## HOMEWORK 1 (MAT 215B) TOPOLOGY

## LAURA STARKSTON

Every solution should contain complete rigorous proofs, verifying that your answer satisfies the properties required.

(1) The *n*-simplex was defined using barycentric coordinates as

$$\Delta^{n} = \{ (t_0, t_1, \dots, t_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} t_i = 1, \ t_i \ge 0 \ \forall i \}.$$

We denote by  $v_i$  the vertex of the *n*-simplex where  $t_i = 1$  and all other coordinates are 0. The notation  $[v_0, \ldots, \hat{v_i}, \ldots, v_n]$  refers to the face of the *n*-simplex spanned by all the vertices except  $v_i$ .

To define the definition of a  $\Delta$ -complex, we implicitly need an identification of each face of the *n*-simplex with the standard (n-1)-simplex. Your job for this problem is to work out that identification explicitly in coordinates.

Find an explicit map in terms of the barycentric coordinates  $t_j$  which sends the  $i^{th}$  face  $[v_0, \ldots, \hat{v_i}, \ldots, v_n]$  of  $\Delta^n$  to the standard (n-1) simplex  $\Delta^{n-1} \subset \mathbb{R}^n$  such that the vertices  $v_0, \ldots, \hat{v_i}, \ldots, v_n$  are sent to the standard vertices  $w_0, \ldots, w_{n-1}$  of  $\Delta^{n-1}$  in an order preserving way.

[Tip: Work it out first for the n = 2 case and potentially some other low dimensional examples, and then look for the general pattern.]

(2) Describe a  $\Delta$ -complex structure on the *n*-dimensional sphere

$$S^{n} = \{ (x_{1}, \cdots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \cdots + x_{n+1}^{2} = 1 \}.$$

You may assume without writing out an explicit equation, that there is a homeomorphism from the n-simplex to the closed n-disk

$$D^n = \{(x_1, \cdots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 \leq 1\}.$$

Make sure to verify that your  $\Delta$ -complex structure satisfies all the properties required by the definition of a  $\Delta$ -complex.

- (3) Describe a  $\Delta$ -complex structure on the genus g orientable surface. You may use the identification of the orientable genus g surface with the polygonal representation given by a 4g-gon where sides are identified according to the word  $a_1b_1a_1^{-1}b_1^{-1}\ldots a_gb_ga_g^{-1}b_g^{-1}$  (see e.g. Hatcher page 5). (Verify it satisfies the required properties.)
- (4) Consider the following family of  $\Delta$ -complex structures on the circle  $S^1$ . Here it will be convenient to identify the topological space  $S^1$  as  $\mathbb{R}/\mathbb{Z}$ , or equivalently, the interval [0, 1] with the endpoints 0 and 1 identified.

$$S^1 = [0, 1] / \sim 0 \sim 1.$$

For each integer  $n \ge 1$ , we get a  $\Delta$ -complex structure on  $S^1$  with maps  $\sigma_{0,0}, \ldots, \sigma_{0,n-1} : \Delta^0 \to S^1$ and  $\sigma_{1,0}, \ldots, \sigma_{1,n-1} : \Delta^1 \to S^1$ . The first set of maps are defined by

$$\sigma_{0,k}(v_0) = k/n$$

## LAURA STARKSTON

for the unique point  $v_0 \in \Delta^0$ . For  $(t_0, t_1) \in \Delta^1$  where  $t_0 + t_1 = 1$  (i.e.  $t_1 = 1 - t_0$ ) and  $t_0, t_1 \ge 0$  (i.e.  $0 \le t_0 \le 1$ ), define

$$\sigma_{1,k}((t_0,t_1)) = \frac{t_0+k}{n}.$$

- (a) Verify that for each n, this satisfies the requirements for a  $\Delta$ -complex.
- (b) Determine the simplicial chain complex and differential boundary maps for each Δ-complex structure.
- (c) Calculate the simplicial homology for each  $\Delta$ -complex structure.
- (d) Verify that the isomorphism type of the homology groups are the same regardless of which of these  $\Delta$  structures you use (even if the chain complex and differentials differ).
- (5) Use the  $\Delta$ -complex structure from problem (2) to calculate the simplicial homology of  $S^n$ .
- (6) Use the  $\Delta$ -complex structure from problem (3) to calculate the simplicial homology of the genus g orientable surface.
- (7) One way to represent the real projective plane is from the following polygonal identification where sides are identified as indicated by the arrows and double arrows.



Define a  $\Delta$ -complex structure on this space, determine the corresponding chain complex and differential boundary maps, and prove that the homology groups in dimensions 0, 1, 2 are isomorphic to  $\mathbb{Z}$ ,  $\mathbb{Z}_2$ , 0 respectively.

(8) (See Hatcher Section 2.1 Exercises Problem 8) Construct a 3-dimensional  $\Delta$ -complex X from n tetrahedra  $T_1, \ldots, T_n$  by the following two steps. First arrange the tetrahedra in a cyclic pattern as shown in the figure of Hatcher p. 131, so that each  $T_i$  shares a common vertical face with its two neighbors,  $T_{i-1}$  and  $T_{i+1}$  (subscripts taken mod n). Then identify the bottom face of  $T_i$  with the top face of  $T_{i+1}$  for each *i*. Show the simplicial homology groups of X in dimensions 0, 1, 2, 3 are isomorphic to  $\mathbb{Z}$ ,  $\mathbb{Z}_n$ , 0,  $\mathbb{Z}$  respectively. (Such X are examples of lens spaces.)