, b, c, d} \subset Q$. Suppose $(x, y) \in B_{a, b, c, d}$. Then $\left(x_{0}-y_{0}-\varepsilon / 2\right)+y<$ $x<\left(x_{0}-y_{0}+\varepsilon / 2\right)+y$ and $y_{0}-\varepsilon / 2<y<y_{0}+\varepsilon / 2$. Since $\varepsilon / 2<\varepsilon \leq y_{0}$ and $\varepsilon / 2<\varepsilon \leq 1-y_{0}$, we find $0<y_{0}-\varepsilon / 2$ and $y_{0}+\varepsilon / 2<1$. Therefore

$$
0<y_{0}-\varepsilon / 2<y<y_{0}+\varepsilon / 2<1
$$

so $0<y<1$. Next we need to check the x coordinate is between 0 and 1 also. We know that $\left(x_{0}-y_{0}-\varepsilon / 2\right)+y<x<\left(x_{0}-y_{0}+\varepsilon / 2\right)+y$ and $y_{0}-\varepsilon / 2<y<y_{0}+\varepsilon / 2$. Therefore

$$
\left(x_{0}-y_{0}-\varepsilon / 2\right)+y_{0}-\varepsilon / 2<\left(x_{0}-y_{0}-\varepsilon / 2\right)+y<x<\left(x_{0}-y_{0}+\varepsilon / 2\right)+y<\left(x_{0}-y_{0}+\varepsilon / 2\right)+y_{0}+\varepsilon / 2
$$

Simplifying the outside bounds we get

$$
x_{0}-\varepsilon<x<x_{0}+\varepsilon
$$

so since $\varepsilon \leq x_{0}$ and $\varepsilon \leq 1-x_{0}$, we have

$$
0 \leq x_{0}-\varepsilon<x<x_{0}+\varepsilon \leq 1
$$

so $0<x<1$. Therefore $(x, y) \in Q$ so we conclude that every point in $B_{a, b, c, d}$ is in Q so $B_{a, b, c, d} \subset Q$. Thus we have shown Q is open in the topology generated by this basis.

