HOMEWORK 1 (MAT 215B) TOPOLOGY

LAURA STARKSTON

Every solution should contain complete rigorous proofs, verifying that your answer satisfies the properties required.
(1) The n-simplex was defined using barycentric coordinates as

$$
\Delta^{n}=\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} t_{i}=1, t_{i} \geqslant 0 \forall i\right\}
$$

We denote by v_{i} the vertex of the n-simplex where $t_{i}=1$ and all other coordinates are 0 . The notation $\left[v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{n}\right]$ refers to the face of the n-simplex spanned by all the vertices except v_{i}.

To define the definition of a Δ-complex, we implicitly need an identification of each face of the n simplex with the standard $(n-1)$-simplex. Your job for this problem is to work out that identification explicitly in coordinates.

Find an explicit map in terms of the barycentric coordinates t_{j} which sends the $i^{t h}$ face $\left[v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{n}\right]$ of Δ^{n} to the standard $(n-1)$ simplex $\Delta^{n-1} \subset \mathbb{R}^{n}$ such that the vertices $v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{n}$ are sent to the standard vertices w_{0}, \ldots, w_{n-1} of Δ^{n-1} in an order preserving way.
[Tip: Work it out first for the $n=2$ case and potentially some other low dimensional examples, and then look for the general pattern.]
(2) Describe a Δ-complex structure on the n-dimensional sphere

$$
S^{n}=\left\{\left(x_{1}, \cdots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\} .
$$

You may assume without writing out an explicit equation, that there is a homeomorphism from the n-simplex to the closed n-disk

$$
D^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2} \leqslant 1\right\} .
$$

Make sure to verify that your Δ-complex structure satisfies all the properties required by the definition of a Δ-complex.
(3) Describe a Δ-complex structure on the genus g orientable surface. You may use the identification of the orientable genus g surface with the polygonal representation given by a $4 g$-gon where sides are identified according to the word $a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}$ (see e.g. Hatcher page 5). (Verify it satisfies the required properties.)
(4) Consider the following family of Δ-complex structures on the circle S^{1}. Here it will be convenient to identify the topological space S^{1} as \mathbb{R} / \mathbb{Z}, or equivalently, the interval $[0,1]$ with the endpoints 0 and 1 identified.

$$
S^{1}=[0,1] / \sim \quad 0 \sim 1
$$

For each integer $n \geqslant 1$, we get a Δ-complex structure on S^{1} with maps $\sigma_{0,0}, \ldots, \sigma_{0, n-1}: \Delta^{0} \rightarrow S^{1}$ and $\sigma_{1,0}, \ldots, \sigma_{1, n-1}: \Delta^{1} \rightarrow S^{1}$. The first set of maps are defined by

$$
\sigma_{0, k}\left(v_{0}\right)=k / n
$$

for the unique point $v_{0} \in \Delta^{0}$. For $\left(t_{0}, t_{1}\right) \in \Delta^{1}$ where $t_{0}+t_{1}=1$ (i.e. $t_{1}=1-t_{0}$) and $t_{0}, t_{1} \geqslant 0$ (i.e. $0 \leqslant t_{0} \leqslant 1$), define

$$
\sigma_{1, k}\left(\left(t_{0}, t_{1}\right)\right)=\frac{t_{0}+k}{n}
$$

(a) Verify that for each n, this satisfies the requirements for a Δ-complex.
(b) Determine the simplicial chain complex and differential boundary maps for each Δ-complex structure.
(c) Calculate the simplicial homology for each Δ-complex structure.
(d) Verify that the isomorphism type of the homology groups are the same regardless of which of these Δ structures you use (even if the chain complex and differentials differ).
(5) Use the Δ-complex structure from problem (2) to calculate the simplicial homology of S^{n}.
(6) Use the Δ-complex structure from problem (3) to calculate the simplicial homology of the genus g orientable surface.
(7) One way to represent the real projective plane is from the following polygonal identification where sides are identified as indicated by the arrows and double arrows.

Define a Δ-complex structure on this space, determine the corresponding chain complex and differential boundary maps, and prove that the homology groups in dimensions $0,1,2$ are isomorphic to $\mathbb{Z}, \mathbb{Z}_{2}, 0$ respectively.
(8) (See Hatcher Section 2.1 Exercises Problem 8) Construct a 3-dimensional Δ-complex X from n tetrahedra T_{1}, \ldots, T_{n} by the following two steps. First arrange the tetrahedra in a cyclic pattern as shown in the figure of Hatcher p. 131, so that each T_{i} shares a common vertical face with its two neighbors, T_{i-1} and $T_{i+1}($ subscripts taken $\bmod n)$. Then identify the bottom face of T_{i} with the top face of T_{i+1} for each i. Show the simplicial homology groups of X in dimensions $0,1,2,3$ are isomorphic to $\mathbb{Z}, \mathbb{Z}_{n}, 0, \mathbb{Z}$ respectively. (Such X are examples of lens spaces.)

