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Abstract

The quantization of a pair of commuting differential operators is a pair of non-commuting differential operators.
Both at the classical and quantum level the flows of the KP hierarchy are defined and further one can consider
switching, up to a sign, the ordering of the operators. We discuss the interaction of these operations with the
quantization.

1 Introduction

Fix an indeterminate x. For a parameter h, consider pairs of differential operators (P, Q) with P and Q in C[x][0.]
solutions to the generalized string equation [P,Q] = h. For h = 0 such operators are related by the Krichever
construction to classical curves and therefore if i % 0 such operators are also called a quantum curve. The quantization
of commuting differential operators developed by Schwarz [5], [1I0], [I1] concerns the process of varying the parameter
h from 0 to non-zero values. It turns out that the ordering of the operators matters in the quantization process.
Furthermore, both, the pairs of commuting operators and their quantization, each sit in a moduli space on which the
flows of the KP integrable hierarchy are defined. In the present work we discuss the interaction of the KP flows and
the choice of ordering of the operators with the quantization.

The quantization is in particular well defined on pairs (P, Q) of operators with P and @ of positive co-prime degree
and such that P is monic, meaning of the form

0"+ a;i 10" + -+ aq,

where we have dropped the subscript  from d,. We will continue to do this throughout the paper. Note that starting
with a monic differential operator the condition that a;_; vanishes can be achieved by conjugating the operator by a
function. Such a monic operator with vanishing subleading terms is called normalized. We assume from now on that
P and @ are indeed of co-prime degrees and that P is monic. It is useful to look at these pairs (P, Q) from a slightly
different perspective: They give rise to an element of the space Conny(D*) of hi-connections on the formal punctured
disc D* = Spec C((t)). We denote the subset of Conny(D*) obtained in this manner by String;. The quantization
procedure developed by Schwarz yields a map

Quant : String, — String;.

An important feature is the presence of flows of the KP integrable hierarchy, both at the classical and quantum level,
meaning for String, and String;. The equations for the Lax operator

L:8+018_1+028_2+~“

of the hierarchy are given by
Ou L = [(L*), L]

where tq,t2, -+ denote the KP times and the subscript + indicates taking the differential part of a pseudodifferential
operator. An important point is the isospectrality of the KP flows, we refer to [§] for a more detailed description and
relation to the relevant spectral curves. It is important to note that there are two ways to define the flows on a pair



(P, @), depending on whether the Lax operator L is chosen to be a p’th root of P or a ¢’th root of @), where p and ¢ are
the degrees of P and (). Comparing these two ways to flow turns out to be an important problem related to dualities
of 2D quantum field theories in the case i = 1, see for example [3], [6], [7]. From now on we make the convention that
given an ordered pair (P, Q) with P of degree p, the associated Lax operator is chosen to be a p’th root of P. In order
to not break the symmetry between P and @, we then also consider the map

¢ : Stringj, —» String,

corresponding to
(PaQ) = (Qa_P)

where String}, denotes the subset of String;, corresponding to (P, Q) with both P and @ monic. In order to understand
the interaction of the KP flows as well as the map ¢ with the quantization one should describe properties of the diagram
given in Figure|ll Here t1,to,--- and f1,%s,--- denote two sets of KP times and the maps from String, to String, are
given by Quant.

KP(ty1,+)

String) String]
KP({y,-- .
String; (o) String;
KP(t1, [ !
Stringy, ) Stringg,

_

Figure 1: Quantization and KP flows

/KP(ila"')

String, String,

It turns out that the diagram is not commutative, and the following are natural questions to answer:
(i) Describe how ¢ changes the isomorphism class of an element of String].
(ii) Describe how ¢ changes the isomorphism class of an element of Stringy,.
(iii) Compare Quant o ¢ and ¢ o Quant.

)

(iv) Decide if quantization commutes with KP flows.

Note that question (i) has a reformulation in terms of how ¢ interacts with the flows of the KP hierarchy, see [7] where
this question is answered in joint work with Albert Schwarz and applications to duality of 2D quantum gravity are
given. In the present work we address the remaining three questions.

2 Aspects of the quantization of commuting differential operators
The aim is to construct interesting families, indexed by a parameter A, of pairs of operators
(Pr, Qr) € Clz][0:] x C[][0]

satisfying the generalized string equation
[Pr, Qn] = h.



The scheme developed by Schwarz [I0] constructs such families by fixing the degrees p and ¢ of P, and Qp and fixing
furthermore the so called companion matrix in each family: This is an element of the Lie algebra gl,Clu], for an
indeterminate u. To define it, we recall the definition of the Sato Grassmannian:

For an indeterminate z, the index zero big cell Gr of the Sato Grassmannian consists of complex subspaces of
C((1/z)) whose projection to H* := C[z] is an isomorphism. One defines an action of elements in C[z][0,] on C((1/z2))

via i
wons=(~52)

for all f € C((1/z)). Suppose now that A and B are elements of C[x][9,] with A monic of degree p. For an indeterminate
u one can view HT as a free C[u]-module of rank p by letting u act via A. The companion matrix M4 p is the matrix
describing the action of B with respect to the basis 1, z,--- , 2P~

In the situation where the degree p and ¢ of Py and @ are co-prime, Schwarz [10] has shown that fixing the
companion matrix Mp, _q, yields a well defined way to let i vary in the string equation. Consider now the restriction
to a formal punctured disc around oo of the rank p bundle H* on A! = Spec C[u] obtained via the Py-action on H*.
One obtains a p-dimensional C((t)) vector space M, where

1
t==
u

and the operator —@Qj introduces a further structure on this vector space: Since [—Qp, P;] = 1 the —Qp, action on M
yields the structure of an A-connection on the formal punctured disc

D* = Spec C((t)).
This means M has a C-linear endomorphism Vj, given by the the —Qp action, such that
Vi(fm) = hf'(tym + fVr(m)

for all f € C((t)) and all m € M. In the case of i = 1 one obtains an object of the category Conn(D*) of connections
on D* and for i = 0 one obtains an object of the category Higgs(D*) of Higgs bundles on D*. In this sense one can
think of the quantization scheme as a way to quantize certain Higgs bundles:

Higgs(D*) Conn(D*)

t
String, Quan String;

where for a companion matrix
M = Mp,,—q, = —Mp, Qs

one has
Quant : Mduvr— 9, + M.

The quantization scheme turns out to be quite natural from the point of view of quantum field theory: As shown
by Liu-Schwarz in [5], for co-prime p and ¢ the quantization of the pair of commuting operators (97, 97) yields the
7-function of (p,¢) minimal conformal matter coupled to gravity.

Note that since the classical data of the quantization scheme corresponds to commuting differential operators, it is
known via the Krichever correspondence, see for example [§] for a detailed exposition, that this data can be described
in terms of algebraic curves with additional structure. In the following we describe the previously mentioned Higgs
bundle in terms of this algebro-geometric data.

The input of the Krichever correspondence consists of objects of the form

X = (X, s, F,trvialization data)



where X is a curve over C, s is a point of X, F is a vector bundle and one chooses trivialization of F in a formal
neighborhood of s, see [§] for details. We will from now on focus on the data that will yield points of the index zero
part of the big-cell of the Sato Grassmannian, and hence F is a line bundle. An index 0 Schur pair (A, W) consists of
a point W of Gr and a C-subalgebra A of C((1/z)) such that AW C W and such that A properly contains C. One then
attaches such an object to X' in the following manner: The point W C C((1/2)) is simply the image under the choice of
trivializations of the space H?(X\s, F) and A corresponds to H?(X\s, Ox). Note that in our conventions, 1/z rather
than z is a local coordinate at s. Then for an element P of A of the form zP + lower order terms one obtains a free
C[u]-module of rank p by letting u act on W via P. By restricting the corresponding bundle on Spec C[u] to a formal
disc around oo one obtains a rank p vector bundle V on the punctured disc D*. Given a second element Q € A one
obtains, since P and Q commute, an endomorphism of V and hence an endomorphism valued 1-form ¢. This gives the
algebro-geometric formulation of the previously defined Higgs bundles.

2.1 Quantization and KP flows

We now answer question (iv) from the introduction:

Theorem 1. In general, for (Po, Qo) corresponding to String, one has

(Quant o KP(t1,t2,--+)) (Po, Qo) # (KP(t1,t2,--+) o Quant) (Fy, Qo).

One can prove this statement by considering the case (P, Qo) = (0P,99). In the following we give a numerically
more interesting example. Consider the following pair of differential operators related to the 1-soliton solution of the
KdV hierarchy:

862(a:+t3)
a2
Po(tr,t2,t3) = 07+ (1 + e2(e+t3))2
Qolty,ta,t3) = 0+ L4 AT — 20T -sinh(x + 1) i

1 + 62($+t3)

2evTts (—4ettts 4 (62(x+t3) — 1) - sinh(z + t3)) 5t
N (1 + e2(atts))2 '

8e2(Hts) (1 4 e2(+ts) 4 vt . ginh(x + t3))
(1 + e2@+ta)3 :

One can check that indeed
[Po(t1,t2,t3), Qo(t1,t2,t3)] = 0.

Note that the KdV hierarchy is the 2-reduced KP hierarchy and hence the above operators do not depend on ¢5. Note

also that by the first Lax equation of the KP hierarchy one knows that up to a constant one has x = t;. Furthermore,

we interpret the above operators as elements of C[z][0,] by taking the Taylor series with respect to x of the coefficients.
We now show that

(Quant o KP(0,0,1)) (Py(0,0,0),Q0(0,0,0)) 2 (KP(0,0, 1) o Quant) (Py(0,0,0), Qo(0,0,0))

and hence, in general, the quantization does not commute with KP flows.

We will need to calculate several companion matrices. A simple algorithm is the following: Let M denote the
companion matrix of P and Q where P is monic of degree p and @ is monic of degree ¢: Consider v; = 2 for
0 < i <p—1. The entries of M are determined via

Q-vi =) Mij(P) v
j



where M;; is a polynomial. One has Q - v; = 27+9 1+ lower order terms. Writing i + ¢ =s-p+r with 0 < r < p one
sees that
Qu; — P?v,. = sum of terms of order at most i +¢ — 1 = ai+q_1zz+q71 4+

Writing it +g¢—1=a-p+b where 0 <b < p, one obtains
Qu; — Pvy — aj44—1P% - vy = sum of terms of order at most i + ¢ — 2.

Continuing this process one obtains the entries of the companion matrix.
The companion matrix at t; = t3 = 0 and ¢3 = 1 can be calculated via the previously described algorithm and one
obtains that

(Quant o I(P(O7 O, 1)) (‘P()(O7 O, O), QO (O, 07 0)) = 8u + MPO(O,O,l),*QO(O,O,l)

with Mp;0,0,1),-Qo(0,0,1) = (mij) given by

4e?(—1+€?)
my=————
11 1+ )P
—1+4+2e? —et+ (1+2e%+e)u
miz2 = —
(14 ¢€2)2
e 16e* + (=1 — 8e? — 14e* — 8% — e®)u + (1 + 4e? + 6e* + 4eb + e8)u?
21 = (1+e2)t
4e?(—1 +e?)
Moy = —————7—

It follows from the Levelt-Turrittin classification that every irreducible connection (V, V) on the formal punctured disc
is obtained as a pushforward of a one-dimensional connection from a suitable covering t'/* — t. More specifically, it
is isomorphic to a connection with V = C((t'/%)) and V = 9, + £ for some f € C((t'/*)). We denote this connection
as [i]«[f/t]. Two such connections corresponding to f; and fo in C((t}/?)) are isomorphic if and only if fs is obtained
from f; by adding an element of % + t1/°C[t}/?] and substituting ¢;t'/* for t'/* where (; is an i’th root of unity, see
for example [ for more details. For F' € C((t'/%)) we also write [i].[F] in terms of u := 1/t and z such that z° = u.
Namely we denote this by [i].[—F(1/2)/u?].

By using the Levelt-Turrittin algorithm one calculates that the connection 9, + Mp;(0,0,1),—Q0(0,0,1) 18 isomorphic
to

1 3
[2}* |:_422 —z+z :| .

Now note that
0 —u
M, (0,0,0),~Q(0,0,0) = [(u 120 }

and one calculates that
- 1 1 1] 1 3
Quant(Po(O,0,0),@0(0,0,0)): [2]* _@_W_FW = [2]* —@—Z—‘FZ .

Note that 1
[p]. [Z cit"/”} =0y — 5y e

and the KP flows with KP times t¢1,ts,--- perturb this connection via

1 » 1 o I
3u—$§i:ciu /pHau—ﬁZ:ciu /p_EZ:ZtiU( P/,



One deduces that
(KP(Ov Oa 1) o Quant) (PO(Oa 07 0)7 QO(O, 07 0)) = [2]*
This shows that KP flows do not in general commute with quantization.

2.2 Quantization and ¢

In this section we answer questions (ii) and (iii) from the introduction. To do so, we adapt the arguments of [3] to
the current setting. Suppose (P, Q) correspond to Stringj, and P and @Q are of co-prime degree p and q. As mentioned
before, after possibly conjugating P by a function we can and will assume the subleading coefficient to be zero. Let T’
denote the group of monic degree-zero pseudodifferential operators. Since P is normalized it follows that there is W
in I" such that

P:=WPW~'=0r

and

Q=WQW'=> ¢0"".

i>0

The parameters ¢; then determine the isomorphism class of the element of Stringj, corresponding to (P, Q) and we will
denote it by (p, q)o(c;)s. If (P, Q) correspond to String] then if P is normalized there is W in I" such that

P:=WPW~ =09

and
~ 1 1— .
Q=wQWw' =207+ —Lor Y o0,
p 2p i>0

The parameters c; then determine the isomorphism class of the element of String] and we will denote it by (p, q)1(c;);-

Theorem 2. For positive co-prime integers p and q there are isomorphisms

L((py)i(ei)i) = (g,p)1(é)i

L((ps@olei)i) = (4,p)o(C)i
where
_ g 1 ((n—p—q)/p ko R
k>1 my, mp>1
S m;=n
and
s P N1 ((n=p—a)q
cnqzk< o S o
k>1 my,,mp>1
S mi=n

Furthermore, for (Py, Qo) corresponding to String;, one has

(Quant o ¢)(FPy, Qo) = (v 0 Quant)(F, Qo).

Proof. The statement concerning (p, ¢)1(¢;); is essentially a reformulation of the results of Fukuma-Kawai-Nakayama
[3], see also [7]: Suppose W in T is such that

P.=WPW =0



and
O =wWQWw-! = alp+ pauzcaqz
i>0

Note that Quant(P, Q) = 0, + Mp _q. On the other hand, from the form of Q, one obtains for 2P = u that

Let

There is V in T such that 1
V(=€ v =91
Co

and
_ _ I —q
V (—cotPe YVt = Lagr-a 8q+§ ot
(0055) qa: G

>0

By definition ¢ ((p, q)1(¢;):) corresponds to the string equation [Q, —P] = 1 and therefore

t((p,@)1(ci)i) = 0u + Mg p.

In terms of the ¢;’s this is isomorphic to

>0
Under our assumption that P and @ are monic it follows that ¢cp = 1 and éy = —1. It then follows from [3] that
q L ((n—=p—q)/p R R
o=t S (M) S e
k>1 my,- mp>1
S m;=n
and
_p Zl<n p—Q)/L]) Z
- - Cmy " Cimy -
q k>1 k k my, mp>1

S m;=n
We now prove the statement concerning (p, q)o(c;)i. Let W be in I" such that

P:=WPW~ =9
and

Q=WEW™' =) ¢o".

i>0

Let £ := exp(;1x) and let V' in I' be such that

w%wg*w* — o1



and

V(—efPEHV =D g0

i>0

For vy := W& V1 let @ := y9y~!. One obtains the system of equations

5q 0711+ Zciﬁ’i

i>1

1+ (~ed .

i>1

61’

Now, take ¢’th and p’th roots of the two equations and let o and 3 be two indeterminates. Note that C(971)) = C((1/«))
and C(@ ') = C((1/8)). One then deduces the following system of equations:

1/4q

™
I

all+ Zciofi

i>1
1/p

a = Bl1+) (-&)B87"

i>1

The explicit description between the ¢;’s and ¢&;’s follows then by the same argument as given in [3], Section 4.

The last part of the theorem follows from the previous calculations together with the observation that for (Py, Qo)
corresponding to String, the eigenvalues of the companion matrix agree with the exponential factors of the corre-
sponding connection up to regular terms. O

We now illustrate Theorem [2| with some numerical examples.
Example 1. We start by giving an example of the way ¢ changes the isomorphism class of a Higgs bundle. In the
notation of Section @ the characteristic polynomial of Mp(0,0,0),—Q0(0,0,0) iS given by

Char(MPo(0,0,0),—Q0(0,0,0)a T) = 2’ — u(u — 1)2

and in terms of z with 22 = u one obtains the eigenvalues as z® — z and —z3 + z. Considering the second of these

two, one therefore knows that the Higgs bundle associated with (Py(0,0,0),Q0(0,0,0)) is given by (2,3)0(c;); with
co=1,¢1 =0,c0 = —1 and ¢; = 0 for all 7 > 3. By Theorem 2]

. 2 1 2
Zéizzﬂ =22 37 0.2 + S1.0 + lower order terms.

Then for example if f(z) := 22 + % + 9:12 — ﬁ and if (3 denotes a primitive third root of unity, one obtains

2z 19 3

(0= FEN @ — (G~ (@) = 2%~ 207 b= 4 soo s - D g o

This should give an approximation of the characteristic polynomial of Mg (0,0,0),Py(0,0,0)- The latter can be calculated
independently in an exact manner since the companion matrix can be calculated and indeed one obtains with u = 23
that
2 01
char(| v 0 0|,z)=2" 22" + 2 — 2
-1 u O

Example 2. We now give an example, via the KdV 1-soliton as discussed in Section that ¢ commutes with



quantization. In the previously used notation first note that
Quant(PO(Ov 07 O)? QO (07 Oa 0)) = 8u - Z Ciu(gii)/Z
with cg = 1,¢1 =0,c0 = —1,a3 = 0,a4 = 0,¢c5 = —1/4. Via Theoremone obtains with z = u? that

0~ 3 rul>/3

1 1 2
But oo+ g 2+ 22
t3stgatyte

1%

(1 o Quant)(Py(0,0,0), Qo(0,0,0))

1%

On the other hand, one has

(Quant o ¢)(Py(0,0,0),Q0(0,0,0)) = 0y + Mgy0,0,0), Py (0,0,0)
with
2 0 1
M@y(0,0,0),P00,000= | v 0 0
-1 u O
And the Levelt-Turrittin algorithm yields that

1 12,
*@‘F +-+z

(Quant o L)(PO(O70aO)7Q0(O>070)) = [3] 922 ' 3

Hence, in this example the quantization does commute with «¢.
Example 3. We give another example that ¢« commutes with quantization. Let

Py=09°—170+2
Qo=0"+0°—20+0+5.
Then clearly the two operators commute. Furthermore

11 — 8u —57 4—u
Mpy —g, = |84 6u — u? 39 — 15u —57
57(2 —u) —407 4+ 6u —u? 39— 15u

One then calculates

1 1418 10483 89 562 16 , 38
t(P, =~ (3], | = R A A
Quant(Fo, Qo) = [3] {323 T2 TR, T3 9 T3t T3F

Hence, via Theorem [2] the composition ¢ o Quant applied to (P, Qo) is isomorphic to

5 _l+ 1008 n 223 163 +ﬁ+16 38 e
1525 12524 12523 2522 25z 5 5 '

We now verify directly that this is isomorphic to applying Quant o ¢ to (Py, Qg). Note that

2 -7 0 1 0

0 2 -7 0 1

MQ07p0 =|-5+4+u -1 4 -8 0
0 —5+u -1 4 -8

40 — 8u 8 —21+u 7 4



Then
(Quant o ¢)( Py, Qo) = 0y + Mg, P,

and in terms of z with 2° = u the Levelt-Turrittin algorithm shows that indeed this is isomorphic to

2 1008 223 163 26 16 38 3
+—=———2z+z

5l | —=——= = — —
1] 525 + 12524 + 12523 2522 + 25z 5 5

To give more context to the classical/quantum correspondence of the ¢ dynamics, we now show that in the theory
of the local Fourier transform the same phenomenon occurs:
After choosing a basis, write an n-dimensional connection V on the punctured disc as

V=0:+A where Acgl,C(1).
The connection can naturally be deformed into an Ai-connection by setting
Vi = ho, + A.

As discussed for example by Graham-Squire [4], the formulas for the local Fourier transforms, up to the regular term,
can be easily understood if the differential part of the connection is dropped. This corresponds to letting = 0 in the
above situation. We now give some more details. Consider for example the local Fourier transform F(°°)_ Tt can be
defined, see [I], in the following manner: Suppose given a connection (V,V;) over C((t)). Let £ denote the variable of
the Fourier dual connection. Then F(°>°)(V,V,) has the same underlying C-vector space as V and the action of ¢
and V; is given via

t=@t*Vy)™' and #V;=-1/t.

Note that indeed V; is a connection with respect to the C((£)) vector space structure: One has
L =1
and hence, as an example, note that for all v € V' one has
V() = =12y = 2w+ i ) = — 20+ 81V, (0)

as desired. Explicit formulas for the transform F(°*>) have been obtained independently by Fang [2], Graham-Squire
[4], Sabbah [9]:
Let f € C((t'/")) for some r and denote [i].[f/t] simply by Ef. Suppose ord(f) = —s/r, meaning

f= ts% + higher order terms

for some ¢ € C*. Then for irreducible E'y one has
]_-(oo,oo)Ef = Eg

where g is determined by the following system of equations:

=

S

S
= ey

The key point to emphasize is that most of the difficulty of these results concerns the regular term. As a heuristic one

10



has: Without the differential parts one has
Vt =

V; =

Sl o~

and one obtains from the previously described defining equations of F(°:°°) that

1
=1V, = —
f 1=
N 1 1
=iV, == =1-==1-
9 t it tt /

Hence, this correctly describes the local Fourier transform up to changing the regular term. This gives another
viewpoint on the classical/quantum correspondence.
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