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Abstract

We study irregular connections on a punctured disc associated to elements of principal Heisenberg algebras of
affine Lie algebras. In many cases we determine the Levelt-Turrittin normal form of these connections. The proof
uses some ideas from quantum field theory.

1 Introduction

Let g denote a complex finite-dimensional simple Lie algebra. An interesting class of elements of g can be obtained
as perturbations of nilpotent elements in the following manner. Given a non-zero nilpotent element e, include it in an
slp-triple {e, f, h} and consider the Z-grading on g coming from the adjoint action of h. Consider perturbations of e of
the form A = e + F where F' is non-zero and of minimal degree with respect to the Z-grading. A small variant gives
the corresponding notion for the (untwisted) affine Lie algebra g associated to g. Namely, fix a loop parameter z and
realize g concretely as an extension of the loop algebra g[z, z7!]. Define the affine analogue Ag of A by

Aa:e—i—z-F

where e and F are as before. Such elements Aj are the (generalized) cyclic elements of the affine Lie algebra g.
The most studied case is when e is a principal nilpotent element and we restrict for the remainder of this work to
this situation (see the work of Elashvili, Jibladze, Kac [5] and of Elashvili, Kac, Vinberg [0] for the classification of
generalized cyclic elements).

Cyclic elements are interesting from a purely algebraic point of view but they also have important connections to
integrable systems as described in the work of Drinfeld and Sokolov [4]. The flows of the Drinfeld-Sokolov integrable
hierarchy associated to g do not simply correspond to the cyclic element Ag but more generally to elements in the
centralizer Heisg of Ag. This centralizer is called a principal Heisenberg algebra and in the present work we study
connections (in general irregular ones) on a formal punctured disc attached to its elements. After choosing a complex
representation ¢ of g (with underlying vector space denoted by Vg) and after choosing a realization (homogeneous,
principal, - -+ ) of g one can ask what the eigenvalues of an element H of the Heisenberg algebra are. We investigate a
non-linear variant of this question. View V¢((1/z)) as a bundle on the formal disc around z = co. Instead of calculating
the (Jordan) normal form of H viewed as an endomorphism of V¢((1/z)) we want to calculate the (Levelt-Turrittin)
normal form of H viewed as a connection on the same bundle. Concretely, we are considering the meromorphic
differential operator 0, + H on a formal punctured disc around z = co. We call such an object a Heisenberg connection.
In Theorem 1 we calculate in rather general circumstances the Levelt-Turrittin normal forms of these connections.
The result is similar to the corresponding eigenvalue calculation but with a subtle shift in the regular singular term.

This shift is related to the hidden role quantum field theory plays in our considerations. Through their relation with
Drinfeld-Sokolov hierarchies the cyclic elements play a role in quantum field theory since partition functions of some
quantum field theories can be expressed as tau functions of special points in the Drinfeld-Sokolov phase space. For
example the Witten-Kontsevich partition function of 2d quantum gravity corresponds to a point in phase space singled
out uniquely by a certain differential equation of the tau function. Alternatively, the dressing operator of this point
relates the Heisenberg connection of a cyclic element to a connection with a shifted regular singular term, as shown
by Cafasso and Wu in [3]. This latter connection is essentially the Kac-Schwarz operator whose action on a suitable
vector Sato-Grassmannian gives yet another characterization of the Witten-Kontsevich point of g. A generalization of



the result of Cafasso and Wu is our key tool to reduce normal form calculations to those where g is of type A and to
actually calculate the normal form in type A.

2 First examples

We introduce in this section the main ideas of how to calculate the Levelt-Turrittin normal form of Heisenberg
connections. The strategy is to first deal with Lie algebras of type A and then reduce the general case to this. Before
doing so we describe the corresponding much simpler calculations for the Jordan normal form of elements in the
Heisenberg algebra. Note that for both types of normal form calculations there is an inherent ambiguity coming from
the non-uniqueness of cyclic elements. For the linear-algebraic problem it follows from a result of Kostant [11] that
the ambiguity is very mild since all cyclic elements are conjugate up to a non-zero scalar. In section 3 we describe how
to adapt Kostant’s arguments to show that for Heisenberg connections the ambiguity is again mild. In the present
section we do not touch on this issue and simply discuss calculations for specific choices of cyclic elements.

For the standard h-dimensional representation of sl; and the homogeneous realization of the affine algebra one can
take A;Ih’ = Z?;ll €it+1,s + 2 - e1,n where z denotes the choice of loop variable and e; ; denotes the matrix with zero
entries everywhere except a 1 at the (i,;) entry. The eigenvalues are then given by ¢* - z'/? where 1 < i < h and ¢
is a primitive h’th root of unity. To calculate the spectrum of Az for more general Lie algebras g one can compare
the spectrum of the cyclic element Az with the spectrum of A;[h where h is the Coxeter number of g. Consider as an
example g to be of type B. For 509,41 in its standard 2n + 1-dimensional representation one can take as cyclic element
AsAoan = Z? 1 €itl,i + (2/2) - (€1,2n + €2,.2n+1) - Let us describe a simple coordinate change that relates it to A
Namely, let 1, - - , ca,41 denote the standard basis of C2"*! and view it as a basis of C((1/2))?"*! as a C((1/z))- vector

space. Let v be the change of coordinates to the basis

d1:%+%7+1,di:ci for2§i§2n,d2n+1:%—627%1 (1)
Under this change of coordinates one has
Ay — A;[% ®0 (2)

and hence the spectrum of Ag, . can be obtained from the previous type A calculation.

We now return to the non-linear variant, namely the study of normal forms of Heisenberg connections. By the
classical work of Levelt [12] and Turrittin [14] there exists an analogue of the Jordan normal form for meromorphic
differential operators. We would like to apply this theory to differential operators of the form 0, 4+ Ag. The first thing
to say is that one should not consider this operator on a disc around z = 0. The connection is holomorphic at 0 and
after a coordinate change is simply given by 0, (in contrast to the corresponding linear-algebraic problem). However,
on a disc around z = oo the theory is interesting. We now give the precise definitions to deal with such connections.
Let t = 1/z be a coordinate on the formal punctured disc D* around z = oo. Let

V a finite-dimensional C((t))-vector space, V: V — V
Conn(D*) = ¢ (V,V)
V(f-v)=f({t)- v+ f-V(v) forall fin C(¢t) and v in V

denote the collection of connections on D* = Spec C((t)). Morphisms between (V1, V1) and (Va, V2) are those C-linear
homomorphisms A from V; to V5 such that A o V4 equals V3 o A\. By choosing a basis for the underlying vector space
V of a connection V can be written as 0; + A(t) for a matrix A(¢). It will be convenient to write connections on D*
in terms of z = 1/t and then 9; + A(t) equals 9, — A(1/2)/2%.

Let £ as before denote a complex representation of g with underlying vector space Ve. We consider in the present
section connections on D* associated to cyclic elements in the following manner. The underlying vector space is
Ve(1/2)) and V is given by

Vg = 0, + A’g\



We often denote this connection simply by Vg and our aim is to calculate its normal form. The natural strategy
is to proceed as in the spectrum calculation of cyclic elements. However, as can be seen from Equation (1), the
coordinate change that relates cyclic elements of type B and type A depends (slightly) on z. Hence, in contrast to
the linear-algebraic situation, one picks up a gauge term which makes it non-obvious how the normal forms of V3
and Vg —are related. Our approach to overcome this issue turns out to be related to work of Kac and Schwarz [10]
on mathematical formulations of two-dimensional quantum gravity. Namely, the arguments of Cafasso and Wu in the
proof of [3] (Lemma 3.9) show that there is a gauge transformation that maps
pV

V§:@+A§H>@A7é+A§ (3)
where h is the Coxeter number and pgv is half the sum of suitable positive co-roots in g. Put differently, for an integer
k let dPo™ = 25119, and let dgg be the corresponding derivation in the principal realization of the Lie algebra, then
as connections on the punctured disc near z = co Equation (3) yields an isomorphism

dTF+Aae;d§j+Aﬁ (4)

We use this freedom in shifting the regular singular term for two purposes: To reduce calculations to type A and to
actually calculate the normal form of Heisenberg connections in type A. For the remainder of this section we sketch
these two applications, full details are given in a more general set-up in Section 3.

2.1 Type A normal form

Consider the standard representation of sl;,. One can choose Chevalley generators of this algebra such that the result
of Cafasso and Wu described in Equation (3) yields an isomorphism of connections on D*

((C((l/z))h,az _|_A;[h) = ((C((l/z))h,az + pg: —I—A;[h> (5)

where
h

p;/[h = % Z(—l —h+ 2i) © €
i=1

The right-hand side of Equation (5) might appear to be a more complicated description of the isomorphism class.
However, the shifting of the regular singular term leads to a great simplification in the calculation of the Levelt-
Turrittin normal form. Loosely speaking, the normal form of a connection on a C((1/z))-vector space is obtained by
describing its isomorphism class in terms of connections of the form (V, V) where V is a C((1/z))-vector space of the
form C((1/¢)) where (" = z for some positive integer h and where V is given as an operator of the form 9, + f(¢) for a
suitable Laurent series f. It turns out that the presence of psv[h in Equation (5) allows to do just that. Consider as in
[10] the isomorphism of C((1/z))-vector spaces between C((1/2))" and C((1/¢)) given by g(z)e; + g(¢")¢"~% where e; is
the standard i’th basis element in C((1/2))" with 0’s everywhere except a 1 in the 7’th entry and where g is a Laurent
series. Under this so-called blending map one has

P 1—h

[ -1
g, o Ok 2 G (6)

0, +

where 0, = (¢'~"/h) - 9;. This yields the Levelt-Turrittin normal form as desired. We describe this in more detail in
Section 3.

As indicated before, the difference between the Jordan and Levelt-Turrittin normal form calculations corresponds
to the occurrence of the regular singular term and hence this difference is given by the coefficient (1 — h)/2h in the
above example. This coefficient has quantum field theoretic meaning as can be seen from a calculation in fermionic
algebra given by Kac and Schwarz in [10]. We recall the statement. Fix fermionic operators ¢; and 1/)3 (with ¢ in Z)



satisfying the canonical anti-commutation relations

Yty + i =0 Yl +lel =0 e el =6y
Define the corresponding fermionic fields as
= v ¢V i) =Dyl 2
= icZ

Define the normal ordering : ¢ij : as w;rwj if j > 0 and —ijz otherwise. Define ¥ via

PO Q) () s =T (Q Q) = k20T

where h is as before a positive integer such that (" = 2. The regular singular term of Equation (6) now appears in
this fermionic calculation: As discussed for example in [7], [10] one has

[, (0] = (a +1_h-z—1) Q)

2h
One sees that the shift from considering cyclic elements as endomorphisms of a bundle to viewing them as connections
on the same bundle brings genuinely new mathematics and physics into the picture.

2.2 Reduction to type A

Let as before h denote the Coxeter number of g. To compare the normal forms of the connections Vg and Vg[h it
suffices by the result of Cafasso and Wu to compare the corresponding right-hand sides of Equation (4). This turns out
to be simpler than the original problem due to the following observation that holds at least for the cases considered in
the present work, namely for Lie algebras of type B, C, D, G.

Observation. There is a coordinate change that relates the cyclic elements Ag and A;[} and that at the same time
maps
P 5 +gauge term — dpri 5+ simple expression
) —1,5th

We illustrate this for Lie algebras of type B in their standard representation. For g = s09,,41 one has h = 2n and
one can choose Chevalley generators such that

2n+1
Mgy = E €it1,i (er2n +€22n41) » Poogs = E —n—1+1i)-e;; (7)

Under the same coordinate change v as before, see Equation (1), one has

2n—1

A5A02n+1 = E €itli+ 2 €lam = Ag[2n
=1



as well as

v
i Psos,, _
P oan,, T+ gaUgE term = 9, + % +r0.(v Y
1 2n
— az + Tnz . (_TL . (61’2n+1 + €2n+171) —+ i_E 2(—n — 1+ ’L) . ei,i)
+ 2 (—61,1 + e2nt1,1 +€12n401 — €2n+1,2n+1)
h
= pri _ . e .
B d—l,ah 2hz Ze“ 9, C2n+l2ntl

1=

Note the key cancellations between the gauge term and the term involving the half-sum of positive co-roots. As we
show later on this phenomenon holds for all Lie algebras of type B, C, D, G. We can now compare the connections
Vs, and Vg on the disc around z = oo.

For a connection (V, V) of dimension m we define for any scalar A the shifted connection

(V9N = (V.Y + 1)

Our previous calculations then imply

\Y%
az + Af:b2n+1 = az + % + Aﬁ/ﬁszrl (8)
Pv[
o (az + 2 g AA‘) [~1/2] @ (9. + 0)[—1/2] 9)
= (0 4+ Ay, )-1/2]® (0: +0)[-1/2] (10)

As endomorphisms of a suitable bundle the cyclic elements in type A and B are related as seen in Equation (2) by

A = A

slap

®0 (11)

$02n+41

By Equation (10) the connections associated to Ag,, .,
being the shift by —1/2 (and this shift cannot be gauged away by a further suitable coordinate change, in general).
We show in Theorem 1 that for all Lie algebras of type A, B, C, D, G the shift can expressed in terms of x where & is
the following standard Lie theoretic invariant: Let (—, —)p denote the standard invariant bilinear form on g, see [9],

normalized so that the long root has squared length 2. Then s can be described as the constant such that

and ASA[M are related in almost the same way, the one distinction

(A, B)o = - Tr (£(A) §(B)) (12)

for all A, B in g, where £ denotes the first fundamental representation, hence the standard defining representation for
the classical algebras. It is known that x is 1/2 for g of type B, D, and G and & is 1 for g of type A and C.

In Section 3 we generalize the calculations of the present section to all affine Lie algebras of type A, B, C, D, G
and we consider connections associated to more general elements of the principal Heisenberg algebra, not just those
associated to the cyclic element Ag.

3 Heisenberg connections

In Section 3.1 we define the notion of Heisenberg connection. In section 3.2 we discuss a coarser variant of the Levelt-
Turrittin classification for connections on a punctured disc. In Section 3.3 we calculate the coarse Levelt-Turittin



normal form of Heisenberg connections.

3.1 Basic definitions

Let g be a simple complex finite-dimensional Lie algebra. Let r denote its rank, let A denote its Coxeter number, and
let g denote the corresponding untwisted affine Lie algebra. Fix a set {F;, F; | 1 <4 < r} of Chevalley generators of
g. Hence

Hi:=[E, F] , [H;, Ejl = A E; , [Hi, Fj]=—-A;F;

where A = (A;;) is the Cartan matrix of g. Let Ey be a generator of the lowest root space of g. Fix an indeterminate
2, the loop variable of g, and let ¢g = z- Eg and e; = E; for 1 < i < r. We view the ¢;’s as elements of § when realized
in terms of its standard loop realization.

Definition 1. Let A = eg + - -+ + e, be the cyclic element associated to our choice of Chevalley generators. Let
Heisg := Cent(g, Ag)

denote its centralizer within the loop part glz,271] of g. This is (up to multiples of the central term) the principal
Heisenberg subalgebra of g associated to our choice of Ag.

Let £ be a finite-dimensional complex representation of g with underlying vector space V¢. For every H in the
Heisenberg algebra Heisg one can define a connection on D* given by

(Ve((1/2)), 0. + £(H)) (13)

As indicated before, a subtlety about this definition is to classify the dependence of this connection on the choice of
cyclic element. We now specialize to the situation of Theorem 1, meaning g is of type A, B, C, D, or G. Furthermore &
denotes the first fundamental representation of g and hence in particular is simply the standard representation if g is
one of the classical algebras. It will be useful to have a more concrete description of the image under £ of the principal
Heisenberg algebra. For the cyclic element Ag itself it is known, see for example [1], that the image under £ can be
described by the following d x d matrices where e; ; denotes a d x d matrix with 0’s everywhere except a 1 at the (g, j)
entry.

| cyclic element | d
n—1
5[n Z:€ln + Zi:l €it1,i n
2n
502541 YoiciCirti+ 5 (e12n T €22n41) 2n+1
2n—1
5Pan zZ-ein+ Zizl €it1,5 2n
1 n—1
502, 5 (enyin—1+enyon) + Yoy (€1 + €2np1—ion—i) + %(61,%71 + €2.2n) 2n
6 4z 7
g2 ZZ‘=1 €it+1i+ 5 (e1,6 +e2,7)

Let E(g) denote the multi-set of exponents of g (it is obtained from the finite multi-set of exponents of g by adding
an arbitrary integer multiple of the Coxeter number k). If g is not isomorphic to $04,, then it is known, see [1], that for
the above choice of cyclic element Ag the corresponding principal Heisenberg algebra (in the standard loop realization



of g) has a C-basis {Ai}icr(g) such that A; is of degree i in the principal gradation and A; = Ag and

E(A)? ifi>0
E(A) = _ (14)
(z7rAD)P )" ifi<0

In contrast, if g = s02, and ¢ =n — 1 mod h then the subspace of Heisg of principal degree i is two-dimensional
rather than one-dimensional, with an additional basis element ¥;. We do not consider this part of the type D Heisenberg
algebra in the present work.

Kostant has shown in [11] that any two cyclic elements are conjugate up to a non-zero scalar. In particular it follows
that (again except for Lie algebras of type D) for any choice of cyclic element Ag the image under £ of the positively
graded elements in the Heisenberg algebra (with respect to the principal gradation) has a power basis {{(Ag)' }icr(g)-

We now adapt Kostant’s arguments to the setting of the connections associated to the Heisenberg algebra as in
Equation (13).

Proposition 1. Let a; for i € Z>° be a collection of complex scalars. For any two choices of cyclic elements Ag and
A’ﬁ there is a non-zero constant \ such that

(‘/5((1/Z))a8z + Y -§(Aa)i> = (‘/5((1/2))75& + > X ~€(A’g)i>

i€2>0 i€z>0

Proof. The main observation is due to Kostant and concerns the eigenvalues of the cyclic elements: In [11] (Theorem
6.2) Kostant shows that the eigenvalues, up to overall multiplication by a non-zero scalar, are independent of the
choice of the positive Chevalley generators e;, for any choice of representation and in particular for £&. We now show
that with some care Kostant’s arguments can be generalized to the connections that we are considering.

In [11] (Lemma 6.2) it is shown that for any choice of non-zero scalars a; and b; (with 0 < i < r) there is an element
a in g such that

exp(ad a) (Z aiel) =X Z b;e; (15)
i=0 i=0

for some non-zero scalar A\. One can see from the proof in [ 1] that the dependency of a on a¢ and by is only through
the quotient ag/by. Therefore, switching to the affine situation, for two choices of affine cyclic elements

T s
/
Ag = apzep + E a;e; Aﬁ = bozeg + E b;e;
i—1 i=1

one sees that a is constant, meaning independent of z. Hence the corresponding gauge transformation exp(ad a) is
simply conjugation and by using Equation (15) one obtains

exp(ad &(a)) (@ + ) a ~§<Aa>”>

1€Z>0

9 + exp(ad £(a)) ( > a -S(Aa)i>

1€Z>0

0:+ Y ai N E(AL)

1€2>0
As in the proof of [11] (Theorem 6.2) the same result holds for any two sets of choices of Chevalley generators. O
Proposition 1 allows to describe the dependency on the choice of cyclic element of many Heisenberg connections.

Definition 2. We say a = (a;);cz>o is of g-type if a; = 0 for ¢ > 0 and a; = 0 if 7 is not an exponent of g.



Definition 3. Let  be a finite-dimensional complex representation of g with underlying vector space V¢. Let Az be
a cyclic element. The Heisenberg connection associated to a of g-type is the object of Conn(D*) given by

Conng™*(¢, D*)a = (Vs((l/Z))ﬁz + YW '€(Aa)i> (16)

1€Z>0

The main focus of the present work concerns Heisenberg connections obtained via the first fundamental representa-
tion of the simple Lie algebra g (hence via the standard representation in case of the classical algebras). Nonetheless,
we also consider a variant related to the folding of Lie algebras. If g is of type B, C, F, G it is known how to realize g
as the fixed point set of an automorphism of a Lie algebra g of type A, D, E. The cases of the folding process g ~ g
that we treat in this work are
sloy, ~> SPon

502n42 ~ §02p41 508 ~ g2

We are interested, when applicable, in comparing the Heisenberg connections associated to g via the first fundamental
representation of g and via the corresponding construction for g.

Definition 4. For the first fundamental representation ¢ of g and for a of g-type define

COnn?ejS(DX)ap = (}011r11§1{‘3is(§7 D*)a

and if g is of type B, C, F, G also define

Conngeis(DX a1 = Conr1§EiS(D>< )a,0

Note that the definition makes sense: The set of exponents E(g) is a subset of E(E) as can be seen from the following
table that lists the congruence conditions on integers ¢ that define the set of exponents, see [9] for details.

sl, S095,11 | SPan 502, g2
E@ |[i#0 modn | i=1 mod 2 1=1 mod 2 t=1 mod 2 t=1,5 mod 6
E(g) - i=1 mod2 | i#0 mod 2n - i=1,3,5 mod 6
E(;[h) i#0 modn | {#0 mod2n | i#0 mod2n | i#0 mod2n—2 | i=1,3,5 mod 6

It follows that if a is of g-type then it is in particular also of E—type and Definition 4 is well defined. From the
table of exponents one can also observe that E(g) is a subset of E(slj,) for the Coxeter number h of g (for g = s02,,
there are some exponents of multiplicity 2 in contrast to sl;, however one can see from the definition of the Heisenberg

connection that this does not impact the following arguments). Hence, if a is of g-type then it is also of 5A[h-type.
Heis

ol (D*)a,0 and we do so in Theorem

Therefore it makes sense to compare the connections Conn?els(DX )a,0 and Conn
1.

3.2 Coarse Levelt-Turrittin normal form

Consider connections on a formal punctured disc D*, as described in Section 2. Levelt [12] and Turrittin [14] showed
that isomorphism classes of such connections have certain normal forms, somewhat reminiscent of the Jordan normal
form. The aim of the present work is to explicitly calculate the normal forms of the connections Conng‘“‘iS(DX )a,i where
i =0,1. As already indicated, the choice of Chevalley generators can change the isomorphism class. Nonetheless, one
can obtain a normal form calculation that is independent of the Lie theoretic choices, if one works with a notion of

equivalence of connections slightly coarser than isomorphisms. We make this precise in the present section.



We start by recalling the Levelt-Turrittin normal form for connections on D* = Spec C((t)). Let n be a positive
integer and let f = 3. a;t¥/™ be an element of C((t!/™)) that is not an element of C((t}/™)) for 1 < m < n. Write
foel =3 g aitt/™, 78 = ag, and ¢ = 3. o a;t"/". The basic building blocks of the Levelt-Turrittin normal form
are connections of the form

E(fin) = (C(t'/™), 00 + f(t) /1)

with fh°! = 0. This connection is irreducible and f""°¢ is uniquely determined by the isomorphism class of the
connection, up to a coordinate change t*/™ — (,t'/™ for an n’th root of unity ¢, and f™8 is determined up to adding
an element in Z - (1/n). The second type of connection needed to describe the normal form is given by

N-1
Nily := (C()™, 0 + (D €rir1)/t)

i=1

where e; ;11 is the matrix with zeros everywhere except a 1 at the (4,74 1) entry. The following is the Levelt-Turrittin
classification, see for example [8] for further references:

Theorem (Levelt-Turrittin). For every connection V on D* there exists v > 1 and f;’s, n;’s, and N;’s with
T
V = P (E(fi,n:) @ Nily,)
i=1

where the n;’s, and N;’s are unique up to permutation and the f;’s are unique up to adding elements in Z - (1/n;) and
up to a substitution t*/™ — Cn; tY/7 for a n; ’th root of unity Cn; -

As indicated above, the isomorphism class of a connection of the form £(f,n) does not change under a coordinate

change
tl/n — Cn . tl/n

One can work with a coarser notion than isomorphism, corresponding to allowing substitutions
tl/n — c- tl/n

for an arbitrary non-zero constant c¢. We show in Theorem 1 that this is precisely the right notion of equivalence
of connections that is invariant under changing the choice of Chevalley generators for the Heisenberg connections
introduced in Definition 16.

Definition 5. For two connections V; and V5 on D* with Levelt-Turrittin normal forms

T S

Vi %@(E(fi,ni)(@NﬂNi) ) VQ%@(S(gj,mj)(@NﬂMj)
i=1 =1
We write V; ~ V3 if r = s and there is a permutation ¢ and non-zero scalars ¢y, - - - , ¢, such that

. , 1
ni =me@) » Ni=Mo o [i(z/™) = go@(ci- 2/™) + Z- -

for all 7.

One sees that ~ is an equivalence relation that only depends on the isomorphism classes of V; and V.

3.3 Main result

In the present section we carry out the determination of the coarse Levelt-Turrittin normal form for Heisenberg
connections associated to an affine Lie algebra g. As indicated in the introduction, these Heisenberg connections are
related to the sl;, Heisenberg connections, where h is the Coxeter number of g, in a manner similar to the relation of



eigenvalues of the Lie algebra elements defining the connection. The subtle difference between the linear algebraic and
the non-linear algebraic problem manifests itself in a shift for the regular singular term. This shift is given by k, see
Equation (12) for the Lie theoretic meaning of this constant.

In Definition 4 we introduced the connections Conngeis(DX)ayj where j = 0 for g of type A and D and j € {0,1} for
g of type B, C, G. We now determine the coarse Levelt-Turrittin normal forms of these connections. In the following
let 0 = (C((¢)), ;) denote the trivial 1-dimensional connection on D*.

Theorem 1. Let g be a simple complex Lie algebra of type A, B, C, D, or G. Let h be the Cozeter number, let n be
the dimension of the first fundamental representation, and let a = (a;); be of g-type such that the largest i with a; # 0
is co-prime to h. Then

Connlg{eis(DX)a,j ~ Conn?[iis(DX)a,O [x] ® 5; ()

~ & ((2/{—h— 1)/(2h) +Zaizi,h) ® S, (18)

where the correction term S; and the value of k is given for the various types of Lie algebras g by

Al B [¢] D | &
k1| 12 1] 12 1/2
So| ~| oK |- |oKeo| o
Si|-|okeo|-| - |oxeo

Remark 1. The regular singular term of the first direct summand in Equation (18) corresponds to (2k —h —1)/(2h).
As discussed in Section 3.2, this term has an ambiguity by adding an arbitrary integer multiple of 1/h. Hence if k = 1
then

(26 —h—1)/(2h) ~ (=h —1)/2h

and one can hence ignore the x contribution to the regular singular term. However, if kK = 1/2 then
2k —h—1)/(2h) £ (=h —1)/2h
and the k contribution to the regular singular term is genuine and cannot be gauged away.

Proof. (of the theorem) As remarked before, if a is of g-type then it is also of ;[h—type and therefore it makes sense
Heis

Heis X
to compare Conng “*(D*)a ; and Conngy;,

(D*)a,0. For the first fundamental representation £ of g we write from now
on for simplicity g instead of £(g) for any element g of g.

Note that in Equation (17) we did not specify a choice of Chevalley generators for the two Lie algebras involved.
In fact, as part of the proof, we show that the ~ equivalence class, see Definition 5, of the Heisenberg connections are
independent of the choice of Chevalley generators. Our strategy to establish the theorem is to first show that for some

choice of Chevalley generators of g and some choice of Chevalley generators of sA[h there is an isomorphism

ConnEEiS(DX)aJ = Conn?[iis(DX)a@ k-1 &S, (19)
We then proceed to show that
ConngiiS(DX)a,o k-1 S; = Conng[iis(DX)ap [k] B S; (20)

and we show that independent of the choice of Chevalley generators the right-hand side of Equation (20) is ~ equivalent
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to the expression in Equation (18). Proposition 1 then implies that for any choice of Chevalley generators of g the ~
equivalence class of Conn?eis(Dx)a)j is given by Equation (17).

We start the proof of Equation (19). We will see that a simple coordinate change relates the cyclic element of g to a
cyclic element of ;[h, as discussed for Lie algebras of type B in Section 2. This allows the calculation of the eigenvalues.
However, the coordinate change has z dependency and therefore when looking at the Heisenberg connections one picks
up an extra gauge term. To deal with this issue, our next step of the proof is to show that the Heisenberg connections
are isomorphic to generalized Kac-Schwarz operators. This amounts to the change

v
0, — 0, + el
hz
where p;{ is the element of g defined via [pg, e;] = e; for all 1 < ¢ < r. Here the e;’s denote the positive Chevalley
generators of g. It will turn out that a simple coordinate change relating the cyclic element of g to a cyclic element of
;Ih happens to have the property that the change of p;/ interacts very well with the gauge term. Denote by e; ; the
n X n matrix whose entries are all 0 apart from the (i, 7) entry which is 1. Cafasso and Wu show in [3] that there is
an element y in the Lie group of g with
pY
1% (az + hfg - Al) pt=0. - M (21)
z
In fact, p is the dressing operator of the Witten-Kontsevich point of the g Drinfeld-Sokolov hierarchy. We now prove
that an analogue of Equation (21) holds for all Heisenberg connections, see Equation (26) for the precise statement.
Note that, up to the central term, one has for every choice of cyclic element a decomposition

g= kerad Ay & Im ad A4 (22)

Let j be a positive exponent of g that is co-prime to the Coxeter number h. We claim that for g of type A, B, C, D,
G and any choice of cyclic element A; one has

ker ad A] = kerad A; ; Imad AJ =Tm ad A, (23)

Before proving this, recall that there is some choice of Chevalley generators such that for any positive exponent i the
element A} is in the principal degree i part of the Heisenberg algebra associated to A;. It follows from the proof of
Proposition 1 that this statement then in fact holds for any choice of Chevalley generators. We now come back to the
proof of Equation (23). Recall A; can be written as z - Eg + Y .;,_; E;. Let A1 be the element of g given by evaluation
of A; at z = 1. The map v from the homogeneous to the principal realization of the untwisted affine Lie algebra
associated to g can be described on the level of the loop algebra g[z,27!] in the following manner. For X in g of
principal degree d one has
Z2@X - Mtle X

Since it is known that A% is of principal degree i one can deduce that v(Ai) = z' @ A;. One can verify by direct

. . . . . 1 - —ah+b —b
calculation that for the choices of Ay listed in Section 3.1 one has A1+ = Ay and hence more generally Ay R Ay

for non-negative integers a and b. Therefore, if j is co-prime to h then some power of K{ equals A;. It follows that
Im ad A; C Im ad K{ , ker ad K{ C ker ad Ay (24)
Since also clearly
Im ad K{ CImadA; , kerad A; C ker ad K{ (25)
one obtains that the image and kernel of the adjoint action of A; and X{ agree. Switching back to the homogeneous

realization of g one obtains Equation (23).
We now use Equation (22) and Equation (23) to show that there is Y =3, Y; with Yj in g of principal degree
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7, such that

Py _
exp(ad V) | 0. + e + Z ai\; | = 0.+ Z a;h; (26)

i<m i<m

with a,, # 0 (our arguments in fact imply the corresponding result with pg replaced by any element of Cartan algebra
of g). Let dprl = 0. + py/(hz). Tt is known that ad d” 1 5 maps the Heisenberg algebra to itself and for any element
g of g (in the homogeneous realization) of principal degree j one has

[dplgyg} h%-g (27)

Note that the left-hand side of Equation (26) is given by

[Y [Y Iirll ’g‘ + Zz<m Qi A H
2] *

exp(ad V) [ d%) o+ > ail; | =d%) o+ Y aily +[V.d o+ ) aili] +

i<m i<m i<m

Set Y; =0 for —h —m < j < 0. We solve Equation (26) recursively with respect to decreasing principal gradation.
The first non-trivial equation is in degree —h and is given by

hy

Y homs ] = 28
Y-y ] = —22 (28)
Between degree —h — 1 and —2h — m + 1 the equations are given by
[thfmfi; amAm] + Z [thfmfiJr]ﬁ amfjAmfj] =0 (29)
j=1
where 1 < ¢ < h+m — 1. In degree —2h — m the equation is
h+m
ri Y_ —m Y_ —my Qp Am
[Y—Qh—2m7af’mAm} + [Y—h—m 5 dlilﬁ] + [ h [ 2h| = ]] + Z [Y—Qh—2m+j7am—jAm—j] =0 (30)
! =
More generally, for degree —2h — m — ¢ with ¢ > 0 the equation is
[Y,Qh,gm,i,am/&m] + [Y,h,m,i s d}iri,/g\] +...=0 (31)

where the --- expression does not contain any triply or higher iterated brackets involving Y_;,_,,_;. Namely, since we
set Y; = 0 for j > —h — m it follows that the highest degree of a triply iterated bracket involving Y_;_,,—; at least
once is

(—h—m—i)+(=h—m)+(—h—m)+m=-3h—2m—i< —2h—m —i

We now show that there exists Y solving these equations. Via Equation (22) every element A of g can be written
uniquely as a sum B + C with B in the Heisenberg algebra and C' in the image of the adjoint action of A;. We call B
the Heisenberg part of A. Consider now first Equation (28). Since —h is not an exponent, the Heisenberg part of the
right-hand side is 0 and it follows from Equation (23) that there is a solution Y_j_,, to Equation (28). To show that
there is a choice of Y_j_,,—; that solves Equation (29) note that since for every r > 1

Imad A, =Im ad A7 CIm ad A (32)
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there is ¢ in g with

> Vohmeitir@m—jAm—j] = [A1, 9]

j=1
Since by Equation (23) Im ad A; = Im ad A, it follows that Equation (29) has a solution. Since the Heisenberg
algebra is commutative, both for Equation (28) and Equation (29) we can add an arbitrary element in the Heisenberg
algebra to our choice of solution while still solving those equations. This freedom will now be used to guarantee
a solution to Equation (30) and more generally Equation (31). We start with Equation (30). Let H denote the
Heisenberg part of the last three summands of the left-hand side of Equation (30). Then

~ h
H=H ———.
—2h —m i

is again an element of the Heisenberg algebra and of degree —h — m. We now modify Y_;_,, by subtracting H. This
does not affect the validity of the equations in degree bigger than —2h — m. Furthermore, by Equation (27) the new
Heisenberg part of [d™] > Y-h—m] is obtained by subtracting H. Also, the Heisenberg part of

[th—m7 [thfma CLmAmH
2!

(33)

does not change because by the commutativity of the Heisenberg algebra subtracting an element H of the Heisenberg
algebra to Y_j;,_,, changes the quantity in Equation (33) by

[I:I, Yo h—m, @mAm]] _ [amAm, [I:I,Y,h,m]]

2 2

This is in the image of ad A,, and hence by Equation (23) is in the image of ad A; and hence has 0 Heisenberg part
by Equation (22). Hence, the Heisenberg part of

[thfm, [Y—hfma amAmH
2!

h+m .
Z [Y_oh—2m+tjs Gm—jAm—j] + + [drirll@ » Yopom]
i=1

can be made 0 (using again the commutativity of the Heisenberg algebra for the first A + m summands), and hence
there is Y_op_o,, such that Equation (30) has a solution.

More generally we now show how to add a suitable element of the Heisenberg algebra to Y_;_,,_; to guarantee
that the equation in principal degree —2h — m — i, namely Equation (31) has a solution. A similar argument as for
Equation (30) applies. Using Equation (32), an argument as for Equation (30) shows that any bracket of the form

Yopom—i, [Yj,apAg]] o [Yj, [Yop—m—i, arAg]]

does not change its Heisenberg part as the Heisenberg part of Y_j_,,,_; varies. Finally, note that there is no degree 1
bracket involving Y_j_,,_; that contributes in degree —2h — m — i since —h is not an exponent and hence a_j; = 0.
The analogous argument as for Equation (30) now shows that there is a solution to Equation (31). It follows that
there is Y solving Equation (26).

For each g of type A, B, C, D, G we now make concrete choices of Chevalley generators and prove Equation (19) for
those choices. Recall that for g of type A, B, C, D the first fundamental representation is isomorphic to the defining
vector representation. For g of type go the first fundamental representation is the 7-dimensional representation. We
refer to [1] and [4] for tables of Chevalley generators for the algebras that we consider.

For g = sl,, we choose the Chevalley generators such that

n

n—1
1 .
Ay =z-e1nt Z Citvli » Pat, = B Z(—l —n+2i)-e; (34)
i=1

i=1
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The algebra spa,, can be obtained via folding from sls,, and one can choose Chevalley generators such that Ag A§[2
and py,, = pyp, . It follows that

Conngﬁji (D*)a0 = Conngpe;i(DX)aJ = Conn?g:(DX)a,o

as desired. The next case we consider is g = §09,41. In this case the calculations are only a slight generalization of
those described in Section 2. One can choose Chevalley generators such that

2n+1
Asorin = Z €itl,i (e1,2n + €292n41) psumﬂ = Z —n—14+1)-e;; (35)
Let ¢1,- -+, cany1 denote the standard basis of C2"*! and view it as a basis of C((1/2))?"! as a C((1/2))-vector space.
Consider the change of coordinates to the basis
g c e ¢
d1:51+% 5 di:Ci for2§2§2n 5 d2n+1—517 22+1

In terms of the new basis one obtains Ag, , = Zl 1 €z+1 i+ 2 €19, as well as

\V 2n
p n 1 .
% T oz <_”' (€12n+1 + €2n411) + ;(—n —1+i)- em‘)

The gauge term of the coordinate change is v9,(y~!) where

1
E €i,i 61 1+ e1on41) + ;(62n+1,1 — €2n+1,2n+1)
2n
z
v = E €ii t€1,1+empmr11+ 5(61,2n+1 — €2n41,2n+1)
i=2
One obtains )
—1
¥0.(v) = 2. (—e11 + €e2n+1,1 + €1,2n+1 — €2n+1,2n+1)
Heis

It follows that the Heisenberg connection Conng,,> (D> )ao with the Lie theoretic choices as in Equation (35) is
isomorphic to the connection (W, V) with underlying vector space W = C>*"*1((1/z)) and V : W — W given by

2n 2n—1 j
1 1
az + ﬁ Z(_n -1 + ez % + Z aj < Z ez+1 i +2z- €1 2n> - 272: : 62n+1,2n+1

i=1 JjEZ>0
Note that
1 2n 1 h p [ 1 h
. o ; L = Sh _ —
and

2n—1 J
E a; E €i+1t2-€12n | = A;Ih
jeZ>0

jEzZ>0 i=1
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where Ay and psvlh are chosen as in Equation (34). It follows that

h
eis ~ pﬁh 1
Conng®*(D*)ap = [C(1/2)", 0.4+ =2+ Y a AL -Zem @ 0[—1/2]
JEZ>0 =1
1 h
=~ | C(1/2)", 0+ > a Jrf*h'Zem & 0[—1/2]
j€7>0 i=1
=~ Connl*(D*)ap [~1/2] & 0[—1/2]

>~ Conny®(D*)ap [~1/2] © 0[1/2]
as desired. Note that the second isomorphism follows from Equation (26) since 1/(2h) - Z?Zl e;,; is invariant under
conjugation and the fourth isomorphism holds since (—1/2) — 1/2 is an integer and hence, see Section 3.2, one has
0[—1/2] = 0[1/2]. The theorem for Connge‘s(DX)a,l will be obtained later on. Assume now that g = so0g,. In this

case one can choose Chevalley generators such that

-1
1 < z
Ag,, = 3 (Ent1n—1+ €nt2n) + Z(ei+1,i + e2nti—ion—i) + 5(61,27171 + €2.2n) (36)
i=1
as well as
n—1
ooy = Z( n+ie;; + Z —n—1+1i)e;; (37)
i=1 i=n-+2
Let ¢1,- - -, can, denote the standard basis of C2". Consider the change of coordinates to the basis
d1:0—21+027n , di=c¢ for2<i<n-—1 | dn:cn—i—cn;l
di=ciy1 forn+1<i<2n—-2 , dop_ 1—%1—027” , dop =cCp — Cntl
z

. . 2n—3
In terms of the new basis one obtains Ag, = Zi:l €it1,i + 2 €1,2n—2 as well as

n—1 2n—2
Pios, = (_n+1)(e2n71,1+61,2n71)+Z< ntileii+ Y (—n+ie
i= i=n+1

The gauge term of the coordinate change is v0,(y~1) where

2n—2 1
= E € E €it1,i 62n 1— €man—1)+ 5(61,1 + entin — €nt12n T €12n-1) + €nn + €n2n
= i=n—+1
n—1 2n—2 p 1
Y= E €ii+ E €ii+1 1 5(81,% — €on—1,2n) + §(en,n +eann)t+ €11+ €2n-11F €nnt1 — €2nnt1
= i=n—+1
One obtains .
-1
70.(v ) = 2 (—e1,1 —eam—1,2n—1+€1,2n-1 +€2-1.1)

It follows that ConnHCIS (D*)a,0 with the Lie theoretic choices as in Equation (36) and Equation (37) is isomorphic to
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0, + A+ B+ C where

2n—2
1
A= =2 ((—n +1)(e2n—1,1 +€1,20-1) + Z (—n+1) - 6i,¢>

=2

2n—3 i
B= Y a;| > €itritz e1om 2

jez>0 =1
1

=5 (—e11 — e2n—1,2n—1 +€1,2n-1 + €2n-11)

Hence there are again some important cancellations in the sum A + B + C' and one obtains

0.+A + B+C

1 2n—2 2n—3 Y 1
8z + (7277/ — 2)Z . <Z <_n + l)el,l> + Z aj <Z €i+177; —|— AR 8172,”_2) — g . 6277,—1,2n—1

i=1 JEZ>O i=1

Furthermore, one has

1 2n—2 1 h 1 h
o — 2 Zl (—n+1)e;; = o .2(—h+22—2) “Cii = Psiy, oh Eem

It follows from Equation (26) and Equation (38) that Equation (19) for j = 0 holds. One can also deduce the j =1
result for g = s09,11 since s09,,41 is obtained via folding from s05, 2. It then follows from our calculations that

Conn'eis (D*)aq = Conn'leis (D*)ao®0

502n+1 $02n+1

as desired.

The last case to consider is g = go. The first fundamental representation is 7-dimensional and one can choose
Chevalley generators, see for example [1] (note however that we choose the dual convention compared to loc. cit. in
order to align with our choices of Chevalley generators of the other Lie algebras that we consider), such that

6
z
Ag, =D eiri+ 5 (ene +ear)
i=1

as well as
Hy = —ej1+exz—2e33+2e55—es6+err , Ho=—ez2+e33—e55+¢66

Write p;/Q = n1Hy + noH, for scalars ny and no. Solving «;(p¥) = 1 for ¢ = 1,2 and using o;(H;) = A; j, where
A = (A, ;) is the Cartan matrix, yields n; = 5 and ng = 3. It follows that

Py, 1 1
-—=(—3e1,1 —2e32 —e33+e55+ 2e56 + 3e77) - —
hg, =z 6z

One sees that

07
hgy, 2z  hso, 2

Ae Pz 1 _ Pro 1

g2

=A

where the Lie theoretic choices for §07 are as in Equation (35). It then follows from the earlier type B calculations
that
ConnHels(DX )aA,O ~ ConnHels(DX )a,(] @ 0

92 slg
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The Lie algebra gs is obtained via folding from sog. One deduces from the earlier type D calculations that

Connlg{;iS(DX Ja,1 =2 ConnIg{;iS(DX a0 ®0
This gives the desired result for g = go by noting that x = 1/2, as indicated earlier. For completeness we calculate x
directly. When decomposing the Cartan matrix A as A = DB with D diagonal and B symmetric, there is a non-zero
constant ¢ such that the lower right entry of D is 3¢ and the corresponding entry of B is 2/(3¢). For each choice of
¢ one obtains a standard invariant bilinear form (—, —). on g as defined by Kac in [9]. It satisfies (ag, a2). = 2/(3¢)
and Ha/(3c) is dual to as. In the normalization that the long root ay has square length 2 it follows that ¢ = 1/3, Ho

is dual to aa. One then has
1
k-Tr(H3) =2 ~ K=y

In order to complete the prove of the theorem. we first show that for our choice of Chevalley generators one has

[

Conng™™(D* )aplk —1] = € ((2;@ —h=1)/(2h) + Y aiz, h> (39)

i€Z>0
Conntle®s (D*)a0lk] (40)

5[h

1%

As shown before, there is an isomorphism

<<c<<1/z>>h,az+ > A) = <(C((1/Z))h,32+p];vg+ > A)

i€Z>0 i€Z>0

Let ¢ be such that ¢" = 2 and consider as in [10] an isomorphism of C((1/z))-vector spaces between C((1/2))" and
C((1/¢)) given by f(z)e; = f(¢")¢"~* where e; is the standard 4’th basis element in C((1/2))" with 0’s everywhere
except a 1 in the i'th entry. Under this map one has for any scalar s

pv S h 1—h+2s

sl —h i

az‘f'hh‘i‘hfg ei}i‘f‘.g a;l\; — achﬁ‘i ZhC "‘E ai<
i=1 i€Z>0 1€Z>0

Letting s = k — 1 one obtains Equation (39). Letting s = x one obtains

Conng™*(D*)aols] = & <<2n—h+1>/<2h>+ > h)
i€Z>0

~ £ <(2/<;—h—1)/(2h)+ > aizi,h>
i€Z>0

where the second isomorphism holds since the difference of the two regular singular terms is in Z/h. Therefore one
obtains Equation (40). Suppose now that a different choice of Chevalley generators for ;[h is made. Repeating the
above calculations with the a;’s replaced by a; A’ (for some non-zero scalar \) and using Proposition 1 it follows that
the corresponding Heisenberg connection is isomorphic to

26— h—1

¢ Y e

i€Z>0

8<h —+

for a suitable non-zero scalar \. The ~ equivalence class of this connection is independent of A and therefore the
~ equivalence class of the Heisenberg connection is independent of the choice of Chevalley generators. Therefore
Equation (39) implies Equation (18). This completes the proof of the theorem. O

Remark 2. There are several points of interaction between the above calculations of normal forms of Heisenberg
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connections associated to g and the Drinfeld-Sokolov hierarchy associated to g. A close relation is natural since the
Heisenberg algebra is intricately related to the flows of the hierarchy.

First, Equation (26) is a key tool in the proof of Theorem 1 and as indicated before this equation is in fact
a generalization of a central result employed by Cafasso and Wu [1](Lemma 3.8 and Theorem 3.10) in their work
on Witten-Kontsevich points of Drinfeld-Sokolov hierarchies. The reason that Equation (26) is relevant for Witten-
Kontsevich points is that via this type of isomorphism Heisenberg connections describe certain Virasoro constraints
on tau functions when the Drinfeld-Sokolov phase space is described in terms of a suitable Sato Grassmannian.

Another close relation between Heisenberg connections and Drinfeld-Sokolov hierarchies concerns the role of folding
constructions for Lie algebras. It is shown by Cafasso and Wu in [1] (Section 4.2) that the generalized Witten-
Kontsevich points of type A, D, E yield, after a suitable restriction on the flow variables, the corresponding points
for algebras of type B, C, F, G that are obtained via folding. See also the work of Liu, Ruan, Zhang [13] on
folding constructions for Drinfeld-Sokolov hierarchies. Similarly, we show in Theorem 1, that the difference between
the Heisenberg connection of a B, C, G type algebra via its first fundamental representation and via the folding
construction is almost negligible.

Lastly, the shift involving £ in Theorem 1 resembles a shift by x for tau functions shown by Cafasso and Wu
in [2]. Given a tau function 7 of the Drinfeld-Sokolov hierarchy of g, there is an associated point of a vector Sato
Grassmannian whose isomonodromic tau function 7sgw is related to 7 by

logT = & - log Tssw

In this Grassmannian approach to Drinfeld-Sokolov tau functions as well as in our set-up for Heisenberg connections
one realizes the simple Lie algebra g via its first fundamental representation.

Remark 3. The change of basis that was employed in the proof of Theorem 1 to relate the Heisenberg connections
for Lie algebras of type D and type A was used before in a somewhat different context by Vakulenko [15]. In loc. cit.
the type A results of Kac and Schwarz [10] are generalized to type D by describing the point in the Sato Grassmannian
giving the generalized Witten-Kontsevich point.
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