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Abstract

Kostant introduced the notion of a cyclic element in a finite-dimensional complex simple Lie algebra. Its

spectrum has beautiful trigonometric expressions, thanks to work of Coxeter and others that relates the linear

algebra of Coxeter elements and Cartan matrices. Instead of viewing cyclic elements as linear operators, we consider

the associated linear differential operators, viewed as connections on a formal punctured disc. After introducing a

variant of the Levelt-Turrittin normal form of such connections, we calculate them for cyclic elements on simple Lie

algebras of type ABCDG.

1 Introduction

Let g be a finite-dimensional complex simple Lie algebra. Fix a Cartan subalgebra h, let α1, · · · , αr be a set of simple

roots and ei generators of the corresponding root spaces with respect to h. Let e0 denote the lowest root space.

Kostant introduced in [10] the cyclic element

Λ = e0 + · · ·+ er

After fixing a representation of g, the cyclic element can be viewed as a linear operator. What is its spectrum? Note

that by [10] (Theorem 6.2), this spectrum is independent of any of the above Lie theoretic choices, up to an overall

scaling. Furthermore, by loc. cit. (Lemma 6.3) Λ is diagonalizable. The spectrum turns out to be very interesting.

Consider for example e6 in its 27-dimensional first fundamental representation. Let h = 12 denote the Coxeter number

and for each k let ζk = e2πi/k. Up to an overall scaling, it turns out that the spectrum equals the following multi-set:

{
ζih
∣∣ 0 ≤ i < 12

}
t
{

2 cos
(
π
h

)
ζ2h · ζih

∣∣ 0 ≤ i < 12
}
t {0, 0, 0}

Such surprising trigonometric formulas for the spectrum can be understood via the “Cartan-Coxeter” correspon-

dence. This is a beautiful relation between the linear algebra of Coxeter elements and Cartan matrices, initiated in

the work of Coxeter [3]. Kostant showed in [10] (Lemma 6.4B) that the centralizer of Λ is Cartan algebra h′ (different

than h). Let α′1, · · · , α′r denote a set of simple roots, viewed as functionals on h′. Choose a bi-coloration of the

corresponding Dynkin diagram, so that adjacent vertices are of opposite color. Let cj = ±1 depending on the color of

the j’th vertex and let h denote the Coxeter number of g. The work of Coxeter was refined by Fring-Liao-Olive in [5]

to show that (up to scaling Λ)

Λ · α′j = cj exp

(
−cj ·

iπ

2h

)
· xj (1)
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where the xj ’s are the entries of a (right) Perron-Frobenius eigenvector of the Cartan matrix of g. This allows the

spectrum calculation of Λ with respect to any representation, by expressing the weights in terms of the simple roots.

For example, the previously mentioned spectrum for e6 can be deduced from Equation (1) and the calculation of a

Perron-Frobenius eigenvector of the Cartan matrix (with indexing convention as in [1]) as(
cos

(
4π

12

)
, cos

(
3π

12

)
, cos

( π
12

)
, 2 cos

( π
12

)
cos

(
3π

12

)
, cos

( π
12

)
, cos

(
4π

12

))T

It should be noted that for most of the simple Lie algebras, the spectrum (say with respect to the first fundamental

representation) can be calculated also in a purely elementary manner. Namely, let ei,j denote the matrix with 0’s

everywhere except a 1 in the (i, j) entry. Using the same choices of cyclic elements as in [2] (Appendix A) and [4]

(Appendix 1), one obtains the following:

cyclic element spectrum

sln e1,n +
∑n−1
i=1 ei+1,i 1, ζn, · · · , ζn−1n

so2n+1
1
2 · (e1,2n + e2,2n+1) +

∑2n
i=1 ei+1,i 1, ζ2n, · · · , ζ2n−12n , 0

sp2n e1,2n +
∑2n−1
i=1 ei+1,i 1, ζ2n, · · · , ζ2n−12n

so2n
1
2 (e1,2n−1 + e2,2n) + 1

2 (en+1,n−1 + en+2,n) +∑n−1
i=1 (ei+1,i + e2n+1−i,2n−i)

1, ζ2n−2, · · · , ζ2n−12n−2 , 0, 0

g2
1
2 · (e1,6 + e2,7) +

∑6
i=1 ei+1,i 1, ζ6, · · · , ζ56 , 0

In the present work we consider a non-linear variant of the above discussion. In fact, we also switch to the affine

version of the cyclic element:

Λg = z · e0 + e1 + · · ·+ er

This affine cyclic element is central for example in the definition of Drinfeld-Sokolov integrable hierarchies in [4].

Instead of viewing Λg as a linear operator, we consider the differential operator

∂z + Λg

The most interesting behavior of this operator occurs near z = ∞. When viewed as a connection on the formal

punctured disc D× around ∞, we call it the Heisenberg connection ConnHeis
g (D×), since the centralizer of Λg is a

Heisenberg algebra in the affine algebra ĝ. Our notation suppresses the dependency of the connection on the Lie

theoretic choices involved in the definition of Λg, we justify this in Section 2. After fixing a finite-dimensional complex

representation of g, the Heisenberg connection has a Levelt-Turrittin normal form. What is it? It has been observed

in different contexts that after passing to a suitable finite cover of the disc, the problem reduces again to the spectrum

of Λg|z=1. See for example [13] (Lemma 2.1) for a result of this flavor. Nonetheless, what happens without the base

change is interesting, and this is what we study in the present work.

Remark 1. Connections similar to ConnHeis
g (D×) have been studied for example by Frenkel-Gross [6], Kamgarpour-

Sage [8], and Masoero-Raimondo-Valeri [13].
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2 Coarse Levelt-Turrittin normal form

Fix an indeterminate t. By definition, a connection (V,∇) on a formal punctured disc D× = Spec C((t)) consists of a

finite-dimensional C((t))-vector space V together with ∇ in EndC(V ) such that ∇(fv) = f ′v+ f∇(v) for all f in C((t))

and all v in V . Levelt [11] and Turrittin [15] showed that isomorphism classes of such connections have certain normal

forms, reminiscent of the Jordan normal form. The aim of the present work is to explicitly calculate the normal form

of ∂z + Λg, viewed as a connection on Spec C((1/z)). Observe that the choice of Chevalley generators involved in the

definition of Λg can change the isomorphism class of the connection. Hence, we now introduce a slightly coarser variant

of the Levelt-Turrittin normal form which, for Heisenberg connections, is independent of the Lie theoretic choices.

Let n be a positive integer and let f =
∑
i ait

i/n be an element of C((t1/n)) that is not an element of C((t1/m)) for

1 ≤ m < n. View C((t1/n)) as an n-dimensional C((t))-vector space. The basic building blocks of the Levelt-Turrittin

classification are connections of the form

E(f, n) =

(
C((t1/n)) , ∂t +

f(t1/n)

t

)
with ai = 0 for all i > 0. This connection is irreducible, see for example [14] (Proposition 3.1). (Since E(f, n) is

n-dimensional, it will be convenient later on to allow the notation E(f, 0) to denote a 0-dimensional connection.)

Given E(f, n), there are two obvious modifications to f that do not change the isomorphism class of the connection.

First, let k in Z and consider the C((t))-linear automorphism of C((t1/n)) defined via v 7→ tk/n · v. This shows that

E(f, n) ∼= E(f +
k

n
, n)

for all integers k. Second, let ζn be an n’th root of unity, and consider the C((t))-linear automorphism of C((t1/n))

defined via the substitution

t1/n 7→ ζn · t1/n (2)

This shows that

E(f(t1/n), n) ∼= E(f(ζnt
1/n), n)

In the Levelt-Turrittin normal form, these two modifications are essentially the only ambiguity. To make this precise,

we restrict now to semi-simple connections (this is all we will need), so connections that are the direct sum of irreducible

ones. Levelt [11] and Turrittin [15] then show the following: For every semi-simple connection ∇ on D× there exists

r ≥ 1 and fi’s, ni’s such that

∇ ∼=
r⊕
i=1

E(fi, ni)

This description is essentially unique: Consider

∇1
∼=

r⊕
i=1

E(fi, ni) , ∇2
∼=

s⊕
j=1

E(gj ,mj)

Then

∇1
∼= ∇2

if and only if r = s and, possibly after a permutation of the indices, one has ni = mi and for each i there is an ni’th

root of unity ζni
such that

fi(z
1/ni)− gi(ζni

· z1/ni) ∈ Z · 1

ni

We refer to the work of Sabbah [14] for a description in modern language of the results of Levelt and Turrittin.

We now introduce a coarser notion of equivalence of connections: Instead of the substitutions in Equation (2), we

now consider

t1/n 7→ c · t1/n
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for an arbitrary non-zero constant c, not just n’th roots of unity. More precisely:

Definition 1. Consider two semi-simple connections ∇1 and ∇2 on D× with Levelt-Turrittin normal forms

∇1
∼=

r⊕
i=1

E(fi, ni) , ∇2
∼=

s⊕
j=1

E(gj ,mj)

We write

∇1 ∼ ∇2

if r = s and, possibly after a permutation of the indices, one has ni = mi and there are non-zero scalars c1, · · · , cr
such that

fi(z
1/ni)− gi(ci · z1/ni) ∈ Z · 1

ni

for all i.

One sees that∼ is an equivalence relation, and isomorphic semi-simple connections∇1 and∇2 are always equivalent.

We show in Theorem 1 that with this coarser variant of the Levelt-Turrittin normal form, the Lie theoretic choices

involved in the definition of cyclic elements do not change the equivalence class of Heisenberg connections.

As indicated before, we view the Heisenberg connection ∂z+Λg near z =∞, hence as a connection on the punctured

disc Spec C((t)) with t = 1/z. For notational reasons we often write various connections on this disc in terms of z and

its fractional powers. For example, if ζh = z for some positive integer h, and c is a constant, then

E(c+ ζh+1, h) =

(
C((t1/h)), ∂t −

c+ t−(h+1)/h

t

)
(3)

To state our main result, we introduce the notion of a shifted connection: If Conn = (V,∇) is a connection on

D× = Spec C((t)) with d = dimC((t))(V ), define the shifted connection for a (complex, say) scalar i by

Conn[i] = (V,∇+
i

d
· 1

t
)

Here 1/t stands for the C((t))-linear map v 7→ (1/t) · v, where v is in V .

Theorem 1. Let g be a simple complex Lie algebra of type ABCDG and consider the associated Heisenberg connections

ConnHeis
g (D×) with respect to the first fundamental representation. These connections are semi-simple, and their ∼

equivalence class is independent of the choice of cyclic element. Define κ via

type of g A B C D G

κ 0 1 0 1 1

Let h be the Coxeter number and ζ such that ζh = z. Then

ConnHeis
g (D×) ∼ ConnHeis

slh
(D×)

[κ
2

]
⊕ E(

κ

2
, κ) ∼ E

(
−1 + h− κ

2h
+ ζh+1, h

)
⊕ E(

κ

2
, κ) (4)

Proof. We start by relating the Heisenberg connections for two different choices of cyclic elements on g. Kostant shows

in [10] (Theorem 6.2) that any two cyclic elements are conjugate, up to a non-zero scalar. We adapt these argument

to the corresponding Heisenberg connections. Fix a set of simple roots S = {α1, · · · , αr} and corresponding lowest

root α0. Fix a Cartan algebra h and view all roots as element of h via the Killing form. For each i choose a generator
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ei of the αi root space with respect to h. Choose two cyclic elements

Λ = a0ze0 +

r∑
i=1

aiei

Λ′ = b0ze0 +

r∑
i=1

biei

for non-zero scalars ai and bi. Let εi be the fundamental weights, viewed as elements of h, and define

y =

r∑
i=1

log

(
bi
ai

)
εi

Define b via exp(ad y)e0 = be0. Let q denote the height of the highest root and define c via

e−c(q+1) =
b0
ba0

Let ρ∨g be the element of h so that [ρ∨g , ei] = ei for all 1 ≤ i ≤ r. Kostant shows in the proof of [10] (Theorem 6.2) that

exp(ad(y + cρ∨g ))Λ = λΛ′

for λ = ec. Let

a := y + cρ∨g

From the definition of y, b, and c it follows that the coefficients of e0 in Λ and Λ′ only contribute to a through their

quotient. Hence, a has no z-dependency. Therefore

exp(ad a) (∂z + Λ) = ∂z + exp(ad a)(Λ)

= ∂z + λΛ′

For any other set S̃ of simple roots, choose a Weyl group element σ such that S̃ = {σα1, · · · , σαr}. Now choose

a finite-order inner automorphism exp(ad r) of g that restricts to σ on h, see [7]. The new root space generators can

be chosen as exp(ad r)ei. It follows that for every cyclic element Λ̃ with respect to S̃, there is a cyclic element Λ with

respect to S, such that

exp(ad r)(∂z + Λ) = ∂z + Λ̃

Finally, since all Cartan algebras are conjugate, we have shown that for any two cyclic elements Λ and Λ̃ on g, there

is a non-zero scalar λ such that

exp(ad x) (∂z + Λ) = ∂z + λΛ̃ (5)

for some x in g.

Having established this close relation of Heisenberg connections associated to different cyclic elements, we now

show that one can perturb these connections in a very specific manner, without leaving the isomorphism class. Let Λg

be an arbitrary cyclic element on g. We claim that for every non-zero scalar λ there is Y in g[[1/z]] such that

exp(ad Y )

(
∂z +

ρ∨g
hz

+ λΛg

)
= ∂z + λΛg (6)

In particular, with respect to any representation ξ of g, one obtains isomorphic connections on C((1/z)). A con-

venient reference for Equation (6) is the work of Cafasso and Wu [2] (Lemma 3.9 and Theorem 3.11). The idea is to

decompose Y =
∑
j≤0 Yj with Yj in ĝ of principal degree j, and then to solve the equation recursively with respect to

the principal degree. Note that in loc. cit. Equation (6) is obtained with −Λg instead of λΛg. However, this is simply
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due to the intended application to the construction of Drinfeld-Sokolov integrable hierarchies. The proof can be seen

to be independent of the choice of root space generators e0, e1, · · · , er involved in the definition of Λg. In particular,

after working with −λei for all i, one obtains Equation (6).

For g = slh we choose the Chevalley generators such that

Λslh = z · e1,h +

h−1∑
i=1

ei+1,i , ρ∨slh =
1

2

h∑
i=1

(−1− h+ 2i) · ei,i (7)

All matrix realizations of Lie algebras that we use in the proof of Theorem 1 can be found for example in [2] (Appendix

A) and [4]. Let ζ be such that ζh = z and consider as in work by Kac and Schwarz [8] an isomorphism ν of C((1/z))-

vector spaces between C((1/z))h and C((1/ζ)) given by f(z)vi 7→ f(ζh)ζi−h where vi with 1 ≤ i ≤ h is the standard

i’th basis element in C((1/z))h, with 0’s everywhere except a 1 in the i’th entry. Note that

(ν∂zν
−1)(f(ζh)ζi−h) = ∂ζh(f(ζh)ζi−h)− i− h

hζh
· f(ζh)ζi−h

Exploiting the second summand and its partial cancellation with the ρ∨slh contribution, one sees that via ν, for any

scalar s

∂z +
ρ∨slh
hz

+
s

hz
·
h∑
i=1

ei,i + λΛslh 7→ ∂ζh +
−1 + h+ 2s

2h
· ζ−h + λζ (8)

Crucially, the coarse Levelt-Turrittin normal form is independent of λ: The connection on the right-hand side is

nothing but

E(
−1 + h+ 2s

2h
+ λζh+1, h)

Changing λ corresponds exactly to a substitution

ζ 7→ λ1/(h+1)ζ

that does not change the coarse normal form.

Let Y be as Equation (6) for g = slh. Then, for any complex scalar µ

exp(ad(−Y ))

(
∂z +

µ

z
·
r∑
i=1

ei,i + λΛslh

)
= ∂z +

ρ∨slh
hz

+
µ

z
·
r∑
i=1

ei,i + λΛslh (9)

Note that as in Equation (3), there is a sign change in the regular singular term when switching from the description

of a connection in terms of z to 1/z. Hence, Equation (9) with µ = −κ/2h and λ = 1 implies together with Equation

(8) that

(∂z + Λslh)
[κ

2

]
∼= E

(
−1 + h− κ

2h
+ ζh+1, h

)
Choose now an arbitrary cyclic element for slh and let ConnHeis

slh
(D×) be the corresponding Heisenberg connection. By

Equation (5), Equation (6), and Equation (8) it follows that

ConnHeis
slh

(D×)
[κ

2

]
∼ E

(
−1 + h− κ

2h
+ ζh+1, h

)
(10)

In particular, in type A, the coarse Levelt-Turrittin normal form of is independent of the choice of cyclic element.

Consider now again the case of general g in its first fundamental representation, and let h denote the Coxeter

number. It follows from Equation (5) and Equation (10), that in order to prove the theorem, it suffices to show that
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there is some choice of cyclic element Λg such that for every non-zero scalar λ

∂z + λΛg
∼=

(
C((1/z))h, ∂z +

ρ∨slh
hz
− κ

2hz
·
h∑
i=1

ei,i + λΛslh

)
⊕ E(

κ

2
, κ) (11)

We establish this on a case-by-case basis. Consider first g = so2n+1, with Coxeter number h = 2n and (2n + 1)-

dimensional first fundamental representation. Following [2] (Appendix A), one can choose Chevalley generators such

that for 1 ≤ i ≤ n

ei = ei+1,i + e2n+2−i,2n+1−i

and

e0 =
1

2
(e1,2n + e2,2n+1)

Hence

Λg =

2n∑
i=1

ei+1,i +
z

2
· (e1,2n + e2,2n+1) (12)

ρ∨g =

2n+1∑
i=1

(−n− 1 + i) · ei,i (13)

Note that the right-hand side of Equation (13) has trace 0 and commutator 1 with ei for all 1 ≤ i ≤ n, as desired.

Let c1, · · · , c2n+1 denote the standard basis of C2n+1 and view it as a basis of C((1/z))2n+1 as a C((1/z))-vector

space. Consider the change of coordinates to the basis

d1 =
c1
2

+
c2n+1

z

di = ci for 2 ≤ i ≤ 2n

d2n+1 =
c1
2
− c2n+1

z

Remark 2. A very similar coordinate change was used by Vakulenko in [16] to describe a type D integrable hierarchy

of Drinfeld-Sokolov type.

In terms of the new basis, one obtains

Λg =

2n−1∑
i=1

ei+1,i + z · e1,2n

as well as

ρ∨g
hz

=
1

2nz
·

(
−n · (e1,2n+1 + e2n+1,1) +

2n∑
i=2

(−n− 1 + i) · ei,i

)
(14)

The gauge term of the coordinate change is γ∂z(γ
−1) where

γ−1 =

2n∑
i=2

ei,i +
1

2
(e1,1 + e1,2n+1) +

1

z
(e2n+1,1 − e2n+1,2n+1)

γ =

2n∑
i=2

ei,i + e1,1 + e2n+1,1 +
z

2
(e1,2n+1 − e2n+1,2n+1)
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One obtains

γ∂z(γ
−1) =

1

2z
· (−e1,1 + e2n+1,1 + e1,2n+1 − e2n+1,2n+1)

Observe the crucial cancellation when adding this term with the term in Equation (14). This is at the heart of our

argument!

We obtain that for any non-zero scalar λ, the connection ∂z + λΛg is isomorphic to the connection (W,∇) with

underlying vector space W = C((1/z))2n+1 and ∇ : W →W given by

∂z +
1

2nz
·

2n∑
i=1

(−n− 1 + i) · ei,i + λ ·

(
2n−1∑
i=1

ei+1,i + z · e1,2n

)
− 1

2z
· e2n+1,2n+1

Note that

1

2nz
·

2n∑
i=1

(−n− 1 + i) · ei,i =
1

2hz
·
h∑
i=1

(−h− 2 + 2i) · ei,i

=
ρ∨slh
hz
− 1

2hz
·
h∑
i=1

ei,i

and
2n−1∑
i=1

ei+1,i + z · e1,2n = Λslh

where Λslh and ρ∨slh are chosen as in Equation (7). It follows that for g = so2n+1

∂z + λΛg
∼=

(
C((1/z))h , ∂z +

ρ∨slh
hz
− 1

2hz
·
h∑
i=1

ei,i + λΛslh

)
⊕
(
C((1/z)), ∂z −

1

2z

)
(15)

As before, there is a sign change in the regular singular term when switching from a description of a connection in

terms of z to 1/z. Hence the second summand in Equation (15) is exactly E(κ2 , κ), and we have shown Equation (11).

Assume now that g = so2n, with Coxeter number h = 2n− 2 and 2n-dimensional first fundamental representation.

As in [2] (Appendix A) choose Chevalley generators such that for 1 ≤ i ≤ n− 1

ei = ei+1,i + e2n−i+1,2n−i

and

en =
1

2
(en+1,n−1 + en+2,n)

e0 =
1

2
(e1,2n−1 + e2,2n)

Hence

Λso2n
=

1

2
· (en+1,n−1 + en+2,n) +

n−1∑
i=1

(ei+1,i + e2n+1−i,2n−i) +
z

2
(e1,2n−1 + e2,2n) (16)

as well as

ρ∨so2n
=

n−1∑
i=1

(−n+ i)ei,i +

2n∑
i=n+2

(−n− 1 + i)ei,i (17)

Note that the right-hand side of Equation (17) has trace 0 and commutator 1 with ei for all 1 ≤ i ≤ n, as desired.

Let c1, · · · , c2n denote the standard basis of C2n and view it as a basis of C((1/z))2n as a C((1/z))-vector space.
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Consider the change of coordinates to the basis

d1 =
c1
2

+
c2n
z

di = ci for 2 ≤ i ≤ n− 1

dn = cn +
cn+1

2

di = ci+1 for n+ 1 ≤ i ≤ 2n− 2

d2n−1 =
c1
2
− c2n

z

d2n = cn −
cn+1

2

In terms of the new basis one obtains

Λg =

2n−3∑
i=1

ei+1,i + z · e1,2n−2

as well as

ρ∨g = (−n+ 1)(e2n−1,1 + e1,2n−1) +

n−1∑
i=2

(−n+ i)ei,i +

2n−2∑
i=n+1

(−n+ i)ei,i

The gauge term of the coordinate change is γ∂z(γ
−1) where

γ−1 =

n−1∑
i=2

ei,i +

2n−2∑
i=n+1

ei+1,i +
1

z
(e2n,1 − e2n,2n−1) +

1

2
(e1,1 + en+1,n − en+1,2n + e1,2n−1) + en,n + en,2n

γ =

n−1∑
i=2

ei,i +

2n−2∑
i=n+1

ei,i+1 +
z

2
(e1,2n − e2n−1,2n) +

1

2
(en,n + e2n,n) + e1,1 + e2n−1,1 + en,n+1 − e2n,n+1

One obtains

γ∂z(γ
−1) =

1

2z
· (−e1,1 − e2n−1,2n−1 + e1,2n−1 + e2n−1,1)

It follows that for every non-zero scalar λ

∂z + λΛg
∼= ∂z +A+ λB + C

where

A =
1

(2n− 2)z
·

(
(−n+ 1)(e2n−1,1 + e1,2n−1) +

2n−2∑
i=2

(−n+ i) · ei,i

)

B =

2n−3∑
i=1

ei+1,i + z · e1,2n−2

C =
1

2z
· (−e1,1 − e2n−1,2n−1 + e1,2n−1 + e2n−1,1)

Hence, there are again some important cancellations in the sum A+ λB + C, and ∂z +A+ λB + C equals

∂z +
1

(2n− 2)z
·

(
2n−2∑
i=1

(−n+ i)ei,i

)
+ λ

(
2n−3∑
i=1

ei+1,i + z · e1,2n−2

)
− 1

2z
· e2n−1,2n−1 (18)
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Furthermore

1

2n− 2

2n−2∑
i=1

(−n+ i)ei,i =
1

2h
·
h∑
i=1

(−h+ 2i− 2) · ei,i

=
ρ∨slh
h
− 1

2h
·
h∑
i=1

ei,i

Hence, in the same way as for type B, one obtains Equation (11).

Suppose now g = sp2n, with Coxeter number h = 2n and 2n-dimensional first fundamental representation. As in

[2] (Appendix A), one can choose the cyclic element so that

Λsp2n
= Λsl2n

Hence the theorem follows from the already treated type A case. Note that this relation between type A and C cyclic

elements holds more generally in the context of folding, see for example [2] and [12].

The last case to consider is g = g2, with Coxeter number h = 6 and 7-dimensional first fundamental representation.

One can choose Chevalley generators such that

Λg2
=

6∑
i=1

ei+1,i +
z

2
· (e1,6 + e2,7) = Λso7

Hence, the result follows from the so7-case treated earlier.
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