Practice Midterm 2

Math 147, Fall 2018

Name:

Problem 1: Consider the subset $Y=[-1,1]$ of the real line \mathbb{R}. Let \mathbb{R} have the Euclidean topology $\tau_{E u c}$ and let τ_{Y} denote the subspace topology on Y.
(a) Is $A=\left\{x\left|\frac{1}{2}<|x| \leq 1\right\}\right.$ open in τ_{Y} ? Prove it is or is not.
A is open in $\left(Y, \tau_{Y}\right)$ because $A=\left(\left(-\frac{3}{2},-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \frac{3}{2}\right)\right) \cap Y$ and $\left(\frac{1}{2}, \frac{3}{2}\right)$ is an open ball of radius $\frac{1}{2}$ around 1 so it is open in $\left(\mathbb{R}, \tau_{E u c}\right)$ and similarly $\left(-\frac{3}{2},-\frac{1}{2}\right)$ is the open ball of radius $\frac{1}{2}$ around -1 in $\left(\mathbb{R}, \tau_{E u c}\right)$ so since the union of open sets is open, we have written A as the intersection of an open subset of X with Y.
(b) Is $B=\left\{x\left|\frac{1}{2} \leq|x|<1\right\}\right.$ open in τ_{Y} ? Prove it is or is not.
B is not open in τ_{Y}. If it were then $B=U \cap Y$ for $U \subset \mathbb{R}$ where $U \in \tau_{E u c}$. Therefore $\frac{1}{2} \in U$. Since U is open in the Euclidean topology on \mathbb{R}, there exists $\varepsilon>0$ such that $B_{\varepsilon}\left(\frac{1}{2}\right) \subseteq U$. Therefore $\left(\frac{1}{2}-\varepsilon, \frac{1}{2}+\frac{\varepsilon}{)} \subseteq U\right.$. Therefore $\max \left\{0, \frac{1}{2}-\frac{\varepsilon}{2}\right\} \in U$, but $\max \left\{0, \frac{1}{2}-\frac{\varepsilon}{2}\right\} \in Y$ so $\max \left\{0, \frac{1}{2}-\frac{\varepsilon}{2}\right\} \in U \cap Y=B$, but B does not contain any elements less than $\frac{1}{2}$, so we have a contradiction.

Problem 2: Let $X=\mathbb{R}^{2}$ with the Euclidean topology. Define an equivalence relation \sim on X by $\left(x_{1}, x_{2}\right) \sim\left(z_{1}, z_{2}\right)$ if and only if $x_{1}^{2}+x_{2}^{2}=z_{1}^{2}+z_{2}^{2}$. Let $Y=[0, \infty)$ with the Euclidean topology. Construct a map $f: X / \sim \rightarrow Y$ and show that f is well-defined, continuous and has an inverse. You do NOT need to prove that f^{-1} is continuous (f^{-1} probably will be continuous, you just do not need to prove it).
Let $f: X / \sim \rightarrow Y$ be defined by

$$
f\left(\left[\left(x_{1}, x_{2}\right)\right]\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

f is well defined: Suppose $\left[\left(x_{1}, x_{2}\right)\right]=\left[\left(z_{1}, z_{2}\right)\right]$, then $x_{1}^{2}+x_{2}^{2}=z_{1}^{2}+z_{2}^{2}$ so

$$
f\left(\left[\left(x_{1}, x_{2}\right)\right]\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}=\sqrt{z_{1}^{2}+z_{2}^{2}}=f\left(\left[\left(z_{1}, z_{2}\right)\right]\right)
$$

f is continuous: Let $p: X \rightarrow X / \sim$ be the quotient map $p\left(\left(x_{1}, x_{2}\right)\right)=\left[\left(x_{1}, x_{2}\right)\right]$. Then the composition $f \circ p: \mathbb{R}^{2} \rightarrow[0, \infty)$ is the map $f\left(\left(x_{1}, x_{2}\right)\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}$ which is a continuous map from \mathbb{R}^{2} to \mathbb{R} between Euclidean spaces by calculus arguments. Therefore for any open subset $U \subset \mathbb{R},(f \circ p)^{-1}(U)$ is open in \mathbb{R}^{2}.
In the quotient topology, $f: X / \sim \rightarrow Y$ is continuous if and only if $f \circ p: X \rightarrow Y$ is continuous, so f is continuous.
f has an inverse: Define $f^{-1}: Y \rightarrow X / \sim$ by

$$
f^{-1}(r)=[(r, 0)]
$$

Then we will show that $f\left(f^{-1}(r)\right)=r$ and $f^{-1}\left(f\left(\left[\left(x_{1}, x_{2}\right)\right]\right)\right)=\left[\left(x_{1}, x_{2}\right)\right]$.
For the first statement: if $r \in[0, \infty)$,

$$
f\left(f^{-1}(r)\right)=f([(r, 0)])=\sqrt{r^{2}+0^{2}}=r
$$

For the second statement: if $\left[\left(x_{1}, x_{2}\right)\right] \in X / \sim$,

$$
\begin{gathered}
f^{-1}\left(f\left(\left[\left(x_{1}, x_{2}\right)\right]\right)\right)=f^{-1}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right)=\left[\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, 0\right)\right] \\
{\left[\left(x_{1}, x_{2}\right)\right]=\left[\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, 0\right)\right]}
\end{gathered}
$$

because $\left(x_{1}, x_{2}\right) \sim\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, 0\right)$ because $\sqrt{x_{1}^{2}+x_{2}^{2}}=\sqrt{\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right)^{2}+0^{2}}$.

Problem 3: Let $\tau_{Z a r}$ be the Zariski topology on \mathbb{R}. Remember that a set $U \subset \mathbb{R}$ is open in the Zariski topology if and only if $\mathbb{R} \backslash U$ is finite or $U=\emptyset$. Prove that $\left(\mathbb{R}, \tau_{\text {Zar }}\right)$ is not Hausdorff.

Consider $1,2 \in\left(\mathbb{R}, \tau_{\text {Zar }}\right)$. These are distinct points in \mathbb{R}. Suppose for contradiction that $\left(\mathbb{R}, \tau_{\text {Zar }}\right)$ were Hausdorff. Then there would be open sets $U_{1}, U_{2} \in \tau_{\text {Zar }}$ such that $1 \in U_{1}$ and $2 \in U_{2}$ and $U_{1} \cap U_{2}=\emptyset$.

Since $U_{1}, U_{2} \in \tau_{Z a r}$ and they are both non-empty, $X \backslash U_{1}$ and $X \backslash U_{2}$ are both finite sets.
Since $U_{1} \cap U_{2}=\emptyset$, we get that $X \backslash\left(U_{1} \cap U_{2}\right)=X \backslash \emptyset=X$.
By DeMorgan's laws, $X=X \backslash\left(U_{1} \cap U_{2}\right)=\left(X \backslash U_{1}\right) \cup\left(X \backslash U_{2}\right)$. But since $X \backslash U_{1}$ and $X \backslash U_{2}$ are finite sets, their union is finite which would imply X is finite, but $X=\mathbb{R}$ which has infinitely many points so we get a contradiction.

Problem 4: Suppose $f:(X, \tau) \rightarrow\left(\{1,2,3\}, \tau_{\text {dis }}\right)$ is a continuous surjective function $\left(\tau_{\text {dis }}\right.$ is the discrete topology). Prove that there are non-empty closed subsets, A, B, and C of X such that $X=A \cup B \cup C$ and $A \cap B=A \cap C=B \cap C=\emptyset$.

Let $A=f^{-1}(\{1\}), B=f^{-1}(\{2\})$ and $C=f^{-1}(\{3\})$.
In the discrete topology, $\{1\},\{2\}$, and $\{3\}$ are open sets because every subset is open. They are also closed sets because their complements are open since every subset is open. Therefore A, B and C are each both open and closed because f is continuous. A, B, and C are each non-empty because f is surjective. A, B, and C are disjoint because f is a function so we cannot have a point $x \in A \cap B$ because then $f(x)=1$ and $f(x)=2$ which cannot happen if f is a function. Similarly $B \cap C=\emptyset$ and $A \cap C=\emptyset$.

