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Abstract

The Witten-Kontsevich KdV tau function of topological gravity has a generalization to an arbitrary Drinfeld-
Sokolov hierarchy associated to a simple complex Lie algebra. Using the Feigin-Frenkel isomorphism we describe
the affine opers describing such generalized Witten-Kontsevich functions in terms of Segal-Sugawara operators
associated to the Langlands dual Lie algebra. In the case where the Lie algebra is simply laced there is a second
role these Segal-Sugawara operators play: Their action, in the basic representation of the affine algebra associated
to the Lie algebra, singles out the Witten-Kontsevich tau function within the phase space. We show that these two
Langlands dual roles of Segal-Sugawara operators correspond to a duality between the first and last operator for a
complete set of Segal-Sugawara operators.

1 Introduction

In the early 1990’s Witten conjectured in [I6] that the partition function of topological gravity gives rise to a very
specific KAV tau function. This was shown to be the case by Kontsevich in [I3]. Since then, many generalizations of
this set-up have been studied. In particular, if g is a simple finite-dimensional complex Lie algebra, there is a certain
point in the phase space ®4 of the Drinfeld-Sokolov hierarchy associated to g whose tau function generalizes the above
mentioned KdV tau function (which corresponds to the choice g = sly). We call this point the Witten-Kontsevich
point Pj.

The Drinfeld-Sokolov phase space ®, has various descriptions. In particular, when it is described not in terms
of tau functions but in terms of affine opers, then one can apply, after passing to the underlying non-affine oper,
the Feigin-Frenkel isomorphism to each point of ®4 (it is these non-affine opers that are part of the local geometric
Langlands correspondence as formulated by Frenkel and Gaitsgory in [7]). This process associates to each point in
phase space a function on the center 3(“g) of the critical level vertex algebra associated to the Langlands dual algebra
Lg. Our Theorem [1| describes the function that one obtains when this process is applied to the Witten-Kontsevich
point Fy.

Whether or not g is simply laced, the center 3(“g) has a description in terms of “g Segal-Sugawara operators.
Something interesting happens for the special point Py in phase space if indeed g is simply laced. In this case, P
can be defined in terms of the action of Segal-Sugawara operators on a highest weight representation (of non-criticial
level) of the affine algebra g(!) associated to g. Via Theorem |1, the Witten-Kontsevich point therefore gives rise to
two different occurrences of Segal-Sugawara operators. To understand their relation (which in a sense, via the results
of Feigin and Frenkel, comes from a Langlands duality for simple Lie algebras) is the main motivation of the present
work. In Theorem [2] we give the answer: Loosely speaking, it corresponds to a duality between the first and last
Segal-Sugawara operator.

The considerations of the present work are restricted to the Witten-Kontsevich points in phase space, but one can
ask for a much more general relation between Segal-Sugawara operator action on tau functions and the associated
functions on Segal-Sugawara operators that are obtained via the Feigin-Frenkel isomorphism.

1.1 General case

We start by stating our main result, Theorem [I} Let g be a simple complex Lie algebra with Langlands dual algebra
Lg and associated untwisted affine algebra g(!). Let E(g) denote the set of exponents of g(): They are the translates



by integer multiples of the Coxeter number h of g of the finite set of exponents of g. Let E(g)~° denote the subset of
positive exponents of g(l). Let

t={t1, -t - |i€E(g "} (1)

These are the time variable of the g Drinfeld-Sokolov hierarchy. The phase space of this integrable hierarchy can be
described in terms of the space of tau functions Taug which is a subset of the space of formal power series C[t].

Definition 1. The Witten-Kontsevich point Py (also called the topological string point) of the Drinfeld-Sokolov
hierarchy of g is defined in terms of its tau function via

i+h 1 g
> o b0y + o > ijetity | T(t) = 0,7(t) (2)
iCE(g)>0 i,j€E(g)”"
i+j=h

Cafasso and Wu show in [2] that there is a unique g Drinfeld-Sokolov tau function 7ing(t) satisfying Equation
. To apply the results of Feigin and Frenkel to this situation a different description of the Drinfeld-Sokolov phase
space is needed. Rather than in terms of tau functions, this space can be described in terms of the space Opg(D)aﬁ of
affine opers on a formal disc D = Spec C[z], where z is some indeterminate (we recall the definition in Section .
Indeed, this is the formalism in which Drinfeld and Sokolov first developed the theory in [5].

Remark 1. It is known that the indeterminate x can be identified with the first flow variable ¢; of the Drinfeld-Sokolov
hierarchy, see for example [2] (Section 3.2) for a detailed discussion, and we will freely do so throughout this work.

Let us denote the affine oper corresponding to Tgtring (t) by Lzm“g . The space of affine opers has a non-affine variant
Op,(D) and there is a map

Aff: Opy (D)™ — Op, (D) (3)

which passes to the underlying non-affine oper, see Section [2| for details. In particular, one obtains a non-affine oper
Aff(L;mng) associated to the Witten-Kontsevich point and this is now finally an object to which the results of Feigin
and Frenkel can be applied.

Let 3(g) denote the center of the critical level (meaning negative of the dual Coxeter number) vertex algebra
Vit (Mg) associated to (“g)("). Due to the work of Feigin and Frenkel [6] the space of (isomorphism classes of) opers
gives a description of the functions on this center. Namely, there is an isomorphism

FF : Opy(D)/~ = 5("9)" (4)

One can then ask to what function on the center 3("g) the (non-affine) oper Aﬁ"(L;tri“g) of the Witten-Kontsevich point
corresponds. We answer this in Theorem [I} To formulate this result it is useful to have a more explicit description of
the center. This can be done in terms of the state-field correspondence of the vertex algebra V. (“g):

Let w be an indeterminate and let Y (—, w) denote the state-field correspondence of Vic(¥g). Let r denote the
rank of g and let 69;, e ,Gg’; be a complete set of Segal-Sugawara operators for “g in the sense of [14], see Section
for the definition. This means in particular that they are elements of the center 3(“g) and their Fourier coefficients

5% , given by
CHROEO L T
k

g
generate the center, see Section Hence, describing a function on the center of 3(g) corresponds to describing
how it acts on these Fourier coefficients. It is in this manner that we describe the function corresponding to the



Witten-Kontsevich point. Define the “characteristic functions”

11if (i,8) = (4, k)
LAV - (2)
16&3,k €3(7g)" via 6L9,s —

0 otherwise

It is useful to align certain scaling choices that are part of the construction of the Drinfeld-Sokolov hierarchy as well
as the Segal-Sugawara operators. We make this precise in Definition |4 where we introduce the notion of alignment
between g Segal-Sugawara operators and the g Drinfeld-Sokolov hierarchy.

Theorem 1. Let g be a simple complex Lie algebra of rank r and suppose 6£1),~

Segal-Sugawara operators aligned with the g Drinfeld-Sokolov hierarchy. Then

o ,6%) is a complete set of Mg

FF (Aff (Ly78)) =

The theorem attains a more symmetric form in the case where g is simply laced. In this case, L;m“g itself can be
defined in terms of the action of a suitable Segal-Sugawara operator and Theorem [I]| gives rise to a non-trivial duality
between the first and last Segal-Sugawara operator. We state this in a precise manner in the next section.

1.2 Simply laced case

Assume now that g is simply laced, in particular one has g = g. As in the previous section let Ggl), e ,6? be a
complete set of Segal-Sugawara operators. Each Fourier coefficient Gg;)k is an element of the center 3(g) and hence
gives rise, via the Feigin-Frenkel isomorphism FF and the map Aff to a function on the space of affine opers. Switching
to the tau function description of this Drinfeld-Sokolov phase space we obtain that each Ggi’)k gives rise to a function

Mg\ : Tang — C (5)

Since g is simply laced, Kac-Kazhdan-Lepowsky-Wilson have shown in [I1] that the basic representation of the
affine algebra g(!) associated to g has a concrete realization acting on the space of formal power series C[t]. It follows
from the construction of the vertex algebra V,t(g) that each of the Fourier coefficients G;)k can be viewed as an

element of the universal enveloping algebra of g!). Hence, via the basic representation one obtains functions
@&\ C[t] — C[t] (6)

Since Taug is contained in C[t], the functions in @ give in particular rise to functions on Taug. It is an interesting
task to relate them to the functions on Taugy described in Equation . Our calculations are a step in this direction.
Namely, Theorem (1| (for g simply laced) yields the following (we refer to Definition [5| for the meaning of normalized

set of Segal-Sugawara operators).
Theorem 2. Let g be a complex simple and simply laced Lie algebra of rank r. Suppose Ggl), e ,Gg) is a complete
set of normalized Segal-Sugawara operators aligned with the g Drinfeld-Sokolov hierarchy. If T in Tauy satisfies

(=00 + @650 (1) =0

then it follows that
1 ifi=randk=-1
(—8t1(1)6;)k) (1) =
0 otherwise



The collections of functions (1)62& and (2)6&)}@ are both associated to g = “g. Nonetheless, the first set of functions
is constructed via the Feigin-Frenkel isomorphism and hence is naturally associated to g, whereas the second set of
functions is constructed via the basic representation and is naturally associated to g. Theorem [2] shows that this
hidden Langlands duality for finite-dimensional Lie algebras is reflected in a duality for Segal-Sugawara operators. To
obtain a symmetrical description of this duality one should be careful with the indexing of the Fourier coefficients of
the vertex algebra:

It turns out that for any choice of complete set of Segal-Sugawara operators, the first operator Ggl) is always
a non-zero scalar multiple of the conformal vector of the vertex algebra. Hence its Fourier coefficients satisfy the
Virasoro algebra relations, but there is a change by 1 of the indices: In any vertex operator algebra with state-field
correspondence denoted by Y (—, w), the conformal vector v is such that for

Y(v,w) = Z vpw 1

the elements Ly := wvi_;1 satisfy the Virasoro algebra relations. Note the re-indexing by 1. Hence, if for the first
Segal-Sugawara operator we re-index the coefficients by 1, then Theorem|2| can be phrased, up to the T := —0;, action
as a correspondence

(r)

kernel of (re-indexed) 6&)_1 <= characteristic function of &~ ;

This gives an answer to the question of how the two roles of Segal-Sugawara operators for Witten-Kontsevich points
are related: They correspond to an interchange of first and last Segal-Sugawara operator.

2 Witten-Kontsevich points

After recalling the definition of affine opers in Section 2.1] we calculate in the present section the oper corresponding
to the Witten-Kontsevich point.

2.1 Opers

As in the introduction, let g be a simple complex Lie algebra with associated untwisted affine Lie algebra gV). We
work with the loop realization (also called homogeneous realization) of this affine Lie algebra and we denote the loop
variable by z. Let r denote the rank of g and let e;, f; with 1 <4 < r be Chevalley generators of g. Let 6y denote the
lowest root of g and choose a generator Ey of its root space. Let

s
A1=Z€i+z-Eo (7)
i=1

and define the corresponding principal Heisenberg algebra
bpri = Centgu)(Al)

Recall, see for example [I7] (Section 2.1), that the Heisenberg algebra by, has (up to central terms) a C-basis of
elements A; where j is an exponent of g™ such that

[Ai,Aj] =14- 5i,—j - C

where ¢ is the canonical central element (see [10]) of g(!).
The phase space of the Drinfeld-Sokolov hierarchy can be defined as the space of (isomorphism classes of) affine
opers on the disc D = Spec C[z]. This uses the principal gradation on g, which in particular satisfies

deg (e;) =1=—deg (fi) (1<i<r)



deg (z- Ep) =1

We refer to [10] for more details. Let in particular g<° and g=° denote the subspaces of g corresponding to negatively
and non-positively graded elements, respectively. The space of affine opers is given by

Opg (D) = {0, + A1+ | g € a=°[+] } ®)

The gauge transformations ~ are of the form exp(ad N) with N in g<°[z]. Note that the affine opers are the Lax
operators of the Drinfeld-Sokolov hierarchy.

It will be convenient to make the following normalization assumption regarding the choice of basis {A;} of the
principal Heisenberg algebra. Let as before denote h the Coxeter number of g and note that 1 — & is an exponent
of gV, Consider the standard loop realization of g(*) with loop variable z. Then A; ® 2~! is an element in Bpri Of
principal degree 1 — h. Furthermore, every other element in hp,; of degree 1 — h is a scalar multiple of it since the
space is one-dimensional: The only situation with exponents of multiplicity greater than 1 is 50&3 (n > 4) where the
integers congruent to n — 1 modulo A = 2n — 2 are exponents of multiplicity two. We therefore can scale the basis
elements of i such that

Al—h = A1 ® Z_l (9)

We fix from now on such a basis.

2.2 Heisenberg form of Witten-Kontsevich points

Cafasso and Wu show in [I] (Theorem 3.10) that each Drinfeld-Sokolov hierarchy has a unique Witten-Kontsevich
point. To prove Theorem (1| we switch from the tau function definition of this point given in Equation to the
explicit description of the corresponding (affine) oper which we denote by Lzmng. To do so we first recall necessary
aspects of tau functions of Drinfeld-Sokolov hierarchies. It is known, see for example [I7], that every L in Op, (D)aft
can be gauge transformed into the principal Heisenberg algebra by, in the following sense. There is « in the affine Lie
algebra g(!) such that

exp(ad o) L=exp(ad @) (0 + A1 +¢) =0, + A1 + H (10)

for H in the principal Heisenberg subalgebra bp,; of g(1). Here the exponentiated adjoint action is given by

1
exp(ad @) (O, + A1 +q) =0+ M +qg + [o, Ay +q}+§[a,[a,A1 +q]+ -

1
— Ora+ 5[0" —0ga] + -+
The special case of g = sl,, suggests that the tau function of the Lax operator L. can be defined in terms of the
so obtained element H of the Heisenberg algebra. Namely, let Ly, denote the scalar Lax operator associated to L as
constructed in [5] (Section 3.3). Working purely with the loop algebra quotient of IV Drinfeld and Sokolov show in
[5] (Proposition 3.20) that one has (up to total derivatives)
1 i

H; = mn (LE) 1 - A
where the subscript —1 indicates the coefficient of 9,1 and H; denotes the i’th graded piece of H with respect to the
principal gradation. In this manner one can see the tau functions enter the picture: It is known, see for example [§]
(Appendix A), that

8t18ti IOgT(t) = (Llsc)—l

The idea of Wu [I7] to define tau functions for all Drinfeld-Sokolov hierarchies is that even though H in Equation



(10) is in general not unique, one can gauge fix it in such a manner to arrive at a Heisenberg element that allows to
define a tau function mimicking the above described 5[57,1) case. The gauge fixing condition imposed in [I7] is that for
all j in E(g)~° one has

(exp(ad o) A;), =0 (11)

C

where (...). denotes the coefficient of the canonical central element c. Wu shows by induction on the degree with respect
to the principal gradation that indeed there is « satisfying Equation as well as Equation simultaneously.

Definition 2. For L in Opg(D)aﬁ' and « satisfying Equation and Equation we call

Heis(L) :=exp(ad o) L= 0, + A1 + Z H;
1<0,i€E(g)
the Heisenberg description of L.
We now calculate this expression in the case where L is the oper thring of the Witten-Kontsevich point.

Lemma 2.3. Let g be a simple complex Lie algebra with Coxeter number h. The Heisenberg form of the Witten-
Kontsevich point is given by

Heis(L;tri“g) =0, + A — % -A1_p + lower order terms

where the lower order terms are sums of elements H; in the Heisenberg algebra of principal degree less than —h.

Proof. The starting point is to differentiate Equation with respect to t;, where k in E(g)~" satisfies 1 < k < h.
One obtains

1+h i+h k(h—k
( 5 ti4n — 1) 010k logT(t) + Z Tti_;_haiak IOgT(t) + %th—k =0
i€E(g)”°
i>1
If one sets t; = 0 for all ¢ > 1 + h one therefore obtains
k(h—k
818k log T(t) = %thfk

See also [2] (Lemma 3.6) for this type of calculation. Furthermore, Wu has shown in [I7] (Section 3.2) that for all
Drinfeld-Sokolov hierarchies one has for each k in E(g)~°

(Ak7 H)
010k logT(t) = -k - ———— 12
1Olos e == o A 12
where (—, —) denotes an arbitrary non-degenerate symmetric invariant bilinear form. It follows that
; 1
: string . _ . . . . .
Heis (Lg (t1, ,th,l)) =0, + M\ Y Z (h+d)tpyi - N + Z H;
i€E(g) i€E(g)
1-h<i<-1 i<—h
In particular, when all times except t; = x (see Remark [1)) are turned off, one obtains the lemma. O

2.4 Oper description of Witten-Kontsevich points

We now use the Heisenberg description of the Witten-Kontsevich point to calculate the Lax operator thri“g itself.

Lemma 2.5. The affine oper of the Witten-Kontsevich point is given by

thring — 8m +A1 —$~E0



Proof. Consider an element U of g!) that can be written as U = > ico Ui with U; in the 4'th principal grade and
U; =0 for i > —h. We solve inductively with respect to principal degree the equation

exp(ad U) (696 + A — % - Ai_p + lower order terms ) =0, +A +x-Ey (13)

for some yet to be determined scalar *. In degree ¢ with 2 — h < i < 1 the equation plainly holds. To solve Equation
in degree 1 — h note that Fj is of degree 1 — h: Recall that Ej is a generator of the lowest root space. In terms
of the simple roots «; and the Kac labels a; the lowest root is given by 8y = — 22:1 a;c;. The sum 22:1 a; is known
to equal A — 1 and hence the height of 8y is 1 — h as is the principal degree of Ey. It now follows that Equation
in degree 1 — h yields

X
[UfmAl]_E'Alfh:*'EO (].4)

Let t be the Cartan subalgebra of g corresponding to our choice of simple roots a;. We work with the standard loop
(or homogeneous) realization of g(*) and we let

Upn=9g®z ! withget
Since by Equation @ one has Aj_j, = A; ® 271, it follows that Equation corresponds to

1 « z < z
f~Z[97€i]+[97EO]*ﬁ'éﬁ*ﬁ'Eo:*Eo

=1

N

The left hand side is given by

r

1 r .
z ;ai(g)ei + 6o(9)Eo — 7 ;ei — 5 By

Hence this equation can be solved if g satisfies

a;(g) = % foreach 1<i<r (15)

+ x (16)

One then obtains, where the a;’s are the Kac labels, that

SR

~<1+iai> :7%, s a; = —z
i=1 i

since the sum Y _ a; of all Kac labels equals the Coxeter number. Furthermore one gets

T a T
* = 0o(g) — no *Zaiai(g) R
i=1

=2 v
g=7"r

where pV is half the sum of positive co-roots. Now observe that the condition given by Equation automatically
holds, since U; = 0 for ¢ > —h and since there is nothing to check for U_j since —h is not an exponent. Note that
O + A1 —x- Ey is an operator of the form to which Proposition 3.1 of [I7] can be applied. Due to the inductive nature,
with respect to principal gradation degree, of the proof of the proposition in loc. cit. we have hence shown that indeed

Or+ A — - Ey =exp(ad U) ((“)m + A — % - A1_p + lower order terms )



for suitable U. It follows that
thring = 8:5 + Al — X" EO

as desired. ]

Remark 2. The relation between Heis(LSgtri“g) and Lsgtring obtained by Lemma [2.3[ and Lemma [2.5can in the case of
g = sly quickly be checked via the results in [I7] (Section 5.1): Realizing sly as traceless 2 X 2 matrices, one can take

0 1 0 =z
Ey = A =
=0 o) 2= o)
and the principal Heisenberg algebra is spanned (modulo the center) by the odd powers of A;. It is shown by Wu that

) exp(ad U) <ax + A+ (0 ”(t)>) =0+ M+ D hi(t)AT

0 O .
i>0,0dd

for U such that the gauge fixing condition Equation holds, then

hi(t) = %t)
ha(t) =~ (v(t)2 + ”(tg)”>

In particular, one obtains the desired relation between Heis(LZmng) and thring.

Remark 3. Note that the occurrence of —xFEj rather than say xFj in the various oper descriptions of the Witten-
Kontsevich point is due to normalization choices. Consider for example the case of the Drinfeld-Sokolov hierarchy of
g = 5[%1) in the scalar formalism: Let
L () = 9, + 3 as(6)0F
i<0

string

be the scalar Lax operator of the the 5[511) Drinfeld-Sokolov hierarchy associated to L

equation

. It is described via a string

(L) Q)] =1

It is known, see for example [4] (Section 3.1), that

Quy=— 3 i (pauing gy’

n
i>1,nti

where the 4+ subscript corresponds to the part of a pseudo-differential operator with non-negative powers of d,. Note
in particular when all times ¢; with j > 1 + n are turned off then Q(t) = u - 9, for some constant p and changing
the sign of 14, changes the sign of p. Since the string equation with all times turned off except t; = x and ¢14,, is
essentially of the form

[a;b _M_l x»ﬂam] =1

one can see the effect of normalization choice of 1, on the Lax operator of the Witten-Kontsevich point. Note that
this kind of normalization ambiguity is also the reason for the minus sign in Definition [ later on.

As indicated before, the space of opers involved in the Feigin-Frenkel isomorphism is not Opg(D)aH itself but rather



its non-affine variant Op, (D). Tt is defined in a very similar manner as Equation :

Opgy(D) = {3z+zei+q} (17)
=1

with ¢ in g=°[2] and the gauge transformations are of the the same form as for affine opers. Put differently, these
non-affine opers correspond to setting the variable z equal to 0. We hence define the map

AfF: Opg(D)aH — Op,(D)

coming from z — 0:

T
Do+ Mg+ eitq
=1

One obtains from Lemma 2.5}

Corollary 2.6. The non-affine oper of the Witten-Kontsevich point is given by

AR (thring) =0, + Z e; —x - Ey (18)

3 Proof of the theorems

3.1 Proof of Theorem [

Using the explicit description in Corollary [2:6] of the oper of the Witten-Kontsevich point we complete the proof of
Theorem (1) in the present section. To do so, we first recall the description of functions on the space Op,(D) in terms
of Segal-Sugawara operators of the Langlands dual algebra “g. A key tool is a theory of normal forms for opers.

Let as before r denote the rank of g and let dq, - -- ,d, denote the exponents of g, ordered in non-decreasing order.
Note that the smallest exponent of g is 1 and the largest exponent is h — 1 for the Coxeter number h of g. Then for
each 1 < j < r choose a subspace V; of g_g4, (the degree —d; part of g with respect to principal gradation) such that

.
g-a;, = lz €i,9—d;—1
=1

BV;

Define now ,
pean . @ ‘/J
j=1

Then it is known, see for example [9], that every oper can be gauge transformed to a unique element of the form

Op + Z e;+v with ve Ve[z] (19)

i=1

Hence the space of opers is parametrized by V°*"[z] and the functions on the space of opers can be described in the
following manner:
Choose a basis {v;} for each space V;. For each oper L in Op,(D) let v(L) be the corresponding element of V*"[x]

and write
o) =3" (Z Vi x) v

J k<0



for scalars v; ;. Define the functions
wj k1 Opy(D) — C
by
wj k(L) = vjk
A special role is played by the functions w; _; that pick up the various constant terms: Via the results of Feigin and
Frenkel they can be viewed as a generating set of the center of the vertex algebra V. (“g).

To describe the relevant details of this we first recall some aspects of the the vertex algebra Vi (¥g). For any u
in Vit (Vg) denote by Y (u,w) =Y, u,w=""" the corresponding field. The center 3(“g) of V¢ (“g) is defined to be

5(Lg) = {v € Verie(*9) | un(v) =0 if n >0 and u € ch(Lg)}

The analogous space for non-critical level is known to always be isomorphic to C. However, at the critical level
the center is much larger and can be described as a polynomial algebra in infinitely many variables. In fact, there is a
finite set of central elements that generate it and the important notion of a complete set of Segal-Sugawara operators
is such a choice of finite generating set. Let us make this more precise, see [I4] (Section 6.3) for more details:

Consider the enveloping algebra U_(Yg) := U(z~! Lg[z7!]) and let |0) denote the vacuum vector of V¢ (*g). Then
as a vector space, this vertex algebra is isomorphic to U_(“g)|0) and this gives rise to an isomorphism of vector spaces

f : Vcrit(Lg) — U_ (Lg) (20)
Via ¢ define the translation operator
T:3("g) —3("9)

to be the map coming from the map —0., meaning g ® z° +— —ig® 2! for g in g and i < 0. The following definition
is given by Molev in [I4] (Section 6.3).

Definition 3. Let r denote the rank of Lg and let d; < --- < d,. denote the exponents of Lg (these are also the
exponents of g). A complete set of Segal-Sugawara operators for Lg is a set

{6(1)

Lg» aGI(fg)?aGE,‘g)}

of elements of the center 3(*g) such that:
(i) deg¢ (6£2) =—(d; +1) for all ¢

(ii) the elements TJ'GSIE)l with ¢ as above and j > 0 are algebraically independent and generate the center:

s(tg) = C [T78()]
i,j

It follows from the work of Feigin and Frenkel that such a complete set of Segal-Sugawara operators always exists.

Namely, fix a canonical oper description as in Equation and recall the Feigin-Frenkel isomorphism FF given in

Equation H For each i let G(Li; be the central element such that

FF (633) - (21)
The collection of the elements (‘5£2 then forms a complete set of Segal-Sugawara operators, see for example [9] (Section
4.3) and [I4] (Theorem 6.3.1) for details.

Note that various choices are made in the definition of the Drinfeld-Sokolov hierarchy associated to g. In particular,
the definition of the element A; in Equation involves the choice of a generator E; of the lowest root space. It is

10



useful for our considerations to compare this to the freedom in choosing a complete set of Segal-Sugawara operators.
We formalize this as follows:

Definition 4. A complete set 699)7 cee 6&; of Segal-Sugawara operators for g is aligned with the g Drinfeld-Sokolov
hierarchy if the operators satisfy Equation for a choice of canonical oper description for Op,(D) that satisfies
Vy = 7E0.

Remark 4. Note that v, spans the space V,. and this space consists of elements of degree 1 — h with respect to the
principal gradation, where h is the Coxeter number. This is precisely the space spanned by FEj and hence v, and Ej
are non-zero multiples of each other.

Assume now that a complete set of Segal-Sugawara operators for Ig is chosen which is aligned with the g Drinfeld-
Sokolov hierarchy. In order to prove Theorem [I| note that the properties of the Feigin-Frenkel isomorphism imply that
Equationin fact contains further information. Let |0) be the vacuum vector in the vertex algebra Vi (“g) and let as
before Y (—, w) denote the state-field correspondence. Recall that the Fourier coefficients Gg;’ . Of the Segal-Sugawara

operators are defined via
(4) _ (4) —k—1
v (6,w) =36, w
keZ

Equation then implies (see [9], Theorem 4.3.2, for details) that
FF (1)) = w
Lg.k i,k

for all £ < 0, not just for k = —1. Since

AFF(LY™8) = 0, + ) e;— - Ey
=1

and since by Definition 4| one has v, = —Ej it follows that

Uit (i, k) = (r,—2)
FF (600 ) (AfF(Ly™%)) =

0 otherwise

This completes the proof of Theorem

3.2 Proof of Theorem [2

In the present section we deduce Theorem [2] from Theorem [l Assume therefore from now on that g is simply laced
and hence in particular g = “g. The Witten-Kontsevich point is a special point in Op, (D)™ whose definition in terms
of a differential equation for the tau function is given in Equation . As indicated in the introduction, if g is simply
laced the defining differential equation can be expressed in terms of Segal-Sugawara operators and we now recall the
details.

Let as before Vit (g) denote the critical level vertex algebra associated to g with state-field correspondence Y (—, w)
and vacuum vector |0). Let {J,} be a basis of g and let {J%} be the dual basis with respect to a choice of non-degenerate
invariant bi-linear form (—, —) on g. Whenever g is an element of g we denote by g[i] the element g ® 2% in g[z, 2]
Let

Jo(w) = Z Jo[iJw™ 1

J(w) = Z Jiw ™t

11



Then, see for example [9] (Section 3.1), in the homogeneous description of the vertex algebra V. (g) one has

dim g dim g
( Z Ja| ) Z Ja( (w) :=: Zkafkfl (22)
k

where the normal ordering : J,[i]J%[j] : is given by J,[i]J*[j] if ¢ < 0 and J%[j]J,[é] if i > 0. Each & can be viewed
as an element of the (completed) enveloping algebra of g™ in the homogeneous realization.

Recall that we denote by § 1n Equatlon ) the isomorphism as vector spaces between Vit(g) and a universal
enveloping algebra. Now let 69 ,o 6 " be a complete set of Segal-Sugawara operators. The element 6 Y is known
to always satisfy

dim g

§(6) =d- Y Jul-1-1] (23)

for a non-zero scalar d. It follows that

1

6) =d-e; (24)

For a clean statement of our results it is useful to fix the scalar in the following manner:

Definition 5. A complete set of g Segal-Sugawara operators is called normalized if the constant in Equation
satisfies d = 1/(2(1 + h")) for the dual Coxeter number h" of g.

For each r+1 tuple s = (sg, - - - , s,-) of non-negative integers, which are not all zero, there is an associated realization

é ) of type s of the affine algebra g(*). See [10] for details. The two crucial examples for our considerations are

Shom:(laov"' 50)

spri = (1,1,---,1)

These correspond to the standard loop (or homogeneous) realization of g as well as the principal realization, respec-
tively. Let
.
hg := Z a;S;
i=0

where the a;’s are the Kac labels, see [10], of g(1). Each realization g M has a family of derivations df (i in Z) satisfying
the commutation relations
[d5,d5] = hs - (j —1i) - d5y;

19 Yg
(5,9l =Jj-glji+ihs] forgeg,jeZ

The Virasoro algebra commutation relations are obtained for the normalized derivations

s . 1 S

d; = I - df
For each highest weight representation of g(*) of level not equal to —h" (where h" denotes the dual Coxeter number)
there is a canonical way to extend the g*) action to an action of the Virasoro algebra. This is described in detail by
Wakimoto in [I5] and Kac-Peterson [12] and proceeds by defining elements S§ in the enveloping algebra corresponding

to the d3’s.

Fix s as before and fix a primitive hg’th root of unity ¢. As described in [10], there is an associated automorphism
o of g of order hs. Consider the corresponding Z/hsZ-gradation on g given by g = EBieZ/th g; where o acts via
multiplication by ¢* on g;. For each i choose a basis {J; ;}; of g; such that J; ; is dual under (—,—) to J_; ;. Fix a

12



scalar x (it will correspond to the level of a representation of g(*)) and (for n # 0) define

hs dim 9 (itk)

Sy = m D> Y T wgl G+ R Tipr i+ kb (25)

i€Z k=1  j=1

These are the Segal-Sugawara operators described by Kac and Peterson (Proposition 2.27) in [I2] and by Wakimoto
in [I5], for the type s realization of the affine algebra gM. The relation of the operators S3 to the Fourier coefficients
of the vertex algebra Vt(g) given in Equation is most easily seen in the case of the homogeneous gradation
S = Shom- In this case one has hs = 1 and the Segal-Sugawara operators can be written as

dim g

1 1
GShom _ E’EJ_J SR T
" 2(k+hY) i€Z j=1 sl il 2(k +hY) o

where the J,’s are as in the beginning of the section.

Therefore, up to the change of indexing by 1 and up to a multiplication by a fixed non-zero scalar, the Fourier
coefficients of the first Segal-Sugawara operator of any complete set of Segal-Sugawara operators are described for any
choice of s (not just the homogeneous one) by Equation . This holds in particular for the principal realization
s =Spi = (1,---,1). The action of these principal realizations of the Segal-Sugawara operators in the so-called basic
representation of g(!) is known: Since g is simply laced, the basic representation of g(!) (in the principal realization)
has a particularly simple description due to Kac-Kazhdan-Lepowsky-Wilson [I1] with underlying vector space C[t],
where the set t is as in Equation . In particular, see [I5] (Theorem 5.1), the action of S** on C[t] is given by the

operator
i+ h 1 ..
' Z 5 “tiynO, + T Z 1] - tit;
i€E(g)>0 i,j€E(g)”°
itji=h

Comparing this with the definition in Equation of the Witten-Kontsevich point one sees that the Witten-Kontsevich
point can be described in terms of Segal-Sugawara operators by the equation

S T(t) = 9y, () (26)
Note that the basic representation is of level k = 1 and therefore

GShom _ Sy _ So
_1 - -

2k +hY) 21+ hY)

where Gy is as in Equation . Note that (2)6&)) as defined in Equation @ corresponds to the principal realization in
the basic representation of the operator d-&( where d is as in Equation[24] Hence, if the complete set of Segal-Sugawara
operators is chosen to be normalised in the sense of Definition [5 then in fact

@) = 5%
Now, if a tau function 7 in Taug satisfies
(01 + @egy) (1) =0
then by Equation it is the tau function of the Witten-Kontsevich point. It follows from Theorem [I| that
1 if (4, k) = (r, -2)
ey (r) =

0 otherwise
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Recall that it follows from the definition of the Drinfeld-Sokolov time flows that 0;, = 0,. One deduces from the
discussion by Frenkel in [9] (Section 4.3.1) that for m >0

(o)™ (V) = ml- V)

g,—1-m

One deduces that 4 ‘
(=0u) (Ve0)) = (—k) - Ve,

9.k

It follows that
1 ifi=rand k=-1

( 8751(161)1@)( ):

g,

0 otherwise
and this completes the proof of Theorem [2}

Remark 5. We conclude by remarking that the Segal-Sugawara Fourier coefficients 6( that come up in the above
result can frequently be described rather explicitly. See for example the work of Chervov and Molev [3] in the case
g =sl,.

Acknowledgments: It is a pleasure to thank Edward Frenkel and the referees for helpful comments and exchanges.
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