
Normal forms of Heisenberg connections

Martin T. Luu

Abstract

We study irregular connections on a punctured disc associated to elements of principal Heisenberg algebras of

affine Lie algebras. In many cases we determine the Levelt-Turrittin normal form of these connections. The proof

uses some ideas from quantum field theory.

1 Introduction

Let g denote a complex finite-dimensional simple Lie algebra. An interesting class of elements of g can be obtained

as perturbations of nilpotent elements in the following manner. Given a non-zero nilpotent element e, include it in an

sl2-triple {e, f, h} and consider the Z-grading on g coming from the adjoint action of h. Consider perturbations of e of

the form Λ = e+ F where F is non-zero and of minimal degree with respect to the Z-grading. A small variant gives

the corresponding notion for the (untwisted) affine Lie algebra ĝ associated to g. Namely, fix a loop parameter z and

realize ĝ concretely as an extension of the loop algebra g[z, z−1]. Define the affine analogue Λĝ of Λ by

Λĝ = e+ z · F

where e and F are as before. Such elements Λĝ are the (generalized) cyclic elements of the affine Lie algebra ĝ.

The most studied case is when e is a principal nilpotent element and we restrict for the remainder of this work to

this situation (see the work of Elashvili, Jibladze, Kac [5] and of Elashvili, Kac, Vinberg [6] for the classification of

generalized cyclic elements).

Cyclic elements are interesting from a purely algebraic point of view but they also have important connections to

integrable systems as described in the work of Drinfeld and Sokolov [4]. The flows of the Drinfeld-Sokolov integrable

hierarchy associated to ĝ do not simply correspond to the cyclic element Λĝ but more generally to elements in the

centralizer Heisĝ of Λĝ. This centralizer is called a principal Heisenberg algebra and in the present work we study

connections (in general irregular ones) on a formal punctured disc attached to its elements. After choosing a complex

representation ξ of g (with underlying vector space denoted by Vξ) and after choosing a realization (homogeneous,

principal, · · · ) of ĝ one can ask what the eigenvalues of an element H of the Heisenberg algebra are. We investigate a

non-linear variant of this question. View Vξ((1/z)) as a bundle on the formal disc around z =∞. Instead of calculating

the (Jordan) normal form of H viewed as an endomorphism of Vξ((1/z)) we want to calculate the (Levelt-Turrittin)

normal form of H viewed as a connection on the same bundle. Concretely, we are considering the meromorphic

differential operator ∂z+H on a formal punctured disc around z =∞. We call such an object a Heisenberg connection.

In Theorem 1 we calculate in rather general circumstances the Levelt-Turrittin normal forms of these connections.

The result is similar to the corresponding eigenvalue calculation but with a subtle shift in the regular singular term.

This shift is related to the hidden role quantum field theory plays in our considerations. Through their relation with

Drinfeld-Sokolov hierarchies the cyclic elements play a role in quantum field theory since partition functions of some

quantum field theories can be expressed as tau functions of special points in the Drinfeld-Sokolov phase space. For

example the Witten-Kontsevich partition function of 2d quantum gravity corresponds to a point in phase space singled

out uniquely by a certain differential equation of the tau function. Alternatively, the dressing operator of this point

relates the Heisenberg connection of a cyclic element to a connection with a shifted regular singular term, as shown

by Cafasso and Wu in [3]. This latter connection is essentially the Kac-Schwarz operator whose action on a suitable

vector Sato-Grassmannian gives yet another characterization of the Witten-Kontsevich point of ĝ. A generalization of
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the result of Cafasso and Wu is our key tool to reduce normal form calculations to those where g is of type A and to

actually calculate the normal form in type A.

2 First examples

We introduce in this section the main ideas of how to calculate the Levelt-Turrittin normal form of Heisenberg

connections. The strategy is to first deal with Lie algebras of type A and then reduce the general case to this. Before

doing so we describe the corresponding much simpler calculations for the Jordan normal form of elements in the

Heisenberg algebra. Note that for both types of normal form calculations there is an inherent ambiguity coming from

the non-uniqueness of cyclic elements. For the linear-algebraic problem it follows from a result of Kostant [11] that

the ambiguity is very mild since all cyclic elements are conjugate up to a non-zero scalar. In section 3 we describe how

to adapt Kostant’s arguments to show that for Heisenberg connections the ambiguity is again mild. In the present

section we do not touch on this issue and simply discuss calculations for specific choices of cyclic elements.

For the standard h-dimensional representation of slh and the homogeneous realization of the affine algebra one can

take Λŝlh
=
∑h−1
i=1 ei+1,i + z · e1,h where z denotes the choice of loop variable and ei,j denotes the matrix with zero

entries everywhere except a 1 at the (i, j) entry. The eigenvalues are then given by ζi · z1/h where 1 ≤ i ≤ h and ζ

is a primitive h’th root of unity. To calculate the spectrum of Λĝ for more general Lie algebras ĝ one can compare

the spectrum of the cyclic element Λĝ with the spectrum of Λŝlh
where h is the Coxeter number of g. Consider as an

example g to be of type B. For so2n+1 in its standard 2n+ 1-dimensional representation one can take as cyclic element

Λŝo2n+1
=
∑2n
i=1 ei+1,i + (z/2) · (e1,2n + e2,2n+1) . Let us describe a simple coordinate change that relates it to Λŝl2n

.

Namely, let c1, · · · , c2n+1 denote the standard basis of C2n+1 and view it as a basis of C((1/z))2n+1 as a C((1/z))-vector

space. Let γ be the change of coordinates to the basis

d1 =
c1
2

+
c2n+1

z
, di = ci for 2 ≤ i ≤ 2n , d2n+1 =

c1
2
− c2n+1

z
(1)

Under this change of coordinates one has

Λŝo2n+1
7→ Λŝl2n

⊕ 0 (2)

and hence the spectrum of Λŝo2n+1
can be obtained from the previous type A calculation.

We now return to the non-linear variant, namely the study of normal forms of Heisenberg connections. By the

classical work of Levelt [12] and Turrittin [14] there exists an analogue of the Jordan normal form for meromorphic

differential operators. We would like to apply this theory to differential operators of the form ∂z + Λĝ. The first thing

to say is that one should not consider this operator on a disc around z = 0. The connection is holomorphic at 0 and

after a coordinate change is simply given by ∂z (in contrast to the corresponding linear-algebraic problem). However,

on a disc around z = ∞ the theory is interesting. We now give the precise definitions to deal with such connections.

Let t = 1/z be a coordinate on the formal punctured disc D× around z =∞. Let

Conn(D×) =

(V,∇)

∣∣∣∣ V a finite-dimensional C((t))-vector space, ∇ : V → V

∇(f · v) = f ′(t) · v + f · ∇(v) for all f in C((t)) and v in V


denote the collection of connections on D× = Spec C((t)). Morphisms between (V1,∇1) and (V2,∇2) are those C-linear

homomorphisms λ from V1 to V2 such that λ ◦ ∇1 equals ∇2 ◦ λ. By choosing a basis for the underlying vector space

V of a connection ∇ can be written as ∂t + A(t) for a matrix A(t). It will be convenient to write connections on D×

in terms of z = 1/t and then ∂t +A(t) equals ∂z −A(1/z)/z2.

Let ξ as before denote a complex representation of g with underlying vector space Vξ. We consider in the present

section connections on D× associated to cyclic elements in the following manner. The underlying vector space is

Vξ((1/z)) and ∇ is given by

∇ĝ = ∂z + Λĝ
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We often denote this connection simply by ∇ĝ and our aim is to calculate its normal form. The natural strategy

is to proceed as in the spectrum calculation of cyclic elements. However, as can be seen from Equation (1), the

coordinate change that relates cyclic elements of type B and type A depends (slightly) on z. Hence, in contrast to

the linear-algebraic situation, one picks up a gauge term which makes it non-obvious how the normal forms of ∇ĝ

and ∇ŝlh
are related. Our approach to overcome this issue turns out to be related to work of Kac and Schwarz [10]

on mathematical formulations of two-dimensional quantum gravity. Namely, the arguments of Cafasso and Wu in the

proof of [3] (Lemma 3.9) show that there is a gauge transformation that maps

∇ĝ = ∂z + Λĝ 7→ ∂z +
ρ∨g
hz

+ Λĝ (3)

where h is the Coxeter number and ρ∨g is half the sum of suitable positive co-roots in g. Put differently, for an integer

k let dhom
k = zk+1∂z and let dpri

k,ĝ
be the corresponding derivation in the principal realization of the Lie algebra, then

as connections on the punctured disc near z =∞ Equation (3) yields an isomorphism

dhom
−1 + Λĝ

∼= dpri
−1,ĝ + Λĝ (4)

We use this freedom in shifting the regular singular term for two purposes: To reduce calculations to type A and to

actually calculate the normal form of Heisenberg connections in type A. For the remainder of this section we sketch

these two applications, full details are given in a more general set-up in Section 3.

2.1 Type A normal form

Consider the standard representation of slh. One can choose Chevalley generators of this algebra such that the result

of Cafasso and Wu described in Equation (3) yields an isomorphism of connections on D×(
C((1/z))h, ∂z + Λŝlh

)
∼=
(
C((1/z))h, ∂z +

ρ∨slh
hz

+ Λŝlh

)
(5)

where

ρ∨slh =
1

2

h∑
i=1

(−1− h+ 2i) · ei,i

The right-hand side of Equation (5) might appear to be a more complicated description of the isomorphism class.

However, the shifting of the regular singular term leads to a great simplification in the calculation of the Levelt-

Turrittin normal form. Loosely speaking, the normal form of a connection on a C((1/z))-vector space is obtained by

describing its isomorphism class in terms of connections of the form (V,∇) where V is a C((1/z))-vector space of the

form C((1/ζ)) where ζh = z for some positive integer h and where ∇ is given as an operator of the form ∂z + f(ζ) for a

suitable Laurent series f . It turns out that the presence of ρ∨slh in Equation (5) allows to do just that. Consider as in

[10] the isomorphism of C((1/z))-vector spaces between C((1/z))h and C((1/ζ)) given by g(z)ei 7→ g(ζh)ζh−i where ei is

the standard i’th basis element in C((1/z))h with 0’s everywhere except a 1 in the i’th entry and where g is a Laurent

series. Under this so-called blending map one has

∂z +
ρ∨slh
hz

+ Λŝlh
7→ ∂z +

1− h
2h

· z−1 + ζ (6)

where ∂z = (ζ1−h/h) · ∂ζ . This yields the Levelt-Turrittin normal form as desired. We describe this in more detail in

Section 3.

As indicated before, the difference between the Jordan and Levelt-Turrittin normal form calculations corresponds

to the occurrence of the regular singular term and hence this difference is given by the coefficient (1 − h)/2h in the

above example. This coefficient has quantum field theoretic meaning as can be seen from a calculation in fermionic

algebra given by Kac and Schwarz in [10]. We recall the statement. Fix fermionic operators ψi and ψ†i (with i in Z)
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satisfying the canonical anti-commutation relations

ψiψj + ψjψi = 0 , ψ†iψ
†
j + ψ†jψ

†
i = 0 , ψ†iψj + ψjψ

†
i = δi,j

Define the corresponding fermionic fields as

ψ(ζ) =
∑
i∈Z

ψi ζ
−i−1/2 , ψ†(ζ) =

∑
i∈Z

ψ†−i ζ
−i−1/2

Define the normal ordering : ψ†iψj : as ψ†iψj if j > 0 and −ψjψ†i otherwise. Define Ψ via

: ∂ζψ
†(ζ) ψ(ζ) : − : ψ†(ζ) ∂ζψ(ζ) : = · · ·+ 2h ·Ψ · ζh−2 + · · ·

where h is as before a positive integer such that ζh = z. The regular singular term of Equation (6) now appears in

this fermionic calculation: As discussed for example in [7], [10] one has

[Ψ , ψ(ζ)] =

(
∂z +

1− h
2h

· z−1
)
· ψ(ζ)

One sees that the shift from considering cyclic elements as endomorphisms of a bundle to viewing them as connections

on the same bundle brings genuinely new mathematics and physics into the picture.

2.2 Reduction to type A

Let as before h denote the Coxeter number of g. To compare the normal forms of the connections ∇ĝ and ∇ŝlh
it

suffices by the result of Cafasso and Wu to compare the corresponding right-hand sides of Equation (4). This turns out

to be simpler than the original problem due to the following observation that holds at least for the cases considered in

the present work, namely for Lie algebras of type B, C, D, G.

Observation. There is a coordinate change that relates the cyclic elements Λĝ and Λŝlh
and that at the same time

maps

dpri
−1,ĝ + gauge term 7→ dpri

−1,ŝlh
+ simple expression

We illustrate this for Lie algebras of type B in their standard representation. For g = so2n+1 one has h = 2n and

one can choose Chevalley generators such that

Λŝo2n+1
=

2n∑
i=1

ei+1,i +
z

2
· (e1,2n + e2,2n+1) , ρ∨so2n+1

=

2n+1∑
i=1

(−n− 1 + i) · ei,i (7)

Under the same coordinate change γ as before, see Equation (1), one has

Λŝo2n+1
7→

2n−1∑
i=1

ei+1,i + z · e1,2n = Λŝl2n
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as well as

dpri
−1,ŝo2n+1

+ gauge term = ∂z +
ρ∨so2n+1

hz
+ γ∂z(γ

−1)

7→ ∂z +
1

2nz
· (−n · (e1,2n+1 + e2n+1,1) +

2n∑
i=2

(−n− 1 + i) · ei,i)

+
1

2z
· (−e1,1 + e2n+1,1 + e1,2n+1 − e2n+1,2n+1)

= dpri

−1,ŝlh
− 1

2hz
·
h∑
i=1

ei,i −
1

2z
· e2n+1,2n+1

Note the key cancellations between the gauge term and the term involving the half-sum of positive co-roots. As we

show later on this phenomenon holds for all Lie algebras of type B, C, D, G. We can now compare the connections

∇ŝo2n+1
and ∇ŝl2n

on the disc around z =∞.

For a connection (V,∇) of dimension m we define for any scalar λ the shifted connection

(V,∇)[λ] := (V,∇+
λ

mz
· Id)

Our previous calculations then imply

∂z + Λŝo2n+1
∼= ∂z +

ρ∨so2n+1

2nz
+ Λŝo2n+1

(8)

∼=
(
∂z +

ρ∨sl2n
2nz

+ Λŝl2n

)
[−1/2]⊕ (∂z + 0)[−1/2] (9)

∼= (∂z + Λŝl2n
)[−1/2]⊕ (∂z + 0)[−1/2] (10)

As endomorphisms of a suitable bundle the cyclic elements in type A and B are related as seen in Equation (2) by

Λŝo2n+1
∼= Λŝl2n

⊕ 0 (11)

By Equation (10) the connections associated to Λŝo2n+1
and Λŝl2n

are related in almost the same way, the one distinction

being the shift by −1/2 (and this shift cannot be gauged away by a further suitable coordinate change, in general).

We show in Theorem 1 that for all Lie algebras of type A, B, C, D, G the shift can expressed in terms of κ where κ is

the following standard Lie theoretic invariant: Let (−,−)0 denote the standard invariant bilinear form on g, see [9],

normalized so that the long root has squared length 2. Then κ can be described as the constant such that

(A,B)0 = κ · Tr (ξ(A) ξ(B)) (12)

for all A,B in g, where ξ denotes the first fundamental representation, hence the standard defining representation for

the classical algebras. It is known that κ is 1/2 for g of type B, D, and G and κ is 1 for g of type A and C.

In Section 3 we generalize the calculations of the present section to all affine Lie algebras of type A, B, C, D, G

and we consider connections associated to more general elements of the principal Heisenberg algebra, not just those

associated to the cyclic element Λĝ.

3 Heisenberg connections

In Section 3.1 we define the notion of Heisenberg connection. In section 3.2 we discuss a coarser variant of the Levelt-

Turrittin classification for connections on a punctured disc. In Section 3.3 we calculate the coarse Levelt-Turittin
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normal form of Heisenberg connections.

3.1 Basic definitions

Let g be a simple complex finite-dimensional Lie algebra. Let r denote its rank, let h denote its Coxeter number, and

let ĝ denote the corresponding untwisted affine Lie algebra. Fix a set {Ei, Fi | 1 ≤ i ≤ r} of Chevalley generators of

g. Hence

Hi := [Ei, Fi] , [Hi, Ej ] = AijEj , [Hi, Fj ] = −AijFj

where A = (Aij) is the Cartan matrix of g. Let E0 be a generator of the lowest root space of g. Fix an indeterminate

z, the loop variable of ĝ, and let e0 = z ·E0 and ei = Ei for 1 ≤ i ≤ r. We view the ei’s as elements of ĝ when realized

in terms of its standard loop realization.

Definition 1. Let Λĝ = e0 + · · ·+ er be the cyclic element associated to our choice of Chevalley generators. Let

Heisĝ := Cent(ĝ,Λĝ)

denote its centralizer within the loop part g[z, z−1] of ĝ. This is (up to multiples of the central term) the principal

Heisenberg subalgebra of ĝ associated to our choice of Λĝ.

Let ξ be a finite-dimensional complex representation of g with underlying vector space Vξ. For every H in the

Heisenberg algebra Heisĝ one can define a connection on D× given by

(Vξ((1/z)), ∂z + ξ(H)) (13)

As indicated before, a subtlety about this definition is to classify the dependence of this connection on the choice of

cyclic element. We now specialize to the situation of Theorem 1, meaning g is of type A, B, C, D, or G. Furthermore ξ

denotes the first fundamental representation of g and hence in particular is simply the standard representation if g is

one of the classical algebras. It will be useful to have a more concrete description of the image under ξ of the principal

Heisenberg algebra. For the cyclic element Λĝ itself it is known, see for example [1], that the image under ξ can be

described by the following d× d matrices where ei,j denotes a d× d matrix with 0’s everywhere except a 1 at the (i, j)

entry.

cyclic element d

sln z · e1,n +
∑n−1
i=1 ei+1,i n

so2n+1

∑2n
i=1 ei+1,i + z

2 · (e1,2n + e2,2n+1) 2n+ 1

sp2n z · e1,n +
∑2n−1
i=1 ei+1,i 2n

so2n
1
2 · (en+1,n−1 + en+2,n) +

∑n−1
i=1 (ei+1,i + e2n+1−i,2n−i) + z

2 (e1,2n−1 + e2,2n) 2n

g2
∑6
i=1 ei+1,i + z

2 · (e1,6 + e2,7) 7

Let E(ĝ) denote the multi-set of exponents of ĝ (it is obtained from the finite multi-set of exponents of g by adding

an arbitrary integer multiple of the Coxeter number h). If g is not isomorphic to so2n then it is known, see [1], that for

the above choice of cyclic element Λĝ the corresponding principal Heisenberg algebra (in the standard loop realization
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of ĝ) has a C-basis {Λi}i∈E(ĝ) such that Λi is of degree i in the principal gradation and Λ1 = Λĝ and

ξ(Λi) =


ξ(Λ1)i if i > 0

(
z−1ξ(Λ1)h−1

)−i
if i < 0

(14)

In contrast, if g = so2n and i ≡ n − 1 mod h then the subspace of Heisĝ of principal degree i is two-dimensional

rather than one-dimensional, with an additional basis element Ψi. We do not consider this part of the type D Heisenberg

algebra in the present work.

Kostant has shown in [11] that any two cyclic elements are conjugate up to a non-zero scalar. In particular it follows

that (again except for Lie algebras of type D) for any choice of cyclic element Λĝ the image under ξ of the positively

graded elements in the Heisenberg algebra (with respect to the principal gradation) has a power basis {ξ(Λĝ)i}i∈E(ĝ).

We now adapt Kostant’s arguments to the setting of the connections associated to the Heisenberg algebra as in

Equation (13).

Proposition 1. Let ai for i ∈ Z>0 be a collection of complex scalars. For any two choices of cyclic elements Λĝ and

Λ′ĝ there is a non-zero constant λ such that(
Vξ((1/z)), ∂z +

∑
i∈Z>0

ai · ξ(Λĝ)i

)
∼=

(
Vξ((1/z)), ∂z +

∑
i∈Z>0

ai · λi · ξ(Λ′ĝ)i

)

Proof. The main observation is due to Kostant and concerns the eigenvalues of the cyclic elements: In [11] (Theorem

6.2) Kostant shows that the eigenvalues, up to overall multiplication by a non-zero scalar, are independent of the

choice of the positive Chevalley generators ei, for any choice of representation and in particular for ξ. We now show

that with some care Kostant’s arguments can be generalized to the connections that we are considering.

In [11] (Lemma 6.2) it is shown that for any choice of non-zero scalars ai and bi (with 0 ≤ i ≤ r) there is an element

a in g such that

exp(ad a)

(
r∑
i=0

aiei

)
= λ ·

r∑
i=0

biei (15)

for some non-zero scalar λ. One can see from the proof in [11] that the dependency of a on a0 and b0 is only through

the quotient a0/b0. Therefore, switching to the affine situation, for two choices of affine cyclic elements

Λĝ = a0ze0 +

r∑
i=1

aiei , Λ′ĝ = b0ze0 +

r∑
i=1

biei

one sees that a is constant, meaning independent of z. Hence the corresponding gauge transformation exp(ad a) is

simply conjugation and by using Equation (15) one obtains

exp(ad ξ(a))

(
∂z +

∑
i∈Z>0

ai · ξ(Λĝ)i

)
= ∂z + exp(ad ξ(a))

( ∑
i∈Z>0

ai · ξ(Λĝ)i

)
= ∂z +

∑
i∈Z>0

ai · λi · ξ(Λ′ĝ)i

As in the proof of [11] (Theorem 6.2) the same result holds for any two sets of choices of Chevalley generators.

Proposition 1 allows to describe the dependency on the choice of cyclic element of many Heisenberg connections.

Definition 2. We say a = (ai)i∈Z>0 is of ĝ-type if ai = 0 for i� 0 and ai = 0 if i is not an exponent of ĝ.
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Definition 3. Let ξ be a finite-dimensional complex representation of g with underlying vector space Vξ. Let Λĝ be

a cyclic element. The Heisenberg connection associated to a of ĝ-type is the object of Conn(D×) given by

ConnHeis
g (ξ,D×)a =

(
Vξ((1/z)), ∂z +

∑
i∈Z>0

ai · ξ(Λĝ)i

)
(16)

The main focus of the present work concerns Heisenberg connections obtained via the first fundamental representa-

tion of the simple Lie algebra g (hence via the standard representation in case of the classical algebras). Nonetheless,

we also consider a variant related to the folding of Lie algebras. If g is of type B, C, F, G it is known how to realize g

as the fixed point set of an automorphism of a Lie algebra g̃ of type A, D, E. The cases of the folding process g̃  g

that we treat in this work are

so2n+2  so2n+1 , sl2n  sp2n , so8  g2

We are interested, when applicable, in comparing the Heisenberg connections associated to g via the first fundamental

representation of g and via the corresponding construction for g̃.

Definition 4. For the first fundamental representation ξ of g and for a of ĝ-type define

ConnHeis
g (D×)a,0 := ConnHeis

g (ξ,D×)a

and if g is of type B, C, F, G also define

ConnHeis
g (D×)a,1 := ConnHeis

g̃ (D×)a,0

Note that the definition makes sense: The set of exponents E(ĝ) is a subset of E(̂̃g) as can be seen from the following

table that lists the congruence conditions on integers i that define the set of exponents, see [9] for details.

sln so2n+1 sp2n so2n g2

E(ĝ) i 6≡ 0 mod n i ≡ 1 mod 2 i ≡ 1 mod 2 i ≡ 1 mod 2 i ≡ 1, 5 mod 6

E(̂̃g) – i ≡ 1 mod 2 i 6≡ 0 mod 2n – i ≡ 1, 3, 5 mod 6

E(ŝlh) i 6≡ 0 mod n i 6≡ 0 mod 2n i 6≡ 0 mod 2n i 6≡ 0 mod 2n− 2 i ≡ 1, 3, 5 mod 6

It follows that if a is of ĝ-type then it is in particular also of ̂̃g-type and Definition 4 is well defined. From the

table of exponents one can also observe that E(ĝ) is a subset of E(ŝlh) for the Coxeter number h of g (for g = so2n
there are some exponents of multiplicity 2 in contrast to slh however one can see from the definition of the Heisenberg

connection that this does not impact the following arguments). Hence, if a is of ĝ-type then it is also of ŝlh-type.

Therefore it makes sense to compare the connections ConnHeis
g (D×)a,0 and ConnHeis

slh
(D×)a,0 and we do so in Theorem

1.

3.2 Coarse Levelt-Turrittin normal form

Consider connections on a formal punctured disc D×, as described in Section 2. Levelt [12] and Turrittin [14] showed

that isomorphism classes of such connections have certain normal forms, somewhat reminiscent of the Jordan normal

form. The aim of the present work is to explicitly calculate the normal forms of the connections ConnHeis
g (D×)a,i where

i = 0, 1. As already indicated, the choice of Chevalley generators can change the isomorphism class. Nonetheless, one

can obtain a normal form calculation that is independent of the Lie theoretic choices, if one works with a notion of

equivalence of connections slightly coarser than isomorphisms. We make this precise in the present section.
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We start by recalling the Levelt-Turrittin normal form for connections on D× = Spec C((t)). Let n be a positive

integer and let f =
∑
i ait

i/n be an element of C((t1/n)) that is not an element of C((t1/m)) for 1 ≤ m < n. Write

fhol =
∑
i>0 ait

i/n, f reg = a0, and f irreg =
∑
i<0 ait

i/n. The basic building blocks of the Levelt-Turrittin normal form

are connections of the form

E(f, n) := (C((t1/n)), ∂t + f(t)/t)

with fhol = 0. This connection is irreducible and f irreg is uniquely determined by the isomorphism class of the

connection, up to a coordinate change t1/n 7→ ζnt
1/n for an n’th root of unity ζn and f reg is determined up to adding

an element in Z · (1/n). The second type of connection needed to describe the normal form is given by

NilN := (C((t))N , ∂t + (

N−1∑
i=1

ei,i+1)/t)

where ei,i+1 is the matrix with zeros everywhere except a 1 at the (i, i+ 1) entry. The following is the Levelt-Turrittin

classification, see for example [8] for further references:

Theorem (Levelt-Turrittin). For every connection ∇ on D× there exists r ≥ 1 and fi’s, ni’s, and Ni’s with

∇ ∼=
r⊕
i=1

(E(fi, ni)⊗NilNi)

where the ni’s, and Ni’s are unique up to permutation and the fi’s are unique up to adding elements in Z · (1/ni) and

up to a substitution t1/ni 7→ ζni
· t1/ni for a ni’th root of unity ζni

.

As indicated above, the isomorphism class of a connection of the form E(f, n) does not change under a coordinate

change

t1/n 7→ ζn · t1/n

One can work with a coarser notion than isomorphism, corresponding to allowing substitutions

t1/n 7→ c · t1/n

for an arbitrary non-zero constant c. We show in Theorem 1 that this is precisely the right notion of equivalence

of connections that is invariant under changing the choice of Chevalley generators for the Heisenberg connections

introduced in Definition 16.

Definition 5. For two connections ∇1 and ∇2 on D× with Levelt-Turrittin normal forms

∇1
∼=

r⊕
i=1

(E(fi, ni)⊗NilNi
) , ∇2

∼=
s⊕
j=1

(
E(gj ,mj)⊗NilMj

)
We write ∇1 ∼ ∇2 if r = s and there is a permutation σ and non-zero scalars c1, · · · , cr such that

ni = mσ(i) , Ni = Mσ(i) , fi(z
1/ni) = gσ(i)(ci · z1/ni) + Z · 1

ni

for all i.

One sees that ∼ is an equivalence relation that only depends on the isomorphism classes of ∇1 and ∇2.

3.3 Main result

In the present section we carry out the determination of the coarse Levelt-Turrittin normal form for Heisenberg

connections associated to an affine Lie algebra ĝ. As indicated in the introduction, these Heisenberg connections are

related to the ŝlh Heisenberg connections, where h is the Coxeter number of g, in a manner similar to the relation of
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eigenvalues of the Lie algebra elements defining the connection. The subtle difference between the linear algebraic and

the non-linear algebraic problem manifests itself in a shift for the regular singular term. This shift is given by κ, see

Equation (12) for the Lie theoretic meaning of this constant.

In Definition 4 we introduced the connections ConnHeis
g (D×)a,j where j = 0 for g of type A and D and j ∈ {0, 1} for

g of type B, C, G. We now determine the coarse Levelt-Turrittin normal forms of these connections. In the following

let 0 = (C((t)), ∂t) denote the trivial 1-dimensional connection on D×.

Theorem 1. Let g be a simple complex Lie algebra of type A, B, C, D, or G. Let h be the Coxeter number, let n be

the dimension of the first fundamental representation, and let a = (ai)i be of ĝ-type such that the largest i with ai 6= 0

is co-prime to h. Then

ConnHeis
g (D×)a,j ∼ ConnHeis

slh
(D×)a,0 [κ]⊕ Sj (17)

∼ E
(

(2κ− h− 1)/(2h) +
∑

aiz
i, h
)
⊕ Sj (18)

where the correction term Sj and the value of κ is given for the various types of Lie algebras g by

A B C D G

κ 1 1/2 1 1/2 1/2

S0 – 0[κ] – 0[κ]⊕ 0 0[κ]

S1 – 0[κ]⊕ 0 – – 0[κ]⊕ 0

Remark 1. The regular singular term of the first direct summand in Equation (18) corresponds to (2κ−h− 1)/(2h).

As discussed in Section 3.2, this term has an ambiguity by adding an arbitrary integer multiple of 1/h. Hence if κ = 1

then

(2κ− h− 1)/(2h) ∼ (−h− 1)/2h

and one can hence ignore the κ contribution to the regular singular term. However, if κ = 1/2 then

(2κ− h− 1)/(2h) 6∼ (−h− 1)/2h

and the κ contribution to the regular singular term is genuine and cannot be gauged away.

Proof. (of the theorem) As remarked before, if a is of ĝ-type then it is also of ŝlh-type and therefore it makes sense

to compare ConnHeis
g (D×)a,j and ConnHeis

slh
(D×)a,0. For the first fundamental representation ξ of g we write from now

on for simplicity g instead of ξ(g) for any element g of ĝ.

Note that in Equation (17) we did not specify a choice of Chevalley generators for the two Lie algebras involved.

In fact, as part of the proof, we show that the ∼ equivalence class, see Definition 5, of the Heisenberg connections are

independent of the choice of Chevalley generators. Our strategy to establish the theorem is to first show that for some

choice of Chevalley generators of ĝ and some choice of Chevalley generators of ŝlh there is an isomorphism

ConnHeis
g (D×)a,j ∼= ConnHeis

slh
(D×)a,0 [κ− 1]⊕ Sj (19)

We then proceed to show that

ConnHeis
slh

(D×)a,0 [κ− 1]⊕ Sj ∼= ConnHeis
slh

(D×)a,0 [κ]⊕ Sj (20)

and we show that independent of the choice of Chevalley generators the right-hand side of Equation (20) is ∼ equivalent

10



to the expression in Equation (18). Proposition 1 then implies that for any choice of Chevalley generators of ĝ the ∼
equivalence class of ConnHeis

g (D×)a,j is given by Equation (17).

We start the proof of Equation (19). We will see that a simple coordinate change relates the cyclic element of ĝ to a

cyclic element of ŝlh, as discussed for Lie algebras of type B in Section 2. This allows the calculation of the eigenvalues.

However, the coordinate change has z dependency and therefore when looking at the Heisenberg connections one picks

up an extra gauge term. To deal with this issue, our next step of the proof is to show that the Heisenberg connections

are isomorphic to generalized Kac-Schwarz operators. This amounts to the change

∂z 7→ ∂z +
ρ∨g
hz

where ρ∨g is the element of g defined via [ρ∨g , ei] = ei for all 1 ≤ i ≤ r. Here the ei’s denote the positive Chevalley

generators of g. It will turn out that a simple coordinate change relating the cyclic element of ĝ to a cyclic element of

ŝlh happens to have the property that the change of ρ∨g interacts very well with the gauge term. Denote by ei,j the

n × n matrix whose entries are all 0 apart from the (i, j) entry which is 1. Cafasso and Wu show in [3] that there is

an element µ in the Lie group of ĝ with

µ

(
∂z +

ρ∨g
hz
− Λ1

)
µ−1 = ∂z − Λ1 (21)

In fact, µ is the dressing operator of the Witten-Kontsevich point of the g Drinfeld-Sokolov hierarchy. We now prove

that an analogue of Equation (21) holds for all Heisenberg connections, see Equation (26) for the precise statement.

Note that, up to the central term, one has for every choice of cyclic element a decomposition

ĝ = ker ad Λ1 ⊕ Im ad Λ1 (22)

Let j be a positive exponent of ĝ that is co-prime to the Coxeter number h. We claim that for g of type A, B, C, D,

G and any choice of cyclic element Λ1 one has

ker ad Λj1 = ker ad Λ1 ; Im ad Λj1 = Im ad Λ1 (23)

Before proving this, recall that there is some choice of Chevalley generators such that for any positive exponent i the

element Λi1 is in the principal degree i part of the Heisenberg algebra associated to Λ1. It follows from the proof of

Proposition 1 that this statement then in fact holds for any choice of Chevalley generators. We now come back to the

proof of Equation (23). Recall Λ1 can be written as z ·E0 +
∑r
i=1Ei. Let Λ1 be the element of g given by evaluation

of Λ1 at z = 1. The map ν from the homogeneous to the principal realization of the untwisted affine Lie algebra

associated to g can be described on the level of the loop algebra g[z, z−1] in the following manner. For X in g of

principal degree d one has

zi ⊗X 7→ zhi+d ⊗X

Since it is known that Λi1 is of principal degree i one can deduce that ν(Λi1) = zi ⊗ Λ
i

1. One can verify by direct

calculation that for the choices of Λ1 listed in Section 3.1 one has Λ
h+1

1 = Λ1 and hence more generally Λ
ah+b

1 = Λ
b

1

for non-negative integers a and b. Therefore, if j is co-prime to h then some power of Λ
j

1 equals Λ1. It follows that

Im ad Λ1 ⊆ Im ad Λ
j

1 , ker ad Λ
j

1 ⊆ ker ad Λ1 (24)

Since also clearly

Im ad Λ
j

1 ⊆ Im ad Λ1 , ker ad Λ1 ⊆ ker ad Λ
j

1 (25)

one obtains that the image and kernel of the adjoint action of Λ1 and Λ
j

1 agree. Switching back to the homogeneous

realization of ĝ one obtains Equation (23).

We now use Equation (22) and Equation (23) to show that there is Y =
∑
j≤0 Yj with Yj in ĝ of principal degree
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j, such that

exp(ad Y )

∂z +
ρ∨g
hz

+
∑
i≤m

aiΛi

 = ∂z +
∑
i≤m

aiΛi (26)

with am 6= 0 (our arguments in fact imply the corresponding result with ρ∨g replaced by any element of Cartan algebra

of g). Let dpri
−1,ĝ = ∂z + ρ∨g /(hz). It is known that ad dpri

−1,ĝ maps the Heisenberg algebra to itself and for any element

g of ĝ (in the homogeneous realization) of principal degree j one has[
dpri
−1,ĝ , g

]
=

j

hz
· g (27)

Note that the left-hand side of Equation (26) is given by

exp(ad Y )

dpri
−1,ĝ +

∑
i≤m

aiΛi

 = dpri
−1,ĝ +

∑
i≤m

aiΛi + [Y,dpri
−1,ĝ +

∑
i≤m

aiΛi] +
[Y, [Y,dpri

−1,ĝ +
∑
i≤m aiΛi]]

2!
+ · · ·

Set Yj = 0 for −h−m < j ≤ 0. We solve Equation (26) recursively with respect to decreasing principal gradation.

The first non-trivial equation is in degree −h and is given by

[Y−h−m, amΛm] = −
ρ∨g
hz

(28)

Between degree −h− 1 and −2h−m+ 1 the equations are given by

[Y−h−m−i, amΛm] +

i∑
j=1

[Y−h−m−i+j , am−jΛm−j ] = 0 (29)

where 1 ≤ i ≤ h+m− 1. In degree −2h−m the equation is

[Y−2h−2m, amΛm] + [Y−h−m , dpri
−1,ĝ] +

[Y−h−m, [Y−h−m, amΛm]]

2!
+

h+m∑
j=1

[Y−2h−2m+j , am−jΛm−j ] = 0 (30)

More generally, for degree −2h−m− i with i ≥ 0 the equation is

[Y−2h−2m−i, amΛm] + [Y−h−m−i , dpri
−1,ĝ] + · · · = 0 (31)

where the · · · expression does not contain any triply or higher iterated brackets involving Y−h−m−i. Namely, since we

set Yj = 0 for j > −h −m it follows that the highest degree of a triply iterated bracket involving Y−h−m−i at least

once is

(−h−m− i) + (−h−m) + (−h−m) +m = −3h− 2m− i < −2h−m− i

We now show that there exists Y solving these equations. Via Equation (22) every element A of ĝ can be written

uniquely as a sum B +C with B in the Heisenberg algebra and C in the image of the adjoint action of Λ1. We call B

the Heisenberg part of A. Consider now first Equation (28). Since −h is not an exponent, the Heisenberg part of the

right-hand side is 0 and it follows from Equation (23) that there is a solution Y−h−m to Equation (28). To show that

there is a choice of Y−h−m−i that solves Equation (29) note that since for every r ≥ 1

Im ad Λr = Im ad Λr1 ⊆ Im ad Λ1 (32)
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there is g in ĝ with
i∑

j=1

[Y−h−m−i+j , am−jΛm−j ] = [Λ1, g]

Since by Equation (23) Im ad Λ1 = Im ad Λm it follows that Equation (29) has a solution. Since the Heisenberg

algebra is commutative, both for Equation (28) and Equation (29) we can add an arbitrary element in the Heisenberg

algebra to our choice of solution while still solving those equations. This freedom will now be used to guarantee

a solution to Equation (30) and more generally Equation (31). We start with Equation (30). Let H denote the

Heisenberg part of the last three summands of the left-hand side of Equation (30). Then

H̃ := H · h

−2h−m
· z

is again an element of the Heisenberg algebra and of degree −h−m. We now modify Y−h−m by subtracting H̃. This

does not affect the validity of the equations in degree bigger than −2h−m. Furthermore, by Equation (27) the new

Heisenberg part of [dpri
−1,ĝ , Y−h−m] is obtained by subtracting H. Also, the Heisenberg part of

[Y−h−m, [Y−h−m, amΛm]]

2!
(33)

does not change because by the commutativity of the Heisenberg algebra subtracting an element H̃ of the Heisenberg

algebra to Y−h−m changes the quantity in Equation (33) by

− [H̃, [Y−h−m, amΛm]]

2!
=

[amΛm, [H̃, Y−h−m]]

2!

This is in the image of ad Λm and hence by Equation (23) is in the image of ad Λ1 and hence has 0 Heisenberg part

by Equation (22). Hence, the Heisenberg part of

h+m∑
j=1

[Y−2h−2m+j , am−jΛm−j ] +
[Y−h−m, [Y−h−m, amΛm]]

2!
+ [dpri

−1,ĝ , Y−h−m]

can be made 0 (using again the commutativity of the Heisenberg algebra for the first h + m summands), and hence

there is Y−2h−2m such that Equation (30) has a solution.

More generally we now show how to add a suitable element of the Heisenberg algebra to Y−h−m−i to guarantee

that the equation in principal degree −2h −m − i, namely Equation (31) has a solution. A similar argument as for

Equation (30) applies. Using Equation (32), an argument as for Equation (30) shows that any bracket of the form

[Y−h−m−i, [Yj , akΛk]] or [Yj , [Y−h−m−i, akΛk]]

does not change its Heisenberg part as the Heisenberg part of Y−h−m−i varies. Finally, note that there is no degree 1

bracket involving Y−h−m−i that contributes in degree −2h −m − i since −h is not an exponent and hence a−h = 0.

The analogous argument as for Equation (30) now shows that there is a solution to Equation (31). It follows that

there is Y solving Equation (26).

For each g of type A, B, C, D, G we now make concrete choices of Chevalley generators and prove Equation (19) for

those choices. Recall that for g of type A, B, C, D the first fundamental representation is isomorphic to the defining

vector representation. For g of type g2 the first fundamental representation is the 7-dimensional representation. We

refer to [1] and [4] for tables of Chevalley generators for the algebras that we consider.

For g = sln we choose the Chevalley generators such that

Λŝln
= z · e1,n +

n−1∑
i=1

ei+1,i , ρ∨sln =
1

2

n∑
i=1

(−1− n+ 2i) · ei,i (34)
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The algebra sp2n can be obtained via folding from sl2n and one can choose Chevalley generators such that Λŝp2n
= Λŝl2n

and ρ∨sp2n
= ρ∨sl2n . It follows that

ConnHeis
sp2n

(D×)a,0 ∼= ConnHeis
sp2n

(D×)a,1 ∼= ConnHeis
sl2n (D×)a,0

as desired. The next case we consider is g = so2n+1. In this case the calculations are only a slight generalization of

those described in Section 2. One can choose Chevalley generators such that

Λŝo2n+1
=

2n∑
i=1

ei+1,i +
z

2
· (e1,2n + e2,2n+1) , ρ∨so2n+1

=

2n+1∑
i=1

(−n− 1 + i) · ei,i (35)

Let c1, · · · , c2n+1 denote the standard basis of C2n+1 and view it as a basis of C((1/z))2n+1 as a C((1/z))-vector space.

Consider the change of coordinates to the basis

d1 =
c1
2

+
c2n+1

z
, di = ci for 2 ≤ i ≤ 2n , d2n+1 =

c1
2
− c2n+1

z

In terms of the new basis one obtains Λŝo2n+1
=
∑2n−1
i=1 ei+1,i + z · e1,2n as well as

ρ∨so2n+1

hz
=

1

2nz
·

(
−n · (e1,2n+1 + e2n+1,1) +

2n∑
i=2

(−n− 1 + i) · ei,i

)

The gauge term of the coordinate change is γ∂z(γ
−1) where

γ−1 =

2n∑
i=2

ei,i +
1

2
(e1,1 + e1,2n+1) +

1

z
(e2n+1,1 − e2n+1,2n+1)

γ =

2n∑
i=2

ei,i + e1,1 + e2n+1,1 +
z

2
(e1,2n+1 − e2n+1,2n+1)

One obtains

γ∂z(γ
−1) =

1

2z
· (−e1,1 + e2n+1,1 + e1,2n+1 − e2n+1,2n+1)

It follows that the Heisenberg connection ConnHeis
so2n+1

(D×)a,0 with the Lie theoretic choices as in Equation (35) is

isomorphic to the connection (W,∇) with underlying vector space W = C2n+1((1/z)) and ∇ : W →W given by

∂z +
1

2nz
·

2n∑
i=1

(−n− 1 + i) · ei,i +
∑
j∈Z>0

aj

(
2n−1∑
i=1

ei+1,i + z · e1,2n

)j
− 1

2z
· e2n+1,2n+1

Note that

1

2nz
·

2n∑
i=1

(−n− 1 + i) · ei,i =
1

2hz
·
h∑
i=1

(−h− 2 + 2i) · ei,i =
ρ∨slh
hz
− 1

2h
·
h∑
i=1

ei,i

and ∑
j∈Z>0

aj

(
2n−1∑
i=1

ei+1,i + z · e1,2n

)j
=
∑
j∈Z>0

ajΛ
j

ŝlh
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where Λŝlh
and ρ∨slh are chosen as in Equation (34). It follows that

ConnHeis
g (D×)a,0 ∼=

C((1/z))h , ∂z +
ρ∨slh
hz

+
∑
j∈Z>0

ajΛ
j

ŝlh
− 1

2h
·
h∑
i=1

ei,i

⊕ 0[−1/2]

∼=

C((1/z))h , ∂z +
∑
j∈Z>0

ajΛ
j

ŝlh
− 1

2h
·
h∑
i=1

ei,i

⊕ 0[−1/2]

∼= ConnHeis
slh

(D×)a,0 [−1/2]⊕ 0[−1/2]

∼= ConnHeis
slh

(D×)a,0 [−1/2]⊕ 0[1/2]

as desired. Note that the second isomorphism follows from Equation (26) since 1/(2h) ·
∑h
i=1 ei,i is invariant under

conjugation and the fourth isomorphism holds since (−1/2) − 1/2 is an integer and hence, see Section 3.2, one has

0[−1/2] ∼= 0[1/2]. The theorem for ConnHeis
g (D×)a,1 will be obtained later on. Assume now that g = so2n. In this

case one can choose Chevalley generators such that

Λŝo2n
=

1

2
· (en+1,n−1 + en+2,n) +

n−1∑
i=1

(ei+1,i + e2n+1−i,2n−i) +
z

2
(e1,2n−1 + e2,2n) (36)

as well as

ρ∨so2n
=

n−1∑
i=1

(−n+ i)ei,i +

2n∑
i=n+2

(−n− 1 + i)ei,i (37)

Let c1, · · · , c2n denote the standard basis of C2n. Consider the change of coordinates to the basis

d1 =
c1
2

+
c2n
z

, di = ci for 2 ≤ i ≤ n− 1 , dn = cn +
cn+1

2

di = ci+1 for n+ 1 ≤ i ≤ 2n− 2 , d2n−1 =
c1
2
− c2n

z
, d2n = cn −

cn+1

2

In terms of the new basis one obtains Λŝo2n
=
∑2n−3
i=1 ei+1,i + z · e1,2n−2 as well as

ρ∨so2n
= (−n+ 1)(e2n−1,1 + e1,2n−1) +

n−1∑
i=2

(−n+ i)ei,i +

2n−2∑
i=n+1

(−n+ i)ei,i

The gauge term of the coordinate change is γ∂z(γ
−1) where

γ−1 =

n−1∑
i=2

ei,i +

2n−2∑
i=n+1

ei+1,i +
1

z
(e2n,1 − e2n,2n−1) +

1

2
(e1,1 + en+1,n − en+1,2n + e1,2n−1) + en,n + en,2n

γ =

n−1∑
i=2

ei,i +

2n−2∑
i=n+1

ei,i+1 +
z

2
(e1,2n − e2n−1,2n) +

1

2
(en,n + e2n,n) + e1,1 + e2n−1,1 + en,n+1 − e2n,n+1

One obtains

γ∂z(γ
−1) =

1

2z
· (−e1,1 − e2n−1,2n−1 + e1,2n−1 + e2n−1,1)

It follows that ConnHeis
so2n

(D×)a,0 with the Lie theoretic choices as in Equation (36) and Equation (37) is isomorphic to
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∂z +A+B + C where

A =
1

(2n− 2)z
·

(
(−n+ 1)(e2n−1,1 + e1,2n−1) +

2n−2∑
i=2

(−n+ i) · ei,i

)

B =
∑
j∈Z>0

aj

(
2n−3∑
i=1

ei+1,i + z · e1,2n−2

)j

C =
1

2z
· (−e1,1 − e2n−1,2n−1 + e1,2n−1 + e2n−1,1)

Hence there are again some important cancellations in the sum A+B + C and one obtains

∂z +A + B + C

= (38)

∂z +
1

(2n− 2)z
·

(
2n−2∑
i=1

(−n+ i)ei,i

)
+

∑
j∈Z>0

aj

(
2n−3∑
i=1

ei+1,i + z · e1,2n−2

)j
− 1

2z
· e2n−1,2n−1

Furthermore, one has

1

2n− 2

2n−2∑
i=1

(−n+ i)ei,i =
1

2h
·
h∑
i=1

(−h+ 2i− 2) · ei,i = ρ∨slh −
1

2h
·
h∑
i=1

ei,i

It follows from Equation (26) and Equation (38) that Equation (19) for j = 0 holds. One can also deduce the j = 1

result for g = so2n+1 since so2n+1 is obtained via folding from so2n+2. It then follows from our calculations that

ConnHeis
so2n+1

(D×)a,1 ∼= ConnHeis
so2n+1

(D×)a,0 ⊕ 0

as desired.

The last case to consider is g = g2. The first fundamental representation is 7-dimensional and one can choose

Chevalley generators, see for example [1] (note however that we choose the dual convention compared to loc. cit. in

order to align with our choices of Chevalley generators of the other Lie algebras that we consider), such that

Λĝ2
=

6∑
i=1

ei+1,i +
z

2
· (e1,6 + e2,7)

as well as

H1 = −e1,1 + e2,2 − 2e3,3 + 2e5,5 − e6,6 + e7,7 , H2 = −e2,2 + e3,3 − e5,5 + e6,6

Write ρ∨g2
= n1H1 + n2H2 for scalars n1 and n2. Solving αi(ρ

∨) = 1 for i = 1, 2 and using αi(Hj) = Ai,j , where

A = (Ai,j) is the Cartan matrix, yields n1 = 5 and n2 = 3. It follows that

ρ∨g2

hg2

· 1

z
= (−3e1,1 − 2e2,2 − e3,3 + e5,5 + 2e6,6 + 3e7,7) · 1

6z

One sees that

Λĝ2
= Λŝo7

,
ρ∨g2

hg2

· 1

z
=
ρ∨so7

hso7

· 1

z

where the Lie theoretic choices for ŝo7 are as in Equation (35). It then follows from the earlier type B calculations

that

ConnHeis
g2

(D×)a,0 ∼= ConnHeis
sl6 (D×)a,0 ⊕ 0
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The Lie algebra g2 is obtained via folding from so8. One deduces from the earlier type D calculations that

ConnHeis
g2

(D×)a,1 ∼= ConnHeis
g2

(D×)a,0 ⊕ 0

This gives the desired result for g = g2 by noting that κ = 1/2, as indicated earlier. For completeness we calculate κ

directly. When decomposing the Cartan matrix A as A = DB with D diagonal and B symmetric, there is a non-zero

constant c such that the lower right entry of D is 3c and the corresponding entry of B is 2/(3c). For each choice of

c one obtains a standard invariant bilinear form (−,−)c on g as defined by Kac in [9]. It satisfies (α2, α2)c = 2/(3c)

and H2/(3c) is dual to α2. In the normalization that the long root α2 has square length 2 it follows that c = 1/3, H2

is dual to α2. One then has

κ · Tr(H2
2 ) = 2  κ =

1

2

In order to complete the prove of the theorem. we first show that for our choice of Chevalley generators one has

ConnHeis
slh

(D×)a,0[κ− 1] ∼= E

(
(2κ− h− 1)/(2h) +

∑
i∈Z>0

aiz
i, h

)
(39)

∼= ConnHeis
slh

(D×)a,0[κ] (40)

As shown before, there is an isomorphism(
C((1/z))h, ∂z +

∑
i∈Z>0

aiΛi

)
∼=

(
C((1/z))h, ∂z +

ρ∨slh
hz

+
∑
i∈Z>0

aiΛi

)

Let ζ be such that ζh = z and consider as in [10] an isomorphism of C((1/z))-vector spaces between C((1/z))h and

C((1/ζ)) given by f(z)ei 7→ f(ζh)ζh−i where ei is the standard i’th basis element in C((1/z))h with 0’s everywhere

except a 1 in the i’th entry. Under this map one has for any scalar s

∂z +
ρ∨slh
hz

+
s

hz
·
h∑
i=1

ei,i +
∑
i∈Z>0

aiΛi 7→ ∂ζh +
1− h+ 2s

2h
· ζ−h +

∑
i∈Z>0

aiζ
i

Letting s = κ− 1 one obtains Equation (39). Letting s = κ one obtains

ConnHeis
slh

(D×)a,0[κ] ∼= E

(
(2κ− h+ 1)/(2h) +

∑
i∈Z>0

aiz
i, h

)

∼= E

(
(2κ− h− 1)/(2h) +

∑
i∈Z>0

aiz
i, h

)

where the second isomorphism holds since the difference of the two regular singular terms is in Z/h. Therefore one

obtains Equation (40). Suppose now that a different choice of Chevalley generators for ŝlh is made. Repeating the

above calculations with the ai’s replaced by aiλ
i (for some non-zero scalar λ) and using Proposition 1 it follows that

the corresponding Heisenberg connection is isomorphic to

∂ζh +
2κ− h− 1

2h
ζ−h +

∑
i∈Z>0

aiλ
iζi

for a suitable non-zero scalar λ. The ∼ equivalence class of this connection is independent of λ and therefore the

∼ equivalence class of the Heisenberg connection is independent of the choice of Chevalley generators. Therefore

Equation (39) implies Equation (18). This completes the proof of the theorem.

Remark 2. There are several points of interaction between the above calculations of normal forms of Heisenberg
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connections associated to ĝ and the Drinfeld-Sokolov hierarchy associated to ĝ. A close relation is natural since the

Heisenberg algebra is intricately related to the flows of the hierarchy.

First, Equation (26) is a key tool in the proof of Theorem 1 and as indicated before this equation is in fact

a generalization of a central result employed by Cafasso and Wu [1](Lemma 3.8 and Theorem 3.10) in their work

on Witten-Kontsevich points of Drinfeld-Sokolov hierarchies. The reason that Equation (26) is relevant for Witten-

Kontsevich points is that via this type of isomorphism Heisenberg connections describe certain Virasoro constraints

on tau functions when the Drinfeld-Sokolov phase space is described in terms of a suitable Sato Grassmannian.

Another close relation between Heisenberg connections and Drinfeld-Sokolov hierarchies concerns the role of folding

constructions for Lie algebras. It is shown by Cafasso and Wu in [1] (Section 4.2) that the generalized Witten-

Kontsevich points of type A, D, E yield, after a suitable restriction on the flow variables, the corresponding points

for algebras of type B, C, F, G that are obtained via folding. See also the work of Liu, Ruan, Zhang [13] on

folding constructions for Drinfeld-Sokolov hierarchies. Similarly, we show in Theorem 1, that the difference between

the Heisenberg connection of a B, C, G type algebra via its first fundamental representation and via the folding

construction is almost negligible.

Lastly, the shift involving κ in Theorem 1 resembles a shift by κ for tau functions shown by Cafasso and Wu

in [2]. Given a tau function τ of the Drinfeld-Sokolov hierarchy of ĝ, there is an associated point of a vector Sato

Grassmannian whose isomonodromic tau function τSSW is related to τ by

log τ = κ · log τSSW

In this Grassmannian approach to Drinfeld-Sokolov tau functions as well as in our set-up for Heisenberg connections

one realizes the simple Lie algebra g via its first fundamental representation.

Remark 3. The change of basis that was employed in the proof of Theorem 1 to relate the Heisenberg connections

for Lie algebras of type D and type A was used before in a somewhat different context by Vakulenko [15]. In loc. cit.

the type A results of Kac and Schwarz [10] are generalized to type D by describing the point in the Sato Grassmannian

giving the generalized Witten-Kontsevich point.
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