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Abstract

The quantization of a pair of commuting differential operators is a pair of non-commuting differential operators.

Both at the classical and quantum level the flows of the KP hierarchy are defined and further one can consider

switching, up to a sign, the ordering of the operators. We discuss the interaction of these operations with the

quantization.

1 Introduction

Fix an indeterminate x. For a parameter ~, consider pairs of differential operators (P,Q) with P and Q in C[[x]][∂x]

solutions to the generalized string equation [P,Q] = ~. For ~ = 0 such operators are related by the Krichever

construction to classical curves and therefore if ~ 6= 0 such operators are also called a quantum curve. The quantization

of commuting differential operators developed by Schwarz [5], [10], [11] concerns the process of varying the parameter

~ from 0 to non-zero values. It turns out that the ordering of the operators matters in the quantization process.

Furthermore, both, the pairs of commuting operators and their quantization, each sit in a moduli space on which the

flows of the KP integrable hierarchy are defined. In the present work we discuss the interaction of the KP flows and

the choice of ordering of the operators with the quantization.

The quantization is in particular well defined on pairs (P,Q) of operators with P and Q of positive co-prime degree

and such that P is monic, meaning of the form

∂i + ai−1∂
i−1 + · · ·+ a0,

where we have dropped the subscript x from ∂x. We will continue to do this throughout the paper. Note that starting

with a monic differential operator the condition that ai−1 vanishes can be achieved by conjugating the operator by a

function. Such a monic operator with vanishing subleading terms is called normalized. We assume from now on that

P and Q are indeed of co-prime degrees and that P is monic. It is useful to look at these pairs (P,Q) from a slightly

different perspective: They give rise to an element of the space Conn~(D×) of ~-connections on the formal punctured

disc D× = Spec C((t)). We denote the subset of Conn~(D×) obtained in this manner by String~. The quantization

procedure developed by Schwarz yields a map

Quant : String0 −→ String1.

An important feature is the presence of flows of the KP integrable hierarchy, both at the classical and quantum level,

meaning for String0 and String1. The equations for the Lax operator

L = ∂ + c1∂
−1 + c2∂

−2 + · · ·

of the hierarchy are given by

∂tkL = [(Lk)+, L]

where t1, t2, · · · denote the KP times and the subscript + indicates taking the differential part of a pseudodifferential

operator. An important point is the isospectrality of the KP flows, we refer to [8] for a more detailed description and

relation to the relevant spectral curves. It is important to note that there are two ways to define the flows on a pair
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(P,Q), depending on whether the Lax operator L is chosen to be a p’th root of P or a q’th root of Q, where p and q are

the degrees of P and Q. Comparing these two ways to flow turns out to be an important problem related to dualities

of 2D quantum field theories in the case ~ = 1, see for example [3], [6], [7]. From now on we make the convention that

given an ordered pair (P,Q) with P of degree p, the associated Lax operator is chosen to be a p’th root of P . In order

to not break the symmetry between P and Q, we then also consider the map

ι : String′~ −→ Stringh

corresponding to

(P,Q) 7→ (Q,−P )

where String′~ denotes the subset of String~ corresponding to (P,Q) with both P and Q monic. In order to understand

the interaction of the KP flows as well as the map ι with the quantization one should describe properties of the diagram

given in Figure 1. Here t1, t2, · · · and t̂1, t̂2, · · · denote two sets of KP times and the maps from String0 to String1 are

given by Quant.

String′1

ι
vv

KP(t1,··· )
// String′1

ι
vv

String1
KP(t̂1,··· )

// String1

String′0

ι
vv

OO

KP(t1,··· )
// String′0

ι
vv

OO

String0

OO

KP(t̂1,··· )
// String0

OO

Figure 1: Quantization and KP flows

It turns out that the diagram is not commutative, and the following are natural questions to answer:

(i) Describe how ι changes the isomorphism class of an element of String′1.

(ii) Describe how ι changes the isomorphism class of an element of String′0.

(iii) Compare Quant ◦ ι and ι ◦Quant.

(iv) Decide if quantization commutes with KP flows.

Note that question (i) has a reformulation in terms of how ι interacts with the flows of the KP hierarchy, see [7] where

this question is answered in joint work with Albert Schwarz and applications to duality of 2D quantum gravity are

given. In the present work we address the remaining three questions.

2 Aspects of the quantization of commuting differential operators

The aim is to construct interesting families, indexed by a parameter ~, of pairs of operators

(P~, Q~) ∈ C[[x]][∂x]× C[[x]][∂x]

satisfying the generalized string equation

[P~, Q~] = ~.
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The scheme developed by Schwarz [10] constructs such families by fixing the degrees p and q of P~ and Q~ and fixing

furthermore the so called companion matrix in each family: This is an element of the Lie algebra glpC[u], for an

indeterminate u. To define it, we recall the definition of the Sato Grassmannian:

For an indeterminate z, the index zero big cell Gr of the Sato Grassmannian consists of complex subspaces of

C((1/z)) whose projection to H+ := C[z] is an isomorphism. One defines an action of elements in C[[x]][∂x] on C((1/z))

via

(xi∂jx)f :=

(
− d

dz

)i
zjf

for all f ∈ C((1/z)). Suppose now that A and B are elements of C[[x]][∂x] with A monic of degree p. For an indeterminate

u one can view H+ as a free C[u]-module of rank p by letting u act via A. The companion matrix MA,B is the matrix

describing the action of B with respect to the basis 1, z, · · · , zp−1.

In the situation where the degree p and q of P~ and Q~ are co-prime, Schwarz [10] has shown that fixing the

companion matrix MP~,−Q~ yields a well defined way to let ~ vary in the string equation. Consider now the restriction

to a formal punctured disc around ∞ of the rank p bundle H+ on A1 = Spec C[u] obtained via the P~-action on H+.

One obtains a p-dimensional C((t)) vector space M , where

t =
1

u

and the operator −Q~ introduces a further structure on this vector space: Since [−Q~, P~] = 1 the −Q~ action on M

yields the structure of an ~-connection on the formal punctured disc

D× = Spec C((t)).

This means M has a C-linear endomorphism ∇~, given by the the −Q~ action, such that

∇~(fm) = ~f ′(t)m+ f∇~(m)

for all f ∈ C((t)) and all m ∈M . In the case of ~ = 1 one obtains an object of the category Conn(D×) of connections

on D× and for ~ = 0 one obtains an object of the category Higgs(D×) of Higgs bundles on D×. In this sense one can

think of the quantization scheme as a way to quantize certain Higgs bundles:

Higgs(D×) Conn(D×)

String0
Quant

//
?�

OO

String1
?�

OO

where for a companion matrix

M = MP~,−Q~ = −MP~,Q~

one has

Quant : Mdu 7−→ ∂u +M.

The quantization scheme turns out to be quite natural from the point of view of quantum field theory: As shown

by Liu-Schwarz in [5], for co-prime p and q the quantization of the pair of commuting operators (∂p, ∂q) yields the

τ -function of (p, q) minimal conformal matter coupled to gravity.

Note that since the classical data of the quantization scheme corresponds to commuting differential operators, it is

known via the Krichever correspondence, see for example [8] for a detailed exposition, that this data can be described

in terms of algebraic curves with additional structure. In the following we describe the previously mentioned Higgs

bundle in terms of this algebro-geometric data.

The input of the Krichever correspondence consists of objects of the form

X = (X, s,F , trvialization data)
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where X is a curve over C, s is a point of X, F is a vector bundle and one chooses trivialization of F in a formal

neighborhood of s, see [8] for details. We will from now on focus on the data that will yield points of the index zero

part of the big-cell of the Sato Grassmannian, and hence F is a line bundle. An index 0 Schur pair (A,W ) consists of

a point W of Gr and a C-subalgebra A of C((1/z)) such that AW ⊆W and such that A properly contains C. One then

attaches such an object to X in the following manner: The point W ⊆ C((1/z)) is simply the image under the choice of

trivializations of the space H0(X\s,F) and A corresponds to H0(X\s,OX). Note that in our conventions, 1/z rather

than z is a local coordinate at s. Then for an element P̃ of A of the form zp + lower order terms one obtains a free

C[u]-module of rank p by letting u act on W via P̃ . By restricting the corresponding bundle on Spec C[u] to a formal

disc around ∞ one obtains a rank p vector bundle V on the punctured disc D×. Given a second element Q̃ ∈ A one

obtains, since P̃ and Q̃ commute, an endomorphism of V and hence an endomorphism valued 1-form φ. This gives the

algebro-geometric formulation of the previously defined Higgs bundles.

2.1 Quantization and KP flows

We now answer question (iv) from the introduction:

Theorem 1. In general, for (P0, Q0) corresponding to String0 one has

(Quant ◦KP(t1, t2, · · · )) (P0, Q0) 6∼= (KP(t1, t2, · · · ) ◦Quant) (P0, Q0).

One can prove this statement by considering the case (P0, Q0) = (∂p, ∂q). In the following we give a numerically

more interesting example. Consider the following pair of differential operators related to the 1-soliton solution of the

KdV hierarchy:

P0(t1, t2, t3) = ∂2 +
8e2(x+t3)

(1 + e2(x+t3))2

Q0(t1, t2, t3) = ∂3 +
−1 + e2(x+t3) − 2ex+t3 · sinh(x+ t3)

1 + e2(x+t3)
· ∂2

− 2ex+t3(−4ex+t3 + (e2(x+t3) − 1) · sinh(x+ t3))

(1 + e2(x+t3))2
· ∂1

− 8e2(x+t3)(−1 + e2(x+t3) + ex+t3 · sinh(x+ t3))

(1 + e2(x+t3))3
.

One can check that indeed

[P0(t1, t2, t3), Q0(t1, t2, t3)] = 0.

Note that the KdV hierarchy is the 2-reduced KP hierarchy and hence the above operators do not depend on t2. Note

also that by the first Lax equation of the KP hierarchy one knows that up to a constant one has x = t1. Furthermore,

we interpret the above operators as elements of C[[x]][∂x] by taking the Taylor series with respect to x of the coefficients.

We now show that

(Quant ◦KP(0, 0, 1)) (P0(0, 0, 0), Q0(0, 0, 0)) 6∼= (KP(0, 0, 1) ◦Quant) (P0(0, 0, 0), Q0(0, 0, 0))

and hence, in general, the quantization does not commute with KP flows.

We will need to calculate several companion matrices. A simple algorithm is the following: Let M denote the

companion matrix of P and Q where P is monic of degree p and Q is monic of degree q: Consider vi = zi for

0 ≤ i ≤ p− 1. The entries of M are determined via

Q · vi =
∑
j

Mij(P ) · vj
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where Mij is a polynomial. One has Q · vi = zi+q + lower order terms. Writing i + q = s · p + r with 0 ≤ r < p one

sees that

Qvi − P svr = sum of terms of order at most i+ q − 1 = ai+q−1z
i+q−1 + · · · .

Writing i+ q − 1 = a · p+ b where 0 ≤ b < p, one obtains

Qvi − P svr − ai+q−1P a · vb = sum of terms of order at most i+ q − 2.

Continuing this process one obtains the entries of the companion matrix.

The companion matrix at t1 = t2 = 0 and t3 = 1 can be calculated via the previously described algorithm and one

obtains that

(Quant ◦KP(0, 0, 1)) (P0(0, 0, 0), Q0(0, 0, 0)) ∼= ∂u +MP0(0,0,1),−Q0(0,0,1)

with MP0(0,0,1),−Q0(0,0,1) = (mij) given by

m11 =
4e2(−1 + e2)

(1 + e2)3

m12 = −−1 + 2e2 − e4 + (1 + 2e2 + e4)u

(1 + e2)2

m21 = −16e4 + (−1− 8e2 − 14e4 − 8e6 − e8)u+ (1 + 4e2 + 6e4 + 4e6 + e8)u2

(1 + e2)4

m22 = −4e2(−1 + e2)

(1 + e2)3
.

It follows from the Levelt-Turrittin classification that every irreducible connection (V,∇) on the formal punctured disc

is obtained as a pushforward of a one-dimensional connection from a suitable covering t1/i 7→ t. More specifically, it

is isomorphic to a connection with V = C((t1/i)) and ∇ = ∂t + f
t for some f ∈ C((t1/i)). We denote this connection

as [i]∗[f/t]. Two such connections corresponding to f1 and f2 in C((t1/i)) are isomorphic if and only if f2 is obtained

from f1 by adding an element of Z
i + t1/iC[[t1/i]] and substituting ζit

1/i for t1/i where ζi is an i’th root of unity, see

for example [4] for more details. For F ∈ C((t1/i)) we also write [i]∗[F ] in terms of u := 1/t and z such that zi = u.

Namely we denote this by [i]∗[−F (1/z)/u2].

By using the Levelt-Turrittin algorithm one calculates that the connection ∂u +MP0(0,0,1),−Q0(0,0,1) is isomorphic

to

[2]∗

[
− 1

4z2
− z + z3

]
.

Now note that

MP0(0,0,0),−Q0(0,0,0) =

[
0 −u

−(u− 1)2 0

]
and one calculates that

Quant(P0(0, 0, 0), Q0(0, 0, 0)) ∼= [2]∗

[
− 1

4t
− 1

t5/2
+

1

t7/2

]
∼= [2]∗

[
− 1

4z2
− z + z3

]
.

Note that

[p]∗

[∑
cit

i/p
]
∼= ∂u −

1

u2

∑
ciu
−i/p

and the KP flows with KP times t1, t2, · · · perturb this connection via

∂u −
1

u2

∑
i

ciu
−i/p 7→ ∂u −

1

u2

∑
i

ciu
−i/p − 1

p

∑
i

itiu
(i−p)/p.
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One deduces that

(KP(0, 0, 1) ◦Quant) (P0(0, 0, 0), Q0(0, 0, 0)) ∼= [2]∗

[
− 1

4z2
− 1

2z
− z + z3

]
.

This shows that KP flows do not in general commute with quantization.

2.2 Quantization and ι

In this section we answer questions (ii) and (iii) from the introduction. To do so, we adapt the arguments of [3] to

the current setting. Suppose (P,Q) correspond to String′0 and P and Q are of co-prime degree p and q. As mentioned

before, after possibly conjugating P by a function we can and will assume the subleading coefficient to be zero. Let Γ

denote the group of monic degree-zero pseudodifferential operators. Since P is normalized it follows that there is W

in Γ such that

P̃ := WPW−1 = ∂p

and

Q̃ := WQW−1 =
∑
i≥0

ci∂
q−i.

The parameters ci then determine the isomorphism class of the element of String′0 corresponding to (P,Q) and we will

denote it by (p, q)0(ci)i. If (P,Q) correspond to String′1 then if P is normalized there is W in Γ such that

P̃ := WPW−1 = ∂p

and

Q̃ := WQW−1 =
1

p
x∂1−p +

1− p
2p

∂−p +
∑
i≥0

ci∂
q−i.

The parameters ci then determine the isomorphism class of the element of String′1 and we will denote it by (p, q)1(ci)i.

Theorem 2. For positive co-prime integers p and q there are isomorphisms

ι ((p, q)1(ci)i) ∼= (q, p)1(ĉi)i

ι ((p, q)0(ci)i) ∼= (q, p)0(ĉi)i

where

cn = −q
p
·
∑
k≥1

1

k

(
(n− p− q)/p

k − 1

) ∑
m1,··· ,mk≥1∑

mi=n

(−1)k ĉm1
· · · ĉmk

and

ĉn =
p

q
·
∑
k≥1

1

k

(
(n− p− q)/q

k − 1

) ∑
m1,··· ,mk≥1∑

mi=n

cm1
· · · cmk

.

Furthermore, for (P0, Q0) corresponding to String′0 one has

(Quant ◦ ι)(P0, Q0) ∼= (ι ◦Quant)(P0, Q0).

Proof. The statement concerning (p, q)1(ci)i is essentially a reformulation of the results of Fukuma-Kawai-Nakayama

[3], see also [7]: Suppose W in Γ is such that

P̃ := WPW−1 = ∂p
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and

Q̃ := WQW−1 =
1

p
x∂1−p +

1− p
2p

∂−p +
∑
i≥0

ci∂
q−i.

Note that Quant(P,Q) ∼= ∂u +MP,−Q. On the other hand, from the form of Q̃, one obtains for zp = u that

∂u +MP,−Q ∼= [p]∗

−1− p
2p

1

zp
−
∑
i≥0

ciz
q−i

 .
Let

ξ := exp

(
c1
qc0

x

)
.

There is V in Γ such that

V (
1

c0
ξQξ−1)V −1 = ∂q

and

V
(
−c0ξPξ−1

)
V −1 =

1

q
x∂1−q +

1− q
2q

∂−q +
∑
i≥0

ĉi∂
p−i.

By definition ι ((p, q)1(ci)i) corresponds to the string equation [Q,−P ] = 1 and therefore

ι ((p, q)1(ci)i) ∼= ∂u +MQ,P .

In terms of the ĉi’s this is isomorphic to

[q]∗

−1− q
2q

1

zq
−
∑
i≥0

ĉiz
p−i

 .
Under our assumption that P and Q are monic it follows that c0 = 1 and ĉ0 = −1. It then follows from [3] that

cn = −q
p
·
∑
k≥1

1

k

(
(n− p− q)/p

k − 1

) ∑
m1,··· ,mk≥1∑

mi=n

(−1)k ĉm1
· · · ĉmk

and

ĉn =
p

q
·
∑
k≥1

1

k

(
(n− p− q)/q

k − 1

) ∑
m1,··· ,mk≥1∑

mi=n

cm1 · · · cmk
.

We now prove the statement concerning (p, q)0(ci)i. Let W be in Γ such that

P̃ := WPW−1 = ∂p

and

Q̃ := WQW−1 =
∑
i≥0

ci∂
q−i.

Let ξ := exp( c1qc0x) and let V in Γ be such that

V (
1

c0
ξQξ−1)V −1 = ∂q
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and

V (−c0ξPξ−1)V −1 =
∑
i≥0

ĉi∂
p−i.

For γ := Wξ−1V −1 let ∂ := γ∂γ−1. One obtains the system of equations

∂
q

= ∂q

1 +
∑
i≥1

ci∂
−i


∂p = ∂

p

1 +
∑
i≥1

(−ĉi)∂
−i

 .

Now, take q’th and p’th roots of the two equations and let α and β be two indeterminates. Note that C((∂−1)) ∼= C((1/α))

and C((∂
−1

)) ∼= C((1/β)). One then deduces the following system of equations:

β = α

1 +
∑
i≥1

ciα
−i

1/q

α = β

1 +
∑
i≥1

(−ĉi)β−i
1/p

.

The explicit description between the ci’s and ĉi’s follows then by the same argument as given in [3], Section 4.

The last part of the theorem follows from the previous calculations together with the observation that for (P0, Q0)

corresponding to String0 the eigenvalues of the companion matrix agree with the exponential factors of the corre-

sponding connection up to regular terms.

We now illustrate Theorem 2 with some numerical examples.

Example 1. We start by giving an example of the way ι changes the isomorphism class of a Higgs bundle. In the

notation of Section 2.1 the characteristic polynomial of MP0(0,0,0),−Q0(0,0,0) is given by

char(MP0(0,0,0),−Q0(0,0,0), x) = x2 − u(u− 1)2

and in terms of z with z2 = u one obtains the eigenvalues as z3 − z and −z3 + z. Considering the second of these

two, one therefore knows that the Higgs bundle associated with (P0(0, 0, 0), Q0(0, 0, 0)) is given by (2, 3)0(ci)i with

c0 = 1, c1 = 0, c2 = −1 and ci = 0 for all i ≥ 3. By Theorem 2∑
i≥0

ĉiz
2−i = −z2 − 2

3
− 1

9z2
+

2

81z4
+ lower order terms.

Then for example if f(z) := z2 + 2
3 + 1

9z2 −
2

81z4 and if ζ3 denotes a primitive third root of unity, one obtains

(x− f(z))(x− f(ζ3z))(x− f(ζ23z)) = x3 − 2x2 + x− z6 +
2x

243z6
− 19

2187z6
+

8

531441z12
.

This should give an approximation of the characteristic polynomial of MQ0(0,0,0),P0(0,0,0). The latter can be calculated

independently in an exact manner since the companion matrix can be calculated and indeed one obtains with u = z3

that

char(

 2 0 1

u 0 0

−1 u 0

 , x) = x3 − 2x2 + x− z6.

Example 2. We now give an example, via the KdV 1-soliton as discussed in Section 2.1, that ι commutes with
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quantization. In the previously used notation first note that

Quant(P0(0, 0, 0), Q0(0, 0, 0)) ∼= ∂u −
∑

ciu
(3−i)/2

with c0 = 1, c1 = 0, c2 = −1, a3 = 0, a4 = 0, c5 = −1/4. Via Theorem 2 one obtains with z = u3 that

(ι ◦Quant)(P0(0, 0, 0), Q0(0, 0, 0)) ∼= ∂u −
∑
i

ĉiu
(2−i)/3

∼= ∂u +
1

3z3
+

1

9z2
+

2

3
+ z2.

On the other hand, one has

(Quant ◦ ι)(P0(0, 0, 0), Q0(0, 0, 0)) ∼= ∂u +MQ0(0,0,0),P0(0,0,0)

with

MQ0(0,0,0),P0(0,0,0) =

 2 0 1

u 0 0

−1 u 0

 .
And the Levelt-Turrittin algorithm yields that

(Quant ◦ ι)(P0(0, 0, 0), Q0(0, 0, 0)) ∼= [3]∗

[
1

3z3
+

1

9z2
+

2

3
+ z2

]
.

Hence, in this example the quantization does commute with ι.

Example 3. We give another example that ι commutes with quantization. Let

P0 = ∂3 − 7∂ + 2

Q0 = ∂5 + ∂3 − 2∂2 + ∂ + 5.

Then clearly the two operators commute. Furthermore

MP0,−Q0 =

 11− 8u −57 4− u
−8 + 6u− u2 39− 15u −57

57(2− u) −407 + 6u− u2 39− 15u

 .
One then calculates

Quant(P0, Q0) ∼= [3]∗

[
1

3z3
+

1418

27z2
− 10483

81z
+

89

3
− 562

9
z +

16

3
z2 − 38

3
z3 − z5

]
.

Hence, via Theorem 2, the composition ι ◦Quant applied to (P0, Q0) is isomorphic to

[5]∗

[
− 2

5z5
+

1008

125z4
+

223

125z3
− 163

25z2
+

26

25z
+

16

5
− 38

5
z + z3

]
.

We now verify directly that this is isomorphic to applying Quant ◦ ι to (P0, Q0). Note that

MQ0,P0 =


2 −7 0 1 0

0 2 −7 0 1

−5 + u −1 4 −8 0

0 −5 + u −1 4 −8

40− 8u 8 −21 + u 7 4

 .
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Then

(Quant ◦ ι)(P0, Q0) ∼= ∂u +MQ0,P0

and in terms of z with z5 = u the Levelt-Turrittin algorithm shows that indeed this is isomorphic to

[5]∗

[
− 2

5z5
+

1008

125z4
+

223

125z3
− 163

25z2
+

26

25z
+

16

5
− 38

5
z + z3

]
.

To give more context to the classical/quantum correspondence of the ι dynamics, we now show that in the theory

of the local Fourier transform the same phenomenon occurs:

After choosing a basis, write an n-dimensional connection ∇ on the punctured disc as

∇ = ∂t +A where A ∈ glnC((t)).

The connection can naturally be deformed into an ~-connection by setting

∇~ = ~∂t +A.

As discussed for example by Graham-Squire [4], the formulas for the local Fourier transforms, up to the regular term,

can be easily understood if the differential part of the connection is dropped. This corresponds to letting ~ = 0 in the

above situation. We now give some more details. Consider for example the local Fourier transform F (∞,∞). It can be

defined, see [1], in the following manner: Suppose given a connection (V,∇t) over C((t)). Let t̂ denote the variable of

the Fourier dual connection. Then F (∞,∞)(V,∇t) has the same underlying C-vector space as V and the action of t̂

and ∇t̂ is given via

t̂ = (t2∇t)−1 and t̂2∇t̂ = −1/t.

Note that indeed ∇t̂ is a connection with respect to the C((t̂)) vector space structure: One has

[t−1, t̂−1] = 1

and hence, as an example, note that for all v ∈ V one has

∇t̂(t̂
−1v) = −t̂−2t−1t̂−1v = −t̂−2(v + t̂−1t−1v) = −t̂−2v + t̂−1∇t̂(v)

as desired. Explicit formulas for the transform F (∞,∞) have been obtained independently by Fang [2], Graham-Squire

[4], Sabbah [9]:

Let f ∈ C((t1/r)) for some r and denote [i]∗[f/t] simply by Ef . Suppose ord(f) = −s/r, meaning

f =
c

ts/r
+ higher order terms

for some c ∈ C×. Then for irreducible Ef one has

F (∞,∞)Ef ∼= Eg

where g is determined by the following system of equations:

f =
1

tt̂

g = −f +
s

2(s− r)
.

The key point to emphasize is that most of the difficulty of these results concerns the regular term. As a heuristic one
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has: Without the differential parts one has

∇t =
f

t

∇t̂ =
g

t̂

and one obtains from the previously described defining equations of F (∞,∞) that

f = t∇t =
1

tt̂

g = t̂∇t̂ = − 1

t̂t
= 1− 1

tt̂
= 1− f.

Hence, this correctly describes the local Fourier transform up to changing the regular term. This gives another

viewpoint on the classical/quantum correspondence.
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