Algebraic Simplification
In the following examples and problems, the term "simplify" indicates to eliminate compound fractions, factor as much as possible, put terms over a common denominator when feasible, and avoid negative exponents.
Ex 1 Simplify the expression 

Sol 
![\begin{displaymath}x^2(4(x-2)^3)+2x(x-2)^4=2x(x-2)^3[2x+(x-2)]=2x(x-2)^3[3x-2]\end{displaymath}](img2.png)
Ex 2 Simplify the expression

Sol 

![\begin{displaymath}=\frac{6(x^2+3)[(x^2+3)-(2x)(2x)]}{(x^2+3)^4}\end{displaymath}](img4.png)
![\begin{displaymath}=\frac{6[x^2+3-4x^2]}{(x^2+3)^3}=\frac{6[3-3x^2]}{(x^2+3)^3}\end{displaymath}](img5.png)

Pr A Simplify the expression
 .
.
Pr B Simplify the expression 

Pr C Simplify the expression
 by eliminating the radicals in the
numerator.
by eliminating the radicals in the
numerator.
Pr 1 Simplify the expression

Pr 2 Simplify the expression

Pr 3 Simplify the expression

Pr 4 Simplify the expression

Pr 5 Simplify the expression

Pr 6 Simplify the expression

Pr 7 Simplify the expression

Pr 8 Simplify the expression

Return
to
Precalculus
Home
Page