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Abstract

The Witten-Kontsevich KdV tau function of topological gravity has a generalization to an arbitrary Drinfeld-

Sokolov hierarchy associated to a simple complex Lie algebra. Using the Feigin-Frenkel isomorphism we describe

the affine opers describing such generalized Witten-Kontsevich functions in terms of Segal-Sugawara operators

associated to the Langlands dual Lie algebra. In the case where the Lie algebra is simply laced there is a second

role these Segal-Sugawara operators play: Their action, in the basic representation of the affine algebra associated

to the Lie algebra, singles out the Witten-Kontsevich tau function within the phase space. We show that these two

Langlands dual roles of Segal-Sugawara operators correspond to a duality between the first and last operator for a

complete set of Segal-Sugawara operators.

1 Introduction

In the early 1990’s Witten conjectured in [16] that the partition function of topological gravity gives rise to a very

specific KdV tau function. This was shown to be the case by Kontsevich in [13]. Since then, many generalizations of

this set-up have been studied. In particular, if g is a simple finite-dimensional complex Lie algebra, there is a certain

point in the phase space Φg of the Drinfeld-Sokolov hierarchy associated to g whose tau function generalizes the above

mentioned KdV tau function (which corresponds to the choice g = sl2). We call this point the Witten-Kontsevich

point Pg.

The Drinfeld-Sokolov phase space Φg has various descriptions. In particular, when it is described not in terms

of tau functions but in terms of affine opers, then one can apply, after passing to the underlying non-affine oper,

the Feigin-Frenkel isomorphism to each point of Φg (it is these non-affine opers that are part of the local geometric

Langlands correspondence as formulated by Frenkel and Gaitsgory in [7]). This process associates to each point in

phase space a function on the center z(Lg) of the critical level vertex algebra associated to the Langlands dual algebra
Lg. Our Theorem 1 describes the function that one obtains when this process is applied to the Witten-Kontsevich

point Pg.

Whether or not g is simply laced, the center z(Lg) has a description in terms of Lg Segal-Sugawara operators.

Something interesting happens for the special point Pg in phase space if indeed g is simply laced. In this case, Pg

can be defined in terms of the action of Segal-Sugawara operators on a highest weight representation (of non-criticial

level) of the affine algebra g(1) associated to g. Via Theorem 1, the Witten-Kontsevich point therefore gives rise to

two different occurrences of Segal-Sugawara operators. To understand their relation (which in a sense, via the results

of Feigin and Frenkel, comes from a Langlands duality for simple Lie algebras) is the main motivation of the present

work. In Theorem 2 we give the answer: Loosely speaking, it corresponds to a duality between the first and last

Segal-Sugawara operator.

The considerations of the present work are restricted to the Witten-Kontsevich points in phase space, but one can

ask for a much more general relation between Segal-Sugawara operator action on tau functions and the associated

functions on Segal-Sugawara operators that are obtained via the Feigin-Frenkel isomorphism.

1.1 General case

We start by stating our main result, Theorem 1. Let g be a simple complex Lie algebra with Langlands dual algebra
Lg and associated untwisted affine algebra g(1). Let E(g) denote the set of exponents of g(1): They are the translates
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by integer multiples of the Coxeter number h of g of the finite set of exponents of g. Let E(g)>0 denote the subset of

positive exponents of g(1). Let

t = {t1, · · · , ti, · · ·
∣∣ i ∈ E(g)>0} (1)

These are the time variable of the g Drinfeld-Sokolov hierarchy. The phase space of this integrable hierarchy can be

described in terms of the space of tau functions Taug which is a subset of the space of formal power series C[[t]].

Definition 1. The Witten-Kontsevich point Pg (also called the topological string point) of the Drinfeld-Sokolov

hierarchy of g is defined in terms of its tau function via
∑

i∈E(g)>0

i+ h

h
· ti+h∂ti +

1

2h
·

∑
i,j∈E(g)>0

i+j=h

ij · titj

 τ(t) = ∂t1τ(t) (2)

Cafasso and Wu show in [2] that there is a unique g Drinfeld-Sokolov tau function τstring(t) satisfying Equation

(2). To apply the results of Feigin and Frenkel to this situation a different description of the Drinfeld-Sokolov phase

space is needed. Rather than in terms of tau functions, this space can be described in terms of the space Opg(D)aff of

affine opers on a formal disc D = Spec C[[x]], where x is some indeterminate (we recall the definition in Section 2.1).

Indeed, this is the formalism in which Drinfeld and Sokolov first developed the theory in [5].

Remark 1. It is known that the indeterminate x can be identified with the first flow variable t1 of the Drinfeld-Sokolov

hierarchy, see for example [2] (Section 3.2) for a detailed discussion, and we will freely do so throughout this work.

Let us denote the affine oper corresponding to τstring(t) by Lstring
g . The space of affine opers has a non-affine variant

Opg(D) and there is a map

Aff : Opg(D)aff −→ Opg(D) (3)

which passes to the underlying non-affine oper, see Section 2 for details. In particular, one obtains a non-affine oper

Aff(Lstring
g ) associated to the Witten-Kontsevich point and this is now finally an object to which the results of Feigin

and Frenkel can be applied.

Let z(Lg) denote the center of the critical level (meaning negative of the dual Coxeter number) vertex algebra

Vcrit(
Lg) associated to (Lg)(1). Due to the work of Feigin and Frenkel [6] the space of (isomorphism classes of) opers

gives a description of the functions on this center. Namely, there is an isomorphism

FF : Opg(D)/∼ ∼= z(Lg)∨ (4)

One can then ask to what function on the center z(Lg) the (non-affine) oper Aff(Lstring
g ) of the Witten-Kontsevich point

corresponds. We answer this in Theorem 1. To formulate this result it is useful to have a more explicit description of

the center. This can be done in terms of the state-field correspondence of the vertex algebra Vcrit(
Lg):

Let w be an indeterminate and let Y (−, w) denote the state-field correspondence of Vcrit(
Lg). Let r denote the

rank of g and let S
(1)
Lg
, · · · ,S(r)

Lg
be a complete set of Segal-Sugawara operators for Lg in the sense of [14], see Section

3.1 for the definition. This means in particular that they are elements of the center z(Lg) and their Fourier coefficients

S
(i)
Lg,k

given by

Y
(
S

(i)
Lg
, w
)

=
∑
k

S
(i)
Lg,k

w−k−1

generate the center, see Section 2. Hence, describing a function on the center of z(Lg) corresponds to describing

how it acts on these Fourier coefficients. It is in this manner that we describe the function corresponding to the
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Witten-Kontsevich point. Define the “characteristic functions”

1
S

(j)
Lg,k

∈ z(Lg)∨ via S
(i)
Lg,s
7→


1 if (i, s) = (j, k)

0 otherwise

It is useful to align certain scaling choices that are part of the construction of the Drinfeld-Sokolov hierarchy as well

as the Segal-Sugawara operators. We make this precise in Definition 4, where we introduce the notion of alignment

between Lg Segal-Sugawara operators and the g Drinfeld-Sokolov hierarchy.

Theorem 1. Let g be a simple complex Lie algebra of rank r and suppose S
(1)
Lg
, · · · ,S(r)

Lg
is a complete set of Lg

Segal-Sugawara operators aligned with the g Drinfeld-Sokolov hierarchy. Then

FF
(
Aff
(

Lstring
g

))
= 1

S
(r)
Lg,−2

The theorem attains a more symmetric form in the case where g is simply laced. In this case, Lstring
g itself can be

defined in terms of the action of a suitable Segal-Sugawara operator and Theorem 1 gives rise to a non-trivial duality

between the first and last Segal-Sugawara operator. We state this in a precise manner in the next section.

1.2 Simply laced case

Assume now that g is simply laced, in particular one has g = Lg. As in the previous section let S
(1)
g , · · · ,S(r)

g be a

complete set of Segal-Sugawara operators. Each Fourier coefficient S
(i)
g,k is an element of the center z(g) and hence

gives rise, via the Feigin-Frenkel isomorphism FF and the map Aff to a function on the space of affine opers. Switching

to the tau function description of this Drinfeld-Sokolov phase space we obtain that each S
(i)
g,k gives rise to a function

(1)S
(i)
g,k : Taug −→ C (5)

Since g is simply laced, Kac-Kazhdan-Lepowsky-Wilson have shown in [11] that the basic representation of the

affine algebra g(1) associated to g has a concrete realization acting on the space of formal power series C[[t]]. It follows

from the construction of the vertex algebra Vcrit(g) that each of the Fourier coefficients S
(i)
g,k can be viewed as an

element of the universal enveloping algebra of g(1). Hence, via the basic representation one obtains functions

(2)S
(i)
g,k : C[[t]] −→ C[[t]] (6)

Since Taug is contained in C[[t]], the functions in (6) give in particular rise to functions on Taug. It is an interesting

task to relate them to the functions on Taug described in Equation (5). Our calculations are a step in this direction.

Namely, Theorem 1 (for g simply laced) yields the following (we refer to Definition 5 for the meaning of normalized

set of Segal-Sugawara operators).

Theorem 2. Let g be a complex simple and simply laced Lie algebra of rank r. Suppose S
(1)
g , · · · ,S(r)

g is a complete

set of normalized Segal-Sugawara operators aligned with the g Drinfeld-Sokolov hierarchy. If τ in Taug satisfies(
−∂t1 + (2)S

(1)
g,0

)
(τ) = 0

then it follows that (
−∂t1 (1)S

(i)
g,k

)
(τ) =


1 if i = r and k = −1

0 otherwise
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The collections of functions (1)S
(i)
g,k and (2)S

(i)
g,k are both associated to g ∼= Lg. Nonetheless, the first set of functions

is constructed via the Feigin-Frenkel isomorphism and hence is naturally associated to Lg, whereas the second set of

functions is constructed via the basic representation and is naturally associated to g. Theorem 2 shows that this

hidden Langlands duality for finite-dimensional Lie algebras is reflected in a duality for Segal-Sugawara operators. To

obtain a symmetrical description of this duality one should be careful with the indexing of the Fourier coefficients of

the vertex algebra:

It turns out that for any choice of complete set of Segal-Sugawara operators, the first operator S
(1)
g is always

a non-zero scalar multiple of the conformal vector of the vertex algebra. Hence its Fourier coefficients satisfy the

Virasoro algebra relations, but there is a change by 1 of the indices: In any vertex operator algebra with state-field

correspondence denoted by Y (−, w), the conformal vector v is such that for

Y (v, w) =
∑

vkw
−k−1

the elements Lk := vk−1 satisfy the Virasoro algebra relations. Note the re-indexing by 1. Hence, if for the first

Segal-Sugawara operator we re-index the coefficients by 1, then Theorem 2 can be phrased, up to the T := −∂t1 action

as a correspondence

kernel of (re-indexed) S
(1)
g,−1 ⇐⇒ characteristic function of S

(r)
g,−1

This gives an answer to the question of how the two roles of Segal-Sugawara operators for Witten-Kontsevich points

are related: They correspond to an interchange of first and last Segal-Sugawara operator.

2 Witten-Kontsevich points

After recalling the definition of affine opers in Section 2.1 we calculate in the present section the oper corresponding

to the Witten-Kontsevich point.

2.1 Opers

As in the introduction, let g be a simple complex Lie algebra with associated untwisted affine Lie algebra g(1). We

work with the loop realization (also called homogeneous realization) of this affine Lie algebra and we denote the loop

variable by z. Let r denote the rank of g and let ei, fi with 1 ≤ i ≤ r be Chevalley generators of g. Let θ0 denote the

lowest root of g and choose a generator E0 of its root space. Let

Λ1 =

r∑
i=1

ei + z · E0 (7)

and define the corresponding principal Heisenberg algebra

hpri = Centg(1)(Λ1)

Recall, see for example [17] (Section 2.1), that the Heisenberg algebra hpri has (up to central terms) a C-basis of

elements Λj where j is an exponent of g(1) such that

[Λi,Λj ] = i · δi,−j · c

where c is the canonical central element (see [10]) of g(1).

The phase space of the Drinfeld-Sokolov hierarchy can be defined as the space of (isomorphism classes of) affine

opers on the disc D = Spec C[[x]]. This uses the principal gradation on g(1), which in particular satisfies

deg (ei) = 1 = −deg (fi) (1 ≤ i ≤ r)
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deg (z · E0) = 1

We refer to [10] for more details. Let in particular g<0 and g≤0 denote the subspaces of g corresponding to negatively

and non-positively graded elements, respectively. The space of affine opers is given by

Opg(D)aff =
{
∂x + Λ1 + q

∣∣∣ q ∈ g≤0[[x]]
}

(8)

The gauge transformations ∼ are of the form exp(ad N) with N in g<0[[x]]. Note that the affine opers are the Lax

operators of the Drinfeld-Sokolov hierarchy.

It will be convenient to make the following normalization assumption regarding the choice of basis {Λj} of the

principal Heisenberg algebra. Let as before denote h the Coxeter number of g and note that 1 − h is an exponent

of g(1). Consider the standard loop realization of g(1) with loop variable z. Then Λ1 ⊗ z−1 is an element in hpri of

principal degree 1 − h. Furthermore, every other element in hpri of degree 1 − h is a scalar multiple of it since the

space is one-dimensional: The only situation with exponents of multiplicity greater than 1 is so
(1)
2n (n ≥ 4) where the

integers congruent to n − 1 modulo h = 2n − 2 are exponents of multiplicity two. We therefore can scale the basis

elements of hpri such that

Λ1−h = Λ1 ⊗ z−1 (9)

We fix from now on such a basis.

2.2 Heisenberg form of Witten-Kontsevich points

Cafasso and Wu show in [1] (Theorem 3.10) that each Drinfeld-Sokolov hierarchy has a unique Witten-Kontsevich

point. To prove Theorem 1 we switch from the tau function definition of this point given in Equation (2) to the

explicit description of the corresponding (affine) oper which we denote by Lstring
g . To do so we first recall necessary

aspects of tau functions of Drinfeld-Sokolov hierarchies. It is known, see for example [17], that every L in Opg(D)aff

can be gauge transformed into the principal Heisenberg algebra hpri in the following sense. There is α in the affine Lie

algebra g(1) such that

exp(ad α) L = exp(ad α) (∂x + Λ1 + q) = ∂x + Λ1 +H (10)

for H in the principal Heisenberg subalgebra hpri of g(1). Here the exponentiated adjoint action is given by

exp(ad α) (∂x + Λ1 + q) = ∂x + Λ1 + q + [α,Λ1 + q] +
1

2!
[α, [α,Λ1 + q]] + · · ·

− ∂xα+
1

2!
[α,−∂xα] + · · ·

The special case of g = sln suggests that the tau function of the Lax operator L can be defined in terms of the

so obtained element H of the Heisenberg algebra. Namely, let Lsc denote the scalar Lax operator associated to L as

constructed in [5] (Section 3.3). Working purely with the loop algebra quotient of sl
(1)
n , Drinfeld and Sokolov show in

[5] (Proposition 3.20) that one has (up to total derivatives)

Hi = − 1

|i|
· (L|i|sc )−1 · Λi

where the subscript −1 indicates the coefficient of ∂−1
x and Hi denotes the i’th graded piece of H with respect to the

principal gradation. In this manner one can see the tau functions enter the picture: It is known, see for example [8]

(Appendix A), that

∂t1∂ti log τ(t) = (Li
sc)−1

The idea of Wu [17] to define tau functions for all Drinfeld-Sokolov hierarchies is that even though H in Equation
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(10) is in general not unique, one can gauge fix it in such a manner to arrive at a Heisenberg element that allows to

define a tau function mimicking the above described sl
(1)
n case. The gauge fixing condition imposed in [17] is that for

all j in E(g)>0 one has

(exp(ad α) Λj)c = 0 (11)

where (...)c denotes the coefficient of the canonical central element c. Wu shows by induction on the degree with respect

to the principal gradation that indeed there is α satisfying Equation (10) as well as Equation (11) simultaneously.

Definition 2. For L in Opg(D)aff and α satisfying Equation (10) and Equation (11) we call

Heis(L) := exp(ad α) L = ∂x + Λ1 +
∑

i<0,i∈E(g)

Hi

the Heisenberg description of L.

We now calculate this expression in the case where L is the oper Lstring
g of the Witten-Kontsevich point.

Lemma 2.3. Let g be a simple complex Lie algebra with Coxeter number h. The Heisenberg form of the Witten-

Kontsevich point is given by

Heis(Lstring
g ) = ∂x + Λ1 −

x

h
· Λ1−h + lower order terms

where the lower order terms are sums of elements Hi in the Heisenberg algebra of principal degree less than −h.

Proof. The starting point is to differentiate Equation (2) with respect to tk where k in E(g)>0 satisfies 1 ≤ k < h.

One obtains (
1 + h

h
t1+h − 1

)
∂1∂k log τ(t) +

∑
i∈E(g)>0

i>1

i+ h

h
ti+h∂i∂k log τ(t) +

k(h− k)

h
th−k = 0

If one sets ti = 0 for all i ≥ 1 + h one therefore obtains

∂1∂k log τ(t) =
k(h− k)

h
th−k

See also [2] (Lemma 3.6) for this type of calculation. Furthermore, Wu has shown in [17] (Section 3.2) that for all

Drinfeld-Sokolov hierarchies one has for each k in E(g)>0

∂1∂k log τ(t) = −k · (Λk, H)

(Λk,Λ−k)
(12)

where (−,−) denotes an arbitrary non-degenerate symmetric invariant bilinear form. It follows that

Heis
(
Lstring
g (t1, · · · , th−1)

)
= ∂x + Λ1 −

1

h
·

∑
i∈E(g)

1−h≤i≤−1

(h+ i)th+i · Λi +
∑

i∈E(g)

i≤−h

Hi

In particular, when all times except t1 = x (see Remark 1) are turned off, one obtains the lemma.

2.4 Oper description of Witten-Kontsevich points

We now use the Heisenberg description of the Witten-Kontsevich point to calculate the Lax operator Lstring
g itself.

Lemma 2.5. The affine oper of the Witten-Kontsevich point is given by

Lstring
g = ∂x + Λ1 − x · E0
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Proof. Consider an element U of g(1) that can be written as U =
∑

i<0 Ui with Ui in the i’th principal grade and

Ui = 0 for i > −h. We solve inductively with respect to principal degree the equation

exp(ad U)
(
∂x + Λ1 −

x

h
· Λ1−h + lower order terms

)
= ∂x + Λ1 + ∗ · E0 (13)

for some yet to be determined scalar ∗. In degree i with 2− h ≤ i ≤ 1 the equation plainly holds. To solve Equation

(13) in degree 1− h note that E0 is of degree 1− h: Recall that E0 is a generator of the lowest root space. In terms

of the simple roots αi and the Kac labels ai the lowest root is given by θ0 = −
∑r

i=1 aiαi. The sum
∑r

i=1 ai is known

to equal h− 1 and hence the height of θ0 is 1− h as is the principal degree of E0. It now follows that Equation (13)

in degree 1− h yields

[U−h,Λ1]− x

h
· Λ1−h = ∗ · E0 (14)

Let t be the Cartan subalgebra of g corresponding to our choice of simple roots αi. We work with the standard loop

(or homogeneous) realization of g(1) and we let

U−h = g ⊗ z−1 with g ∈ t

Since by Equation (9) one has Λ1−h = Λ1 ⊗ z−1, it follows that Equation (14) corresponds to

1

z
·

r∑
i=1

[g, ei] + [g,E0]− x

h · z
·

r∑
i=1

ei −
x

h
· E0 = ∗ · E0

The left hand side is given by

1

z
·

r∑
i=1

αi(g)ei + θ0(g)E0 −
x

h · z

r∑
i=1

ei −
x

h
· E0

Hence this equation can be solved if g satisfies

αi(g) =
x

h
for each 1 ≤ i ≤ r (15)

θ0(g) =
x

h
+ ∗ (16)

One then obtains, where the ai’s are the Kac labels, that

∗ = θ0(g)− x

h
= −

r∑
i=1

aiαi(g)− x

h
= −x

h
·

(
1 +

r∑
i=1

ai

)
= −x

h
·

r∑
i=0

ai = −x

since the sum
∑r

i=0 ai of all Kac labels equals the Coxeter number. Furthermore one gets

g =
x

h
· ρ∨

where ρ∨ is half the sum of positive co-roots. Now observe that the condition given by Equation (11) automatically

holds, since Ui = 0 for i > −h and since there is nothing to check for U−h since −h is not an exponent. Note that

∂x +Λ1−x ·E0 is an operator of the form to which Proposition 3.1 of [17] can be applied. Due to the inductive nature,

with respect to principal gradation degree, of the proof of the proposition in loc. cit. we have hence shown that indeed

∂x + Λ1 − x · E0 = exp(ad U)
(
∂x + Λ1 −

x

h
· Λ1−h + lower order terms

)
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for suitable U . It follows that

Lstring
g = ∂x + Λ1 − x · E0

as desired.

Remark 2. The relation between Heis(Lstring
g ) and Lstring

g obtained by Lemma 2.3 and Lemma 2.5 can in the case of

g = sl2 quickly be checked via the results in [17] (Section 5.1): Realizing sl2 as traceless 2× 2 matrices, one can take

E0 =

(
0 1

0 0

)
, Λ1 =

(
0 z

1 0

)
and the principal Heisenberg algebra is spanned (modulo the center) by the odd powers of Λ1. It is shown by Wu that

if

exp(ad U)

(
∂x + Λ1 +

(
0 v(t)

0 0

))
= ∂x + Λ1 +

∑
i>0,odd

hi(t)Λ−i1

for U such that the gauge fixing condition Equation (11) holds, then

h1(t) =
v(t)

2

h3(t) = −1

8

(
v(t)2 +

v(t)xx
3

)
...

In particular, one obtains the desired relation between Heis(Lstring
g ) and Lstring

g .

Remark 3. Note that the occurrence of −xE0 rather than say xE0 in the various oper descriptions of the Witten-

Kontsevich point is due to normalization choices. Consider for example the case of the Drinfeld-Sokolov hierarchy of

g(1) = sl
(1)
n in the scalar formalism: Let

Lstring
sc (t) = ∂x +

∑
i≤0

ai(t)∂ix

be the scalar Lax operator of the the sl
(1)
n Drinfeld-Sokolov hierarchy associated to Lstring

sln
. It is described via a string

equation [(
Lstring

sc (t)
)n
, Q(t)

]
= 1

It is known, see for example [4] (Section 3.1), that

Q(t) = −
∑

i≥1,n-i

(i+ n)ti+n

n

(
Lstring

sc (t)
)i

+

where the + subscript corresponds to the part of a pseudo-differential operator with non-negative powers of ∂x. Note

in particular when all times tj with j > 1 + n are turned off then Q(t) = µ · ∂x for some constant µ and changing

the sign of t1+n changes the sign of µ. Since the string equation with all times turned off except t1 = x and t1+n is

essentially of the form

[∂nx − µ−1 · x, µ · ∂x] = 1

one can see the effect of normalization choice of t1+n on the Lax operator of the Witten-Kontsevich point. Note that

this kind of normalization ambiguity is also the reason for the minus sign in Definition 4 later on.

As indicated before, the space of opers involved in the Feigin-Frenkel isomorphism is not Opg(D)aff itself but rather
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its non-affine variant Opg(D). It is defined in a very similar manner as Equation (8):

Opg(D) =

{
∂x +

r∑
i=1

ei + q

}
(17)

with q in g≤0[[x]] and the gauge transformations are of the the same form as for affine opers. Put differently, these

non-affine opers correspond to setting the variable z equal to 0. We hence define the map

Aff : Opg(D)aff −→ Opg(D)

coming from z 7→ 0:

∂x + Λ1 + q 7→ ∂x +

r∑
i=1

ei + q

One obtains from Lemma 2.5:

Corollary 2.6. The non-affine oper of the Witten-Kontsevich point is given by

Aff
(
Lstring
g

)
= ∂x +

r∑
i=1

ei − x · E0 (18)

3 Proof of the theorems

3.1 Proof of Theorem 1

Using the explicit description in Corollary 2.6 of the oper of the Witten-Kontsevich point we complete the proof of

Theorem 1 in the present section. To do so, we first recall the description of functions on the space Opg(D) in terms

of Segal-Sugawara operators of the Langlands dual algebra Lg. A key tool is a theory of normal forms for opers.

Let as before r denote the rank of g and let d1, · · · , dr denote the exponents of g, ordered in non-decreasing order.

Note that the smallest exponent of g is 1 and the largest exponent is h − 1 for the Coxeter number h of g. Then for

each 1 ≤ j ≤ r choose a subspace Vj of g−dj
(the degree −dj part of g with respect to principal gradation) such that

g−dj =

[
r∑

i=1

ei, g−dj−1

]
⊕ Vj

Define now

V can :=

r⊕
j=1

Vj

Then it is known, see for example [9], that every oper can be gauge transformed to a unique element of the form

∂x +

r∑
i=1

ei + v with v ∈ V can[[x]] (19)

Hence the space of opers is parametrized by V can[[x]] and the functions on the space of opers can be described in the

following manner:

Choose a basis {vj} for each space Vj . For each oper L in Opg(D) let v(L) be the corresponding element of V can[[x]]

and write

v(L) =
∑
j

(∑
k<0

vj,k · x−k−1

)
· vj

9



for scalars vj,k. Define the functions

wj,k : Opg(D) −→ C

by

wj,k(L) = vj,k

A special role is played by the functions wj,−1 that pick up the various constant terms: Via the results of Feigin and

Frenkel they can be viewed as a generating set of the center of the vertex algebra Vcrit(
Lg).

To describe the relevant details of this we first recall some aspects of the the vertex algebra Vcrit(
Lg). For any u

in Vcrit(
Lg) denote by Y (u,w) =

∑
n unw

−n−1 the corresponding field. The center z(Lg) of Vcrit(
Lg) is defined to be

z(Lg) =
{
v ∈ Vcrit(

Lg)
∣∣∣ un(v) = 0 if n ≥ 0 and u ∈ Vcrit(

Lg)
}

The analogous space for non-critical level is known to always be isomorphic to C. However, at the critical level

the center is much larger and can be described as a polynomial algebra in infinitely many variables. In fact, there is a

finite set of central elements that generate it and the important notion of a complete set of Segal-Sugawara operators

is such a choice of finite generating set. Let us make this more precise, see [14] (Section 6.3) for more details:

Consider the enveloping algebra U−(Lg) := U(z−1 Lg[z−1]) and let |0〉 denote the vacuum vector of Vcrit(
Lg). Then

as a vector space, this vertex algebra is isomorphic to U−(Lg)|0〉 and this gives rise to an isomorphism of vector spaces

ξ : Vcrit(
Lg)→ U−(Lg) (20)

Via ξ define the translation operator

T : z(Lg)→ z(Lg)

to be the map coming from the map −∂z, meaning g⊗ zi 7→ −ig⊗ zi−1 for g in Lg and i < 0. The following definition

is given by Molev in [14] (Section 6.3).

Definition 3. Let r denote the rank of Lg and let d1 ≤ · · · ≤ dr denote the exponents of Lg (these are also the

exponents of g). A complete set of Segal-Sugawara operators for Lg is a set{
S

(1)
Lg
, · · · ,S(i)

Lg
, · · · ,S(r)

Lg

}
of elements of the center z(Lg) such that:

(i) deg ξ
(
S

(i)
Lg

)
= −(di + 1) for all i

(ii) the elements T jS
(i)
Lg

with i as above and j ≥ 0 are algebraically independent and generate the center:

z(Lg) = C
[
T jS

(i)
Lg

]
i,j

It follows from the work of Feigin and Frenkel that such a complete set of Segal-Sugawara operators always exists.

Namely, fix a canonical oper description as in Equation (19) and recall the Feigin-Frenkel isomorphism FF given in

Equation (4). For each i let S
(i)
Lg

be the central element such that

FF
(
S

(i)
Lg

)
= wi,−1 (21)

The collection of the elements S
(i)
Lg

then forms a complete set of Segal-Sugawara operators, see for example [9] (Section

4.3) and [14] (Theorem 6.3.1) for details.

Note that various choices are made in the definition of the Drinfeld-Sokolov hierarchy associated to g. In particular,

the definition of the element Λ1 in Equation (7) involves the choice of a generator E0 of the lowest root space. It is

10



useful for our considerations to compare this to the freedom in choosing a complete set of Segal-Sugawara operators.

We formalize this as follows:

Definition 4. A complete set S
(1)
Lg
, · · · ,S(r)

Lg
of Segal-Sugawara operators for Lg is aligned with the g Drinfeld-Sokolov

hierarchy if the operators satisfy Equation (21) for a choice of canonical oper description for Opg(D) that satisfies

vr = −E0.

Remark 4. Note that vr spans the space Vr and this space consists of elements of degree 1 − h with respect to the

principal gradation, where h is the Coxeter number. This is precisely the space spanned by E0 and hence vr and E0

are non-zero multiples of each other.

Assume now that a complete set of Segal-Sugawara operators for Lg is chosen which is aligned with the g Drinfeld-

Sokolov hierarchy. In order to prove Theorem 1 note that the properties of the Feigin-Frenkel isomorphism imply that

Equation 21 in fact contains further information. Let |0〉 be the vacuum vector in the vertex algebra Vcrit(
Lg) and let as

before Y (−, w) denote the state-field correspondence. Recall that the Fourier coefficients S
(i)
Lg,k

of the Segal-Sugawara

operators are defined via

Y
(
S

(i)
Lg
, w
)

=
∑
k∈Z

S
(i)
Lg,k

w−k−1

Equation (21) then implies (see [9], Theorem 4.3.2, for details) that

FF
(
S

(i)
Lg,k

)
= wi,k

for all k < 0, not just for k = −1. Since

Aff
(
Lstring
g

)
= ∂x +

r∑
i=1

ei − x · E0

and since by Definition 4 one has vr = −E0 it follows that

FF
(
S

(i)
Lg,k

) (
Aff
(
Lstring
g

))
=


1 if (i, k) = (r,−2)

0 otherwise

This completes the proof of Theorem 1.

3.2 Proof of Theorem 2

In the present section we deduce Theorem 2 from Theorem 1. Assume therefore from now on that g is simply laced

and hence in particular g = Lg. The Witten-Kontsevich point is a special point in Opg(D)aff whose definition in terms

of a differential equation for the tau function is given in Equation (2). As indicated in the introduction, if g is simply

laced the defining differential equation can be expressed in terms of Segal-Sugawara operators and we now recall the

details.

Let as before Vcrit(g) denote the critical level vertex algebra associated to g with state-field correspondence Y (−, w)

and vacuum vector |0〉. Let {Ja} be a basis of g and let {Ja} be the dual basis with respect to a choice of non-degenerate

invariant bi-linear form (−,−) on g. Whenever g is an element of g we denote by g[i] the element g ⊗ zi in g[z, z−1].

Let

Ja(w) =
∑
i

Ja[i]w−i−1

Ja(w) =
∑
i

Ja[i]w−i−1

11



Then, see for example [9] (Section 3.1), in the homogeneous description of the vertex algebra Vcrit(g) one has

Y

(
dim g∑
a=1

Ja[−1]Ja[−1] |0〉, w

)
=

dim g∑
a=1

: Ja(w)Ja(w) : =:
∑
k

Skw
−k−1 (22)

where the normal ordering : Ja[i]Ja[j] : is given by Ja[i]Ja[j] if i < 0 and Ja[j]Ja[i] if i ≥ 0. Each Sk can be viewed

as an element of the (completed) enveloping algebra of g(1) in the homogeneous realization.

Recall that we denote by ξ in Equation (20) the isomorphism as vector spaces between Vcrit(g) and a universal

enveloping algebra. Now let S
(1)
g , · · · ,S(r)

g be a complete set of Segal-Sugawara operators. The element S
(1)
g is known

to always satisfy

ξ
(
S

(1)
g

)
= d ·

dim g∑
a=1

Ja[−1]Ja[−1] (23)

for a non-zero scalar d. It follows that

S
(1)
g,k = d ·Sk (24)

For a clean statement of our results it is useful to fix the scalar in the following manner:

Definition 5. A complete set of g Segal-Sugawara operators is called normalized if the constant in Equation (23)

satisfies d = 1/(2(1 + h∨)) for the dual Coxeter number h∨ of g.

For each r+1 tuple s = (s0, · · · , sr) of non-negative integers, which are not all zero, there is an associated realization

g
(1)
s of type s of the affine algebra g(1). See [10] for details. The two crucial examples for our considerations are

shom = (1, 0, · · · , 0)

spri = (1, 1, · · · , 1)

These correspond to the standard loop (or homogeneous) realization of g(1) as well as the principal realization, respec-

tively. Let

hs :=

r∑
i=0

aisi

where the ai’s are the Kac labels, see [10], of g(1). Each realization g
(1)
s has a family of derivations dsi (i in Z) satisfying

the commutation relations [
dsi , d

s
j

]
= hs · (j − i) · dsi+j

[dsi , g[j]] = j · g [j + ihs] for g ∈ g, j ∈ Z

The Virasoro algebra commutation relations are obtained for the normalized derivations

ds
i := − 1

hs
· dsi

For each highest weight representation of g(1) of level not equal to −h∨ (where h∨ denotes the dual Coxeter number)

there is a canonical way to extend the g(1) action to an action of the Virasoro algebra. This is described in detail by

Wakimoto in [15] and Kac-Peterson [12] and proceeds by defining elements Ss
i in the enveloping algebra corresponding

to the ds
i ’s.

Fix s as before and fix a primitive hs’th root of unity ζ. As described in [10], there is an associated automorphism

σ of g of order hs. Consider the corresponding Z/hsZ-gradation on g given by g =
⊕

i∈Z/hsZ gi where σ acts via

multiplication by ζi on gi. For each i choose a basis {Ji,j}j of gi such that Ji,j is dual under (−,−) to J−i,j . Fix a

12



scalar κ (it will correspond to the level of a representation of g(1)) and (for n 6= 0) define

Ss
n =

1

2hs(κ+ h∨)
·
∑
i∈Z

hs∑
k=1

dim g−(i+k)∑
j=1

J−(i+k),j [−(i+ k)] · Ji+k,j [i+ k + nhs] (25)

These are the Segal-Sugawara operators described by Kac and Peterson (Proposition 2.27) in [12] and by Wakimoto

in [15], for the type s realization of the affine algebra g(1). The relation of the operators Ss
n to the Fourier coefficients

of the vertex algebra Vcrit(g) given in Equation (22) is most easily seen in the case of the homogeneous gradation

s = shom. In this case one has hs = 1 and the Segal-Sugawara operators can be written as

Sshom
n =

1

2(κ+ h∨)
·
∑
i∈Z

dim g∑
j=1

Jj [−i] · Jj [i+ n] =
1

2(κ+ h∨)
·S1+n

where the Ja’s are as in the beginning of the section.

Therefore, up to the change of indexing by 1 and up to a multiplication by a fixed non-zero scalar, the Fourier

coefficients of the first Segal-Sugawara operator of any complete set of Segal-Sugawara operators are described for any

choice of s (not just the homogeneous one) by Equation (25). This holds in particular for the principal realization

s = spri = (1, · · · , 1). The action of these principal realizations of the Segal-Sugawara operators in the so-called basic

representation of g(1) is known: Since g is simply laced, the basic representation of g(1) (in the principal realization)

has a particularly simple description due to Kac-Kazhdan-Lepowsky-Wilson [11] with underlying vector space C[[t]],

where the set t is as in Equation (1). In particular, see [15] (Theorem 5.1), the action of S
spri
−1 on C[[t]] is given by the

operator ∑
i∈E(g)>0

i+ h

h
· ti+h∂ti +

1

2h
·

∑
i,j∈E(g)>0

i+j=h

ij · titj

Comparing this with the definition in Equation (2) of the Witten-Kontsevich point one sees that the Witten-Kontsevich

point can be described in terms of Segal-Sugawara operators by the equation

S
spri
−1 τ(t) = ∂t1τ(t) (26)

Note that the basic representation is of level κ = 1 and therefore

Sshom
−1 =

S0

2(κ+ h∨)
=

S0

2(1 + h∨)

where S0 is as in Equation (22). Note that (2)S
(1)
g,0 as defined in Equation (6) corresponds to the principal realization in

the basic representation of the operator d·S0 where d is as in Equation 24. Hence, if the complete set of Segal-Sugawara

operators is chosen to be normalised in the sense of Definition 5, then in fact

(2)S
(1)
g,0 = S

spri
−1

Now, if a tau function τ in Taug satisfies (
−∂t1 + (2)S

(1)
g,0

)
(τ) = 0

then by Equation (26) it is the tau function of the Witten-Kontsevich point. It follows from Theorem 1 that

(1)S
(i)
g,k(τ) =


1 if (i, k) = (r,−2)

0 otherwise
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Recall that it follows from the definition of the Drinfeld-Sokolov time flows that ∂t1 = ∂x. One deduces from the

discussion by Frenkel in [9] (Section 4.3.1) that for m ≥ 0

(−∂t1)m
(

(1)S
(i)
g,−1

)
= m! · (1)S

(i)
g,−1−m

One deduces that

(−∂t1)
(

(1)S
(i)
g,k

)
= (−k) · (1)S

(i)
g,k−1

It follows that (
−∂t1 (1)S

(i)
g,k

)
(τ) =


1 if i = r and k = −1

0 otherwise

and this completes the proof of Theorem 2.

Remark 5. We conclude by remarking that the Segal-Sugawara Fourier coefficients S
(r)
g,k that come up in the above

result can frequently be described rather explicitly. See for example the work of Chervov and Molev [3] in the case

g = sln.
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