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Abstract

The mass spectrum of affine Toda theory is known to be expressible in terms of a suitable eigenvector of the

relevant Cartan matrix. The particles correspond in a precise manner to the Coxeter element orbits in the set

of roots. Recently, variants of affine Toda theory have been constructed for many different Weyl group elements.

Again, the particles correspond to orbits in the set of roots and this allows the calculation of the classical mass

spectrum. We show how these spectral calculations generalize the affine Toda relation with the Cartan matrix. As

an example, we calculate the spectrum for the unique non-Coxeter infinite family D2n(an−1) of primitive regular

conjugacy classes in the Weyl groups of complex simple Lie algebras.

1 Introduction

Let g be a simple finite-dimensional complex Lie algebra and let σC be a Coxeter element in the Weyl group of g.

Fring-Liao-Olive showed in [12] that the particles of the affine Toda theory associated to g correspond to the orbits

of the cyclic group 〈σC〉 acting on the set of roots. A beautiful consequence is an expression of the mass spectrum

in terms of the entries of a suitable eigenvector of the Cartan matrix of g. See the important experimental work by

Coldea et. al. [7] for an observation of parts of this spectrum in quasi 1-dimensional magnetic systems related to e8
affine Toda theory. A mathematical survey of these developments is given in [2].

Freeman introduced in [11] a very useful re-formulation of the affine Toda theory Lagrangian. This involves

Kostant’s notion of a cyclic element in g, introduced in [13]. Fix a Cartan algebra h in g, and for 1 ≤ i ≤ r = rank g

let ei be generators of the root spaces with respect to a choice of simple roots. Further, let e0 be a generator of the

lowest root space. The corresponding cyclic element is defined as

Λ+ =

r∑
i=0

ei

Kostant showed in [13] that its centralizer is again a Cartan algebra h′, different from h. Consider a field φ : R2 → h

and let (−,−) denote the Killing form. Freeman showed that for a suitable element Λ− in h′, affine Toda theory can

be formulated in terms of the Lagrangian

1

2
(∂µφ, ∂

µφ)− (exp(ad φ)(Λ+),Λ−)

In this description, the Weyl group assumes a bigger role: both Λ+ and Λ− are eigenvectors of a Coxeter element. In

[14] we used this formulation to introduce new Lagrangians based on eigenvectors of Weyl group elements σ different

from Coxeter elements. We call these Toda-Weyl theories and the classical mass spectrum is calculated in [14]. Again,

the particles of the theory correspond to orbits (in the set of roots) of the cyclic group generated by σ. These Weyl

orbit particles have a mass with the following Lie theoretic expression: If γ1, γ2, · · · are orbit representatives, then by

[14] (Theorem 1) the masses are given by

|Λ+ · γi|

The task is then to find an explicit description of these values, for example mimicking the description in terms of

eigenvectors of the Cartan matrix if σ is a Coxeter element. In [14] we gave some examples of this, without a
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systematic description of the eigenvectors of Weyl group elements in terms of eigenvectors of analogues of the Cartan

matrix. In the present work we give the full details of this correspondence. In Section 2 the mathematical background

is described, and in Section 3 this is used to give the full mass spectrum for a particularly interesting infinite family of

Toda-Weyl theories associated to simple Lie algebras of type D: We consider a Weyl group element σ in the conjugacy

class D2n(an−1) (see Section 3 for the definition). More specifically, we assume Λ+ is an eigenvector of σ with eigenvalue

e2πi/2n. The eigenspace is 2-dimensional, and for each choice of eigenvector one obtains a Toda-Weyl theory.

For simple Lie algebras of type D2n the Coxeter element is of order 4n−2 and the usual affine Toda mass spectrum

has an elegant trigonometric expression

sin

(
π

4n− 2

)
, · · · , sin

(
(2n− 2)π

4n− 2

)
,

1

2
× 2

where we adopt the notation m× i to signify that the value m occurs with multiplicity i. See for example [10] (Table

2) for the relevant eigenvector calculations. We show that for the conjugacy class D2n(an−1) analogous trigonometric

formulas exist as well.

Theorem 1. Let σ be a Weyl group element in the conjugacy class D2n(an−1). There are basis vectors D2n(an−1)I
and D2n(an−1)II of the 2-dimensional e2πi/2n-eigenspace of σ, such that the corresponding Toda-Weyl theories have

the following mass spectrum:

D2n(an−1)I 0 sin
(
π
2n

)
× 4 · · · sin

(
(n−1)π

2n

)
× 4 1

D2n(an−1)II 1× (4n− 2)

2 Carter-Weyl correspondence

In this section we describe the mathematical background that allows us to relate the Toda-Weyl masses to eigenvectors

of generalized Cartan matrices.

Let σ be an element of the Weyl group W of a finite-dimensional simple complex Lie algebra g. We are interested

in a subtle relation between the σ action on the root space, and the σ action on the set of roots. More precisely, let Φ

be the set of roots, and decompose it into orbits

Φ = O1 t · · · t Os

under the action of the cyclic group generated by σ. Let γ1, · · · , γs be orbit representatives. View W as acting on a

Cartan algebra h and view the roots as elements of h via the Killing form. Now let Λ in h be an eigenvector of σ.

Question 1. What are the values |Λ · γi| for 1 ≤ i ≤ s?

We call these the Weyl-Orbit values. Since the Killing form is invariant under Weyl group elements, these absolute

values are independent of the choice of orbit representatives. When the Weyl group element σ is a Coxeter element,

the Weyl-Orbit values are very interesting. The number of orbits s equals the rank of g, and it is known that the

Weyl-Orbit values correspond to the entries of an eigenvector of the Cartan matrix of g. This was used by physicists

to calculate the affine Toda theory mass spectrum, see [10], [11], [12]. Put differently, the relative geometry of the

simple roots yields the answer to Question 1 for Coxeter elements. In the present work we generalize this phenomenon

beyond the Coxeter case, by showing in what way the Weyl-Orbit values are governed by the relative geometry of

certain special sets of roots.

The main idea is to generalize work of Coxeter [9] that relates the linear algebra of Cartan matrices and Coxeter

elements, a generalised correspondence we call the Carter-Weyl correspondence. As noted in the work of Berman-Lee-

Moody [1], this circle of ideas could be described as mathematical folklore, and many aspects are described in detail in

[1]. However, the results are not quite in the form most convenient for the present purposes and we therefore present

the Carter-Weyl correspondence from scratch, without any claim to originality.
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For a root α denote by rα the corresponding reflection in the hyperplane orthogonal to α. For a Weyl group element

σ choose roots φ1, · · · , φk such that

σ = rφ1
· · · rφk

In [6], Carter defines l(σ) to be the smallest possible such k and shows that

l(σ) ≤ rank g

Suppose this inequality is strict. Then as in [6] (Lemma 9), there is a rank l(σ) subroot system of the root system of

g, such that σ is in the corresponding Weyl subgroup. Hence, in the following we restrict our attention to Weyl group

elements such that l(σ) = rank g. It then follows from the work of Carter [6] (Section 3), that there are mutually

orthogonal roots ξ+1 , · · · , ξ+a and mutually orthogonal roots ξ−1 , · · · , ξ
−
b such that a+ b = rank g and σ = σ+σ− where

σ± =
∏
i

rξ±i
(1)

We call such a collection of roots a set of Carter roots for σ. Note that since l(σ) = rank g, it follows from [6] (Lemma

3) that the Carter roots are linearly independent. Order them arbitrarily as ξ1, ξ2, · · · , ξr and define ci = ±1 depending

on whether ξi is of the form ξ+j or ξ−j . Further, define the Carter matrix K in complete analogy with the Cartan

matrix via

Ki,j = 2 ξi · ξj/ξj · ξj

We can now state the generalization of the relation between Coxeter elements and Cartan matrices.

Theorem 2 (Carter-Weyl Correspondence). Let σ be an element of Weyl group of a simple complex finite-dimensional

Lie algebra g of rank r such that l(σ) = r. Let ξ1, · · · , ξr be Carter roots for σ, with corresponding Carter matrix K.

Let Sσ and SK denote the multi-sets of eigenvalues of σ and K.

(i) There are θ1, θ2, · · · , θr in [0, 2π) such that

Sσ = {eiθ1 , · · · , eiθr}

SK = {2− 2 cos

(
θ1
2

)
, · · · , 2− 2 cos

(
θr
2

)
}

(ii) There is an isomorphism between the left (2− 2 cos
(
θ
2

)
)-eigenspace of K and the right eiθ-eigenspace of σ, given

by

(x1, · · · , xr) 7→
r∑
j=1

xje
cjiθ/4 · ξj

For Coxeter elements, the result goes back to the work of Coxeter [9] and Coleman [8]. We show how Carter’s work

[6] can be used to generalize this to more general Weyl group elements. Throughout, we closely follow the treatment

by Fring-Liao-Olive in [12] of the Coxeter case (see also the work of Brillon-Schechtman [5] for a similar discussion).

A fundamental tool employed in [12] is that Dynkin diagrams can be bi-colored. This is clear, since these diagrams

are trees. Let us start by recalling in what way such a bi-colorability carries over to general Weyl group elements.

Given a product decomposition σ = σ+σ− with σ± as in Equation (1), one associates a certain graph, called by

Carter an admissible diagram. The vertices correspond to the Carter roots and the i’th and j’th vertices are joined

by Ni,j lines where

Ni,j = Ki,j ·Kj,i

Hence, if the Carter roots are a set simple roots, one simply obtains the Dynkin diagram. In very subtle work, Carter

uses these diagrams in [6] to classify conjugacy classes in Weyl groups. Note that a given conjugacy class might be

described by different admissible diagrams.

Contrary to the case of simple roots, in general there will be some indices i 6= j with Ki,j > 0. It will be useful for

our purposes to keep track of this: Define a new graph exactly as the admissible diagrams, except that if Ki,j > 0 then

the edges between the i’th and j’th vertex are dotted. See the work of Stekolshchik [17] for a more in-depth study of
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such “Carter diagrams”.

Example. The conjugacy class E6(a1) in the Weyl group of e6 has admissible diagram

◦ ◦ ◦

◦ ◦ ◦

One of the underlying Carter diagrams is

◦ ◦ ◦

◦ ◦ ◦

as can be seen by the following choices of roots:

α2 α3 + α4 α1

α2 + α4 α5 α6

where α1, · · · , α6 are simple roots, indexed as in [3]. Different choices of roots can have different Carter diagrams with

same admissible diagrams.

From the decomposition σ = σ+σ− it follows that admissible diagrams (and Carter diagrams) can be bi-colored,

simply by assigning one color to roots of the form ξ+i and assigning the other color to roots of the form ξ−i . So in the

previous example one can color

◦ • ◦

• ◦ •

This consequence of Carter’s work allows to obtain the generalization of the Cartan-Coxeter correspondence de-

scribed in Theorem 2. The following proof closely follows the seminal work by Fring-Liao-Olive [12], which in turn

is based on Coxeter’s crucial insights in [9]. We simply put here these arguments in their natural context of general

bi-colorable root configurations.

Proof of Theorem 2. Let ξ1, · · · , ξr be the Carter roots, and group them as before into two groups ξ+1 , · · · , ξ+a and

ξ−1 , · · · , ξ
−
b of mutually orthogonal roots. Let rξi denote the reflection in the i’th Carter root, so

rξiξj = ξj −Kj,iξi

For an index 1 ≤ i ≤ r we write i ∈ + if ξi is of the form ξ+j for some j, and analogously we write i ∈ − if ξi is of the

form ξ−j for some j.

For i ∈ ±, clearly σ±ξi = −ξi and we now calculate σ∓ξi. Recall from Equation (1) that the definition of σ involves

mutually orthogonal roots ξ+1 , · · · , ξ+a and mutually orthogonal roots ξ−1 , · · · , ξ
−
b . For notational convenience we set t

to be b or a, depending on whether i ∈ + or i ∈ −. Then

σ∓ξi = rξ∓t
· · · rξ∓1 ξi = rξ∓t

· · · rξ∓2 (ξi −Ki,1̃ξ
∓
1 ) (2)

where 1̃ is the index such that ξ∓1 = ξ1̃. Iterating this process, one obtains for i ∈ ±

σ∓ξi = ξi −
∑
j∈∓

Ki,jξj (3)
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Consider the linear endomorphism of root space given by σ+ + σ−. As in [1], one obtains

(σ+ + σ−)(ξ±i ) = −
∑
j∈∓

Ki,jξj (4)

=

r∑
j=1

(2δi,j −Ki,j)ξj (5)

Now let x1, · · · , xr denote the entries of a left eigenvector of the Carter matrix, so there is a scalar c such that

r∑
i=1

xiKi,j = cxj (6)

for all j. If j ∈ ± then

∑
i∈∓

xiKi,j = −2xj +

r∑
i=1

xiKi,j = (c− 2)xj (7)

Recall that ci = 1 if i ∈ + and ci = −1 if i ∈ −. One obtains for j ∈ ±

r∑
i=1

ci · xiKi,j = ±2xj ∓
∑
i∈∓

xiKi,j = (±2∓ (c− 2))xj = cj · (4− c) · xj (8)

Define

q± =
∑
i∈±

xiξi

From Equation (3), Equation (5), and Equation (6) it follows that

σ+(q−) + σ−(q+) = q− +
∑
i∈−

xi

r∑
j=1

(2δi,j −Ki,j)ξj + q+ +
∑
i∈+

xi

r∑
j=1

(2δi,j −Ki,j)ξj

= q− + q+ +

r∑
j=1

(2− c)xjξj

From Equation (3), Equation (5), and Equation (8) it follows that

σ+(q−)− σ−(q+) = q− +
∑
i∈−

xi

r∑
j=1

(2δi,j −Ki,j)ξj − q+ −
∑
i∈+

xi

r∑
j=1

(2δi,j −Ki,j)ξj

= q− − q+ +

r∑
j=1

cj · (2− c)xjξj

Therefore

σ+(q−) = q− + (2− c) · q+

and

σ−(q+) = q+ + (2− c) · q−

Since clearly σ±(q±) = −q±, it follows that the action of σ = σ+σ− on the q±-plane with respect to the basis {q+, q−}
is described by the matrix

M =

[
(2− c)2 − 1 c− 2

2− c −1

]
(9)

To proceed, we relate the spectrum of the Carter matrix K to the spectrum of the Weyl group element σ. The
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finite-order endomorphism σ of root space is diagonalizable, and hence so is

(σ+ + σ−)2 = 2 + σ+σ− + σ−σ+ = 2 + σ + σ−1 (10)

Let {µ1, · · · , µr} denote the multi-set of eigenvalues of σ. Since the Killing form is symmetric and non-degenerate, the

Carter matrix K is symmetrizable and hence diagonalizable. Let {λ1, · · · , λr} denote its multi-set of eigenvalues. We

have shown earlier that for all i

(σ+ + σ−)(ξi) =

r∑
j=1

(2δi,j −Ki,j)ξj

Hence, σ++σ− is a diagonalizable endomorphism of root space. Together with Equation (10) this yields two descriptions

of the spectrum of (σ+ + σ−)2, and hence an equality of multi-sets

{(2− λ1)2, · · · , (2− λr)2} = {2 + µ1 + µ−11 , · · · , 2 + µr + µ−1r } (11)

Choose an arbitrary µj and write this root of unity as µj = eiθ with θ in [0, 2π). Then

2 + 2 cos θ = (2− c)2 (12)

where c is an eigenvalue of K. The two roots of this quadratic equation for c are 2± 2 cos(θ/2) and we now know that

at least one of them is an eigenvalue. By Equation (8), if c is an eigenvalue of K, so is 4 − c. It follows that in fact

2± 2 cos(θ/2) are both eigenvalues of K. If µj 6= ±1, then µj = µ−1j = ei(2π−θ) is a second eigenvalue and

{2 + 2 cos(θ/2), 2− 2 cos(θ/2)} = {2− 2 cos(θ/2), 2− 2 cos((2π − θ)/2)}

is as predicted by the theorem. If µj = eiπ = −1, then Equation (12) implies that 2 = 2− 2 cos(π/2) is an eigenvalue

of K. Finally, µj = 1 does not happen: This follows from our assumption l(σ) = r, by comparing with the eigenvalues

listed by Carter in [6] (Table 3). This proves the eigenvalue part of the Carter-Weyl correspondence.

Consider now to the comparison of the eigenvectors. Let eiθ be an eigenvalue of σ and choose c = 2 − 2 cos(θ/2)

for the eigenvalue of the Carter matrix. With this choice of c, the eigenvalues of the matrix M in Equation (9) are

e±iθ. Calculating the right eigenvector of M corresponding to eiθ yields the right eigenvector of σ given by

Λ = ei
θ
4 q+ + e−i

θ
4 q− =

r∑
j=1

xje
cji

θ
4 · ξj (13)

As shown before, the Carter roots ξj are linearly independent. It follows that for each fixed eigenvalue of K,

linearly independent eigenvectors of the Carter matrix yield via Equation (13) linearly independent eigenvectors for

σ: The multiplying factor ecji
θ
4 is constant for each j. Hence, one obtains the claimed isomorphism of eigenspaces in

the Carter-Weyl correspondence.

A crucial consequence of the theorem is the determination of the inner products of Λ with all the Carter roots.

Corollary 2.1. Let Λ in h be the eigenvector with eigenvalue eiθ corresponding to (x1, · · · , xr) under the Carter-Weyl

correspondence. Then, after scaling Λ, one obtains for all j

Λ · ξj = cje
−cji θ4 · ξ2jxj

In particular, the values |Λ · ξj | yield the absolute values of a right eigenvector of the Carter matrix.
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Proof. Let t = ei
θ
4 . Using Equation (7) and Equation (13), one obtains for j ∈ ±

Λ · ξj = ξ2jxjt
±1 +

ξ2j t
∓1

2
·
∑
s∈∓

xs ·Ks,j

=
(
t±1 − (t2 + t−2)t∓1/2

)
· ξ2jxj

= i sin

(
θ

2

)
cje
−cji θ4 · ξ2jxj

This implies the first part of the corollary. After scaling Λ one obtains |Λ · ξj | =
∣∣ξ2jxj∣∣. Hence, whereas the xj ’s are

the entries of a left eigenvector of the Carter matrix, the absolute values |Λ · ξj | are the absolute values of the entries

of a right eigenvector.

In principle, the Carter-Weyl correspondence allows to answer Question 1 and in particular the calculation of the

Toda-Weyl mass spectrum: Corollary 2.1 describes how Λ pairs with a collection of Carter roots. Since Carter roots

give a basis of root space, this determines how Λ pairs with any root, in particular with the orbit representatives γi.

The corresponding formulas will be particularly nice if there is a close relation between the Carter roots and the orbit

representatives.

If σ is a Coxeter element, Kostant shows the following in [13]: Let α1, · · · , αr be a collection of simple roots and

as before let ci = ±1 according to a choice of bi-coloration of the simple roots. Consider the Coxeter element

σ =
∏
ci=1

rαi
∏
ci=−1

rαi

Kostant showed that the number of positive roots that get mapped via σ to a negative root is the rank r of g. Further,

each orbit of 〈σ〉 on the set of roots contains exactly one of these “sign-changer” roots. Using the fact that off-diagonal

entries of the Cartan matrix are non-positive one can show, see [5] (Lemma 3.9), that ±αi is either a sign-changer

or the image under σ of a sign-changer. Further, if the sign is chosen according to the bi-coloration of the Dynkin

diagram, then this dichotomy corresponds exactly to the color of each root. It follows that all ciαi lie in distinct orbits

and in fact this gives all the orbits, since the number of roots is hr where h is the Coxeter number. Since for any root

β one has r−β = rβ , it follows that there is a choice of Carter roots that are in fact a collection of orbit representatives.

Some care is required to obtain generalizations of this relation for other Weyl group elements. To illustrate the

point we discuss the conjugacy class E6(a1).

Let α1, · · · , α6 be a choice of simple roots, indexed as in [3]. One possible representative of the E6(a1) Carter

diagram is

α2 α2 + α3 + α4 α1

α4 α5 α6

The corresponding Weyl group element is

σ = rα1
rα2

rα5
rα4

rα6
rα2+α3+α4

It turns out that the signed Carter roots (where the sign is chosen according to a bi-coloration of the Carter roots) do

not lie in distinct orbits: Otherwise, α2 and −α4 should lie in distinct orbits, however, the orbit of α2 is given by

{α2,−α1 − α3,−α2 − α3 − α4 − α5,−α2 − α4 − α5 − α6,−α4, α2 + α4 + α5,

α4 + α5 + α6, α1 + α3 + α4, α3}

Nonetheless, there is a different representative of the conjugacy class E6(a1) that has a better relation between
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Carter roots and orbit structure. Consider a second representative of the Carter diagram, given by

α2 α3 + α4 α1

α2 + α4 α5 α6

and define

σ = rα1
rα2

rα5
rα6

rα2+α4
rα3+α4

(14)

A direct calculation yields the following eight orbits O1, · · · ,O8 for the action of the cyclic group 〈σ〉 on the set of

roots:

O1 = {α1, α2 + · · ·+ α5, α1 + α3 + · · ·+ α6, α2 + α3 + 2α4 + α5, α6,−α5 − α6,

− α1 − α2 − α3 − 2α4 − α5,−α2 − · · · − α6,−α1 − α3 − α4}

O2 = {α2, α1 + α3, α3 + α4 + α5, α4 + α5 + α6, α2 + α4,−α4 − α5,

− α2 − α4 − α5 − α6,−α1 − · · · − α4,−α3}

O3 = {α4,−α1 − α3 − α4 − α5,−α2 − α3 − 2α4 − 2α5 − α6,

− α1 − α2 − α3 − 2α4 − α5 − α6,−α2 − α3 − α4, α2 + α4 + α5,

α1 + · · ·+ α6, α1 + α2 + 2α3 + 2α4 + α5, α3 + α4 + α5 + α6}

O4 = {α5, α1 + α2 + α3 + 2α4 + 2α5 + α6, α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6,

α1 + α2 + 2α3 + 2α4 + α5 + α6, α3 + α4,−α1 − · · · − α5,

− α1 − α2 − 2α3 − 2α4 − 2α5 − α6,−α1 − α2 − 2α3 − 3α4 − 2α5 − α6,

− α2 − α3 − 2α4 − α5 − α6}

and O5 = −O1, O6 = −O2, O7 = −O3, O8 = −O4. Since σ from Equation (14) can be written as

σ = rα1
rα2

rα5
r−α6

r−(α2+α4)r−(α3+α4)

it follows that there are Carter roots for σ that lie in distinct orbits: ξ1 = α1, ξ2 = α2, ξ3 = α5, ξ4 = −α6, ξ5 =

−(α2 + α4), ξ6 = −(α3 + α4). Having illustrated some of the subtle relations between Carter roots and orbit

representatives, we focus for the remainder of this work on an especially interesting family of conjugacy classes:

The Weyl group conjugacy class of Coxeter elements is an example of a regular primitive conjugacy class. Such

conjugacy classes are known to be the building blocks of all regular conjugacy classes. Apart from the Coxeter class,

there are in fact not many others for complex simple Lie algebras: Apart from a few cases for the exceptional algebras,

there is exactly one infinite family of regular primitive non-Coxeter conjugacy classes. In the notation by Carter [6],

it is denoted by D2n(an−1).

3 Toda-Weyl mass spectrum for D2n(an−1)

In this section we prove Theorem 1. A representative for the conjugacy class D2n(an−1) is given by Carter in [6]

(Proposition 25). We supplement this with the description of the orbit structure. Throughout, our indexing convention

for simple roots is as in [3].
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Lemma 1. Consider the element σ = σ+σ− in the Weyl group of type D2n where

σ+ = rα1
rα3
· · · rα2n−1

rβ , σ− = rα2
rα4
· · · rα2n−2

for β = αn + 2
∑2n−2
i=n+1 αi + α2n−1 + α2n. Then σ is a representative of the conjugacy class D2n(an−1), the number of

orbits of 〈σ〉 acting on the set of roots is 4n− 2, and a list of orbit representatives is

α1

...

α2n−1

β

ηi :=

n∑
t=n−i

αt for 1 ≤ i ≤ n− 1

νi :=
n∑

t=n−i
αt + αn+1 for i = 0 as well as 2 ≤ i ≤ n− 1

Proof. It will be convenient to express the Weyl group elements in terms of permutations. From this perspective the

roots are ±ei ± ej and the Weyl group elements acts via signs and permutations. Note that β = en + en+1 and the

corresponding reflection is given by

rβ = (n , −(n+ 1))

For a cycle (x1, · · · , xa,−x1, · · · ,−xa) we write for simplicity (x1, · · · , xa)−. If n is odd, define

σ1 = (1 , 2 , 4 , · · · , (n− 1) , −n , −(n− 2) , · · · , −3)−

σ2 = (n+ 1 , n+ 3 , · · · , 2n , 2n− 1 , 2n− 3 , · · · , n+ 2)−

If n is even, define

σ1 = (1 , 2 , 4 , · · · , n , −(n− 1) , −(n− 3) , · · · , −3)−

σ2 = (n+ 1,−(n+ 2),−(n+ 4), · · · ,−2n,−(2n− 1),−(2n− 3), · · · ,−(n+ 3))−

An explicit calculation yields the disjoint cycle decomposition

σ = σ1σ2

In particular, in the notation of [6] (Section 7), the signed cycle-type of σ is [n n]. By [6] (Proposition 25), this

corresponds to the conjugacy class D2n(an−1), as desired.

We now compute orbit representatives. As discussed by Reeder [15], for regular conjugacy classes it follows from

work of Springer [16] (Proposition 4.1) that every orbit of σ has exactly ord(σ) elements. The total number of roots is

known to be h · rank g where h = 4n− 2 is the Coxeter number. It follows that the number s of orbits of σ is given by

h · r
ord(σ)

=
(4n− 2) · 2n

2n
= 4n− 2

Hence it suffices to show that the Carter roots and ηi’s and νi’s all lie in distinct orbits. We write γ ∼ δ if two roots

γ and δ are in the same orbit. Note that ηi = en−i − en+1 and νi = en−i − en+2.

From the explicit form of σ1 and σ2 it follows that

|σk(j)| ≤ n (15)

9



for all k and all 1 ≤ j < n, and

|σk(j)| > n (16)

for all k and all n < j ≤ 2n. Suppose now σkηi = ηj . From Equation (15) it follows that σk2 (n+ 1) = n+ 1. Hence k

is 0 modulo 2n and i = j. In the same manner, replacing n + 1 by n + 2, one obtains νi 6∼ νj if i 6= j. Suppose now

for contradiction that ηi ∼ νj . Looking at the action on n+ 1 this implies σn−1ηi = νj if n is odd and σn+1ηi = νj if

n is even. Therefore σn±1(n − i) would need to be of the form n − j with either j = 0 or 2 ≤ j ≤ n − 1. However,

the only 1 ≤ a ≤ n− 1 such that σn±1(a) is positive, is a = n− 1 with n even, and σn−1(n− 1) = n. It follows that

ηi 6∼ νj for all i, j.

By Equation (15) and Equation (16), if αi = ei − ei+1 is in the orbit of any ηj or νj one needs i = n. Looking

at the action on n + 1, clearly αn 6∼ ηi for every i. If αn ∼ νj , then looking at the action on n + 1, one sees that

σn−1αn = νj when n is odd, and σn+1αn = νj when n is even. However, if n is odd then σn−1(n) = −(n− 1) and if

n is even σn+1(n) = n− 1. It follows that indeed αn is not in the orbit of any ηj or νj .

Consider now β = en + en+1. As for αn, one obtains β 6∼ ηi. If β ∼ νj , then looking at the action on n + 1, one

sees that that σ−1β = νj when n is odd, and σβ = νj when n is even. If n is odd, then σ−1β = −en−1 − en+2 6= νj .

If n is even, then also σβ = −en−1 − en+2 6= νj . In conclusion, β is not in the same orbit as any of the ηi’s or νj ’s.

Furthermore, by Equation (15) and Equation (16), β 6∼ αi for i 6= n. Looking at the action on n, one also sees that

there is no k with σkβ = αn.

To complete the proof of the Lemma, it remains to show that all the αi’s with 1 ≤ i ≤ 2n− 1 lie in distinct orbits.

If i < n and j > n it follows from Equation (15) that αi 6∼ αj . For 1 ≤ a, b ≤ n there is a unique k modulo 2n such

that σk(a) = b and we define d(a, b) := k. As i varies from 1 to n− 1 the values of d(i,−(i+ 1)) are exactly the n− 1

values n+ 1 , n− 2 , n+ 3 , n− 4 , · · · , 3 , 2n− 2 , 1 if n is odd, and n+ 1 , n− 2 , n+ 3, n− 4 , · · · , 2 , 2n− 1

if n is even. In particular, if i 6= j

d(i,−(i+ 1)) 6= d(j,−(j + 1))

Since d(σta, σtb) = d(a, b) for all 1 ≤ a, b ≤ n and all t, it follows that αi 6∼ αj for 1 ≤ i, j ≤ n − 1. Suppose now

n+ 1 ≤ i, j < 2n. Then the values of d(i,−(i+ 1)) are exactly the n−1 values 2n−1 , 2 , 2n−3 , 4 , · · · , n+ 2 , n−1

if n is odd, and 1 , 2n − 2 , 3 , 2n − 4 , · · · , n + 2 , n − 1 if n is even. As before, one obtains αi 6∼ αj . Finally

consider αn = en − en+1. By Equation (15) and Equation (16) it follows that αn 6∼ αi for i 6= n.

Having established the orbit structure, we now answer Question 1 for the conjugacy class D2n(an−1).

Proof of Theorem 1. Suppose the theorem is known for σ, and σ′ = µσµ−1 is another element in the conjugacy class.

If γ is an orbit representative for σ, then µγ is an orbit representative for σ′, if Λ is an eigenvector for σ then µΛ

is a corresponding eigenvector for σ′. Since the Killing form is invariant under the Weyl group action it follows that

µΛ ·µγ = Λ ·γ. Hence, it suffices to prove the theorem for one element in the conjugacy class D2n(an−1). We therefore

assume that σ = σ+σ−, where as in Lemma 1

σ+ = rα1rα3 · · · rα2n−1rβ

σ− = rα2rα4 · · · rα2n−2

for β = αn + 2
∑2n−2
i=n+1 αi + α2n−1 + α2n. The corresponding Carter diagram is given by

αn

α1 α2 · · · αn−1 αn+1 · · · α2n−2 α2n−1

β

We order the Carter roots ξ1, · · · , ξ2n as α1, · · · , αn, β, αn+1, · · · , α2n−1. Recall also that the roots involved in
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defining σ+ have ci = 1 and the roots involved in σ− have ci = −1. One has

ηi =

n∑
t=n−i

ξt

as well as

ν0 = ξn + ξn+2 , νi = ξn+2 +

i∑
t=0

ξn−t (for 2 ≤ i ≤ n− 1)

For ζ = e2πi/2n we now describe the (two-dimensional) ζ-eigenspace of σ using the Carter-Weyl correspondence.

All entries of the Carter matrix K can be read off the Carter diagram in complete analogy with the relation between

Cartan matrices and Dynkin diagrams. For example for n = 4:

K =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 −1 0 0 0

0 0 −1 2 0 −1 0 0

0 0 −1 0 2 1 0 0

0 0 0 −1 1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2


Let t = eiπ/4n. Since the Carter matrix K is symmetric, the task is to describe the right eigenvectors of K with

eigenvalue 2 − 2 cos( π2n ) = 2 − (t2 + t−2). By [4] (Table 1), together with the Carter-Weyl correspondence, we know

that this eigenspace is two-dimensional. Let (x1, · · · , x2n)T be an eigenvector. Assume for the moment that x1 6= 0,

so after scaling we can set x1 = sin
(
π
2n

)
. The first row of the eigenvector equation yields

x2 = (t2 + t−2)x1 = sin

(
2π

2n

)
In this manner (exactly as for Lie algebras of type A) one obtains for all 1 ≤ j ≤ n− 1

xj = sin

(
j · π
2n

)
From the way αn−1 pairs with the other Carter roots, the eigenvector equation yields

xn + xn+1 = 1

Analogously, from αn, β, αn+1 respectively, one obtains

xn+2 = −xn−1 + (t2 + t−2)xn

xn+2 = xn−1 − (t2 + t−2)xn+1

xn+3 = −xn + xn+1 + (t2 + t−2)xn+2

Let us make the Ansatz x2n = sin
(
π
2n

)
. By an analogous argument as before, one obtains for all n+ 2 ≤ i ≤ 2n

xi = sin

(
2n− i+ 1

2n
· π
)

11



Then xn = 1 and xn+1 = 0 satisfy all constraints and this yields the eigenvector

v1 = (sin
( π

2n

)
, · · · , sin

(
(n− 1)π

2n

)
, 1, 0, sin

(
(n− 1)π

2n

)
, · · · , sin

( π
2n

)
)T

Now make the Ansatz x2n = 0. The eigenvector equation yields for all n+ 2 ≤ i ≤ 2n

xi = 0

In this case xn = xn+1 = 1/2 satisfy all constraints and this yields the eigenvector

v2 = (sin
( π

2n

)
, · · · , sin

(
(n− 1)π

2n

)
,

1

2
,

1

2
, 0, · · · , 0)T

Since we know the eigenspace is 2-dimensional, v1 and v2 is a basis.

Let Λ correspond to v1 under the Carter-Weyl correspondence. We now calculate the corresponding Weyl-Orbit

values. Since by Lemma 1 all Carter roots ξi lie in distinct orbits, we obtain from Corollary 2.1 the 2n Weyl-Orbit

values corresponding to the absolute values of the entries of v1.

We claim that for 1 ≤ k ≤ n− 1

Λ · ηk =
1

2i
(t(−1)

n−k+1(2(n−k)−1) − t(−1)
n(2n+1)) (17)

For k = 1 it follows from Corollary 2.1 that

Λ · η1 = Λ+ · (ξn−1 + ξn)

=
1

2i
((−1)nt(−1)

n−1

(t2(n−1) − t−2(n−1)) + (−1)n+1t(−1)
n

(t2n − t−2n))

= (−1)n
1

2i
(−1)n(t(−1)

n(2n−3) − t(−1)
n2n+1)

as predicted. Suppose now Λ+ · ηk is as in Equation (17). Then

Λ · ηk+1 = Λ+ · (ξn + · · ·+ ξn−k−1)

= Λ+ · ηk + Λ+ · ξn−k−1

=
1

2i
(t(−1)

n−k+1(2(n−k)−1) − t(−1)
n(2n+1)

+ (−1)n−kt(−1)
n−k+1

(t2(n−k−1) − t−2(n−k−1)))

=
1

2i
(t(−1)

n−k(2n−2k−3) − t(−1)
n(2n+1))

Hence, Equation (17) holds for all 1 ≤ k ≤ n− 1. Note that∣∣∣∣ ta − tb2i

∣∣∣∣ =

∣∣∣∣t−(a+b)/2 · ta − tb2i

∣∣∣∣ =

∣∣∣∣sin(a− b8n
· π
)∣∣∣∣

Let

cn,k =

0 if k ≡ n mod 2

(−1)n+1 if n 6≡ k mod 2
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It follows from Equation (17) that

|Λ · ηn−k| =
∣∣∣∣sin( (−1)n+1n+ (−1)k+1k + cn,k

4n
· π
)∣∣∣∣

If n is even, these absolute values as k varies from 1 to n− 1 are

sin
( n

4n
· π
)
, sin

(
n+ 2

4n
· π
)
, sin

(
n− 2

4n
· π
)
, sin

(
n+ 4

4n
· π
)
, sin

(
n− 4

4n
· π
)

· · · , sin
(

2n− 2

4n
· π
)
, sin

(
2

4n
· π
)

If n is odd, one obtains the absolute values

sin

(
n+ 1

4n
· π
)
, sin

(
n− 1

4n
· π
)
, sin

(
n+ 3

4n
· π
)
, sin

(
n− 3

4n
· π
)
, · · ·

· · · , sin
(

2n− 2

4n
· π
)
, sin

(
2

4n
· π
)

Hence, in both cases

{|Λ · ηk|
∣∣ 1 ≤ k ≤ n− 1} = {sin

( π
2n

)
, · · · , sin

(
(n− 1)π

2n

)
}

We now calculate |Λ · νi|. For 2 ≤ i ≤ n− 1

Λ · νi = Λ · ηi + Λ · αn+1

= Λ · ηi + (−1)nt(−1)
n+1

· t
2(n−1) − t−2(n−1)

2i

Therefore

Λ · νn−k =
t(−1)

k+1(2k−1) − t(−1)n(2n+1) + (−1)nt(−1)
n+1

(t2(n−1) − t−2(n−1))
2i

Since t4n = −1, |Λ · νn−k| is given by∣∣∣∣∣t(−1)n+12n t
(−1)k+1(2k−1) − t(−1)n(2n+1) + (−1)nt(−1)

n+1

(t2(n−1) − t−2(n−1))
2i

∣∣∣∣∣
=

∣∣∣∣∣ t(−1)
k+1(2k−1)+(−1)n+12n − t(−1)n + (−1)n(t2 + t−2)(−1)nt(−1)

n+1

2i

∣∣∣∣∣
=

∣∣∣∣∣ t(−1)
k+1(2k−1)+(−1)n+12n + t(−1)

n+13

2i

∣∣∣∣∣
Note that ∣∣∣∣ ta + tb

2i

∣∣∣∣ =

∣∣∣∣t2n−(a+b)/2 · ta + tb

2i

∣∣∣∣ =

∣∣∣∣sin(4n+ a− b
8n

π

)∣∣∣∣
One obtains for 1 ≤ k ≤ n− 2

|Λ · νn−k| =
∣∣∣∣sin(4n+ (−1)n+1(2n− 3) + (−1)k+1(2k − 1)

8n
· π
)∣∣∣∣
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If n is even, one obtains the values

sin

( n
2 + 1

2n
· π
)
, sin

( n
2

2n
· π
)
, sin

( n
2 + 2

2n
· π
)
, sin

( n
2 − 1

2n
· π
)
, · · ·

· · · , sin
(
n− 1

2n
· π
)
, sin

(
2

2n
· π
)

If n = 2m+ 1 is odd, one obtains the values

sin

(
3m+ 1

2n
· π
)
, sin

(
3m

2n
· π
)
, sin

(
3m+ 2

2n
· π
)
, sin

(
3m− 1

2n
· π
)
, · · ·

· · · , sin
(
n+ 1

2n
· π
)
, sin

(
2n− 2

2n
· π
)

Hence, in both cases: {
|Λ · νi|

∣∣ 1 ≤ i ≤ n− 2
}

=

{
sin

(
2π

2n

)
, · · · , sin

(
(n− 1)π

2n

)}
Finally

Λ · ν0 − Λ · η1 = Λ · (ξn + ξn+2)− Λ · (ξn−1 + ξn)

= 0

where we use Corollary 2.1 and the fact that the n− 1 and n+ 2 entries of v1 agree. It follows that

|Λ · ν0| = sin
( π

2n

)
This proves the theorem for Λ associated to v1.

Suppose now that Λ corresponds to v2 under the Carter-Weyl correspondence. To calculate Λ·ηn−k for 1 ≤ k ≤ n−1

note that the relevant entries of v1 and v2 all agree, except the n’th entry now is 1/2 instead of 1. Therefore, using

the earlier calculations for v1, one obtains

Λ · ηn−k =
t(−1)

k+1(2k−1) − t(−1)n(2n+1) + (−1)nt(−1)
n

(t2n − t−2n)/2

2i

=
t(−1)

k+1(2k−1) − (t2n+(−1)n + t−2n+(−1)n)/2

2i

=
t(−1)

k+1(2k−1)

2i

where the last equation holds since t2n = −t−2n. It follows that

|Λ · ηn−k| =
1

2

Recall that for 2 ≤ i ≤ n− 1 one has νi = ηi + ξn+2. Since the n+ 2 entry of v2 is 0, it follows

|Λ · νi| =
1

2
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Finally

Λ · ν0 = Λ · (ξn + ξn+2)

= Λ · ξn

= (−1)n+1t(−1)
n

· 1

2

Hence, after scaling Λ, all these absolute values equal 1.

As an example, we plot below the Weyl-Orbit values m1 ≤ m2 ≤ · · · for the Coxeter case D14 as well as for

D14(a6)I, normalized so that the first non-zero mi equals 1.

Figure 1: Normalized Weyl-Orbit values

5 10 15 20 25
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4 Conclusions

We used a very general correspondence between the linear algebra of Weyl group elements and generalized Cartan

matrices to calculate the mass spectrum of Toda-Weyl theories associated to a Weyl group element σ. These mass

expressions necessitate an understanding of the relation between the Carter roots involved in the definition of σ, and

roots that are orbit representatives of the σ action on the set of all roots. The details of this relation depend on the

Weyl group element and we carried out this comparison for an interesting infinite family of conjugacy classes in Weyl

groups of Lie algebras of type D. The corresponding mass expressions have a trigonometric form closely resembling

those for usual affine Toda theories.
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[3] N. Bourbaki: Groupes et Algèbres de Lie, Chapitres 4, 5 et 6. Hermann, Paris, (1968)

[4] P. Bouwknegt: Lie algebra automorphisms, the Weyl group, and tables of shift vectors, J. Math. Phys. 30 (1989),

571-584

[5] L. Brillon, V. Schechtman: Coxeter element and particle masses, Selecta Math. 22 (2016), 2591-2609

[6] R. W. Carter: Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59

[7] R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl,

K. Kiefer: Quantum criticality in an Ising Chain: Experimental evidence for emergent E8 symmetry, Science 327

(2010), 177-180

[8] A. J. Coleman: The Betti numbers of the simple Lie groups, Canadian J. Math. 10 (1958), 349-356

[9] H. S. M. Coxeter: The product of the generators of a finite group generated by reflections, Duke Math. J. 18

(1951), 765-782

[10] P. Dorey: Root systems and purely elastic S-matrices, Nucl. Phys. B (1991), 654-676

[11] M. D. Freeman: On the mass spectrum of affine Toda field theory, Phys. Lett. B 261, 57-61

[12] A. Fring, H. C. Liao, D. I. Olive: The mass spectrum and coupling in affine Toda theories, Phys. Lett. B 266

(1991), 82-86

[13] B. Kostant: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group,

Amer. J. Math. (1959), 973-1032

[14] M. T. Luu: The Toda-Weyl mass spectrum, Nuclear Physics B 1012 (2025), 116823

[15] M. Reeder: Torsion automorphisms of simple Lie algebras, L’Enseignement Math. 56 (2010), 3-47

[16] T. A. Springer: Regular elements of finite reflection group, Inventiones Math. 25 (1974), 159-198

[17] R. Stekolshchik: Equivalence of Carter diagrams, Algebra and Discrete Math. 23 (2017), 138-179

16


	Introduction
	Carter-Weyl correspondence
	Toda-Weyl mass spectrum for D2n(an-1)
	Conclusions
	Acknowledgements

