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Abstract

As part of the development of the orbit method, Kirillov has counted the number of strictly upper triangular

matrices with coefficients in a finite field of q elements and fixed Jordan type. One obtains polynomials with respect

to q with many interesting properties and close relation to type A representation theory. In the present work

we develop the corresponding theory for the exceptional Lie algebra g2. In particular, we show that the leading

coefficient can be expressed in terms of the Springer correspondence.

1 Introduction

Let Fq be a finite field of characteristic p and consider the set n(n,Fq) of strictly upper-triangular n × n matrices

with entries in Fq. The group Gn(Fq) of upper-triangular n × n matrices with 1’s on the diagonal acts on n(n,Fq)
via conjugation. The (complicated) structure of the adjoint orbits plays an important role in the orbit method in

representation theory. As an approximation to the structure of the adjoint orbits, Kirillov initiated in [6], [7] a detailed

study of the number Pλ(q) of elements in n(n,Fq) of fixed Jordan type λ (here λ is a partition of n). One obtains

polynomials with respect to q (we will refer to them as Kirillov polynomials) with many interesting properties that are

strongly influenced by type A representation theory. For example, the leading coefficient is given by the dimension of

the irreducible representation Vλ of the permutation group Sn associated to λ.

To illustrate the huge simplification that occurs when passing from adjoint orbits to Jordan types let us consider

the case n = 4. Using a recursion relation with respect to n, one can calculate, see [3], that for n = 4 the Kirillov

polynomials are

P4(q) = q3 · (q − 1)3

P3,1(q) = q2 · (q − 1)2 · (1 + 3q)

P2,2(q) = q · (q − 1)2 · (1 + 2q)

P2,1,1(q) = (q − 1) · (1 + 2q + 3q2)

P1,1,1,1(q) = 1

The elements in n(4,Fq) correspond bijectively to those in G4(Fq) via X 7→ id +X and this maps adjoint orbits to

conjugacy classes. The G4(Fq) conjugacy classes are classified in [10] in the following manner. Every conjugacy class

contains a unique so-called primitive element and these are classified by their type: Each of the 6 possibly non-zero

entries is either a ramification point with 0 entry (denoted by θ), a ramification point with non-zero entry (denoted

by •), or an inert point with 0 entry (denoted by 0). We refer to [10] for the precise definitions. Order the indices

containing potentially non-zero matrix entries as

(3, 4) < (2, 3) < (2, 4) < (1, 2) < (1, 3) < (1, 4)

With respect to this ordering one lists the types of each matrix entry, for example matrices of type θ, θ, •, θ, θ, 0 are of

the shape 
1 θ θ 0

0 1 θ •
0 0 1 θ

0 0 0 1
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The classification of conjugacy classes in Gn(Fq) (for n sufficiently small) in terms of the types of primitive elements

is achieved in [10], [11] and subsequent papers. To use these results (which are available only for small n) to recover

the Kirillov polynomials it remains to calculate the Jordan type for each conjugacy class. For example, the conjugacy

classes corresponding to the type θ, θ, •, θ, θ, 0 yield q · (q − 1) matrices of Jordan type corresponding to the partition

4 = 2 + 1 + 1. This holds since the type has one • entry yielding q − 1 choices and the size of the centralizer of a

canonical matrix of this type is given in [10] as q5 and therefore the size of the conjugacy class is q6−5. We list the

analogous calculations for all conjugacy classes:

conjugacy type Jordan type number

θ, θ, θ, θ, θ, θ 1,1,1,1 1

θ, θ, θ, θ, θ, • 2,1,1 q − 1

θ, θ, •, θ, θ, 0 2,1,1 q(q − 1)

θ, •, 0, θ, 0, θ 2,1,1 q2(q − 1)

•, θ, 0, θ, θ, 0 2,1,1 q2(q − 1)

•, θ, 0, •, •, 0 3,1 q2(q − 1)3

θ, θ, θ, θ, •, 0 2,1,1 q(q − 1)

θ, θ, •, θ, •, 0 2,2 q(q − 1)2

θ, •, 0, θ, 0, • 2,2 q2(q − 1)2

•, θ, 0, θ, •, 0 3,1 q2(q − 1)2

•, •, 0, θ, 0, 0 3,1 q3(q − 1)2

θ, θ, θ, •, 0, 0 2,1,1 q2(q − 1)

θ, θ, •, •, 0, 0 3,1 q2(q − 1)2

θ, •, 0, •, 0, 0 3,1 q3(q − 1)2

•, θ, 0, •, θ, 0 2,2 q2(q − 1)2

•, •, , 0, •, 0, 0 4 q3(q − 1)3

Adding things up one obtains, as expected

P4(q) = q3 · (q − 1)3

P3,1(q) = q2 · (q − 1)3 + q2 · (q − 1)2 + q3 · (q − 1)2 + q2 · (q − 1)2 + q3 · (q − 1)2

= q2 · (q − 1)2 · (1 + 3q)

P2,2(q) = q · (q − 1)2 · (1 + q + q)

= q · (q − 1)2 · (1 + 2q)

P2,1,1(q) = (q − 1) · (1 + q + q2 + q2 + q + q2)

= (q − 1) · (1 + 2q + 3q2)

P1,1,1,1(q) = 1

Note that the number of adjoint orbits for n = 4 is 2q3 + q2− 2q but even the question whether for fixed n the number

of orbits is always a polynomial with respect to q is still an open question. As n grows, the classification of adjoint

orbits quickly becomes unknown, whereas the Kirillov polynomials have a simple recursion relation that we now recall.

We write partitions as λ = (λ1, · · · , λN ) with λi non-increasing. Given λ we denote by λ′ = (λ′1, · · · , λN ′) its dual

partition. A cell of the Young diagram of λ is called removable if after its removal the Young diagram remains the

Young diagram of a partition. Let s denote the number of removable cells and let (xj , yj) be the coordinates of the

j’th removable cell, see [3] for coordinate conventions. Denote by λ ↓ j the partition obtained by removing the j’th
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removable cell. Then by loc. cit. (Proposition 3.1), one has

Pλ(q) =

s∑
j=1

(q
n−λ′yj − qn−1−λ

′
yj−1) · Pλ↓j(q)

where we use the convention λ′0 =∞.

This recursion allows the efficient calculation of the polynomials Pλ(q), see [3] for a table of all polynomials with

n ≤ 10. Many fundamental properties of the Kirillov polynomials can be obtained easily from the recursion. In

particular, the occurrence of factors of the form q and q − 1 can be explained in this manner. One obtains

Pλ(q) = q(
n
2)−(N2 )−

∑N′−1
i=1 λ′iλ

′
i+1 · (q − 1)n−N ·Rλ(q)

with Rλ(0) and Rλ(1) non-zero. Furthermore, the polynomial Rλ(q) =:
∑
i riq

i satisfies interesting properties: The

constant term r0 equals to 1 and all coefficients are strictly positive integers, the degree of Rλ(q) is expressed in term

of the partition λ′ dual to λ as

deg Rλ(q) =

N ′−1∑
i=1

λ′iλ
′
i+1 −

N ′∑
i=2

(
λ′i + 1

2

)
Furthermore, the leading coefficient of Rλ(q) is dim Vλ where as before Vλ is the representation of the permutation

group Sn associated to λ.

As an example consider

P3,2,1,1(q) = −q5 − 2q6 − 3q7 − 3q8 + 4q9 + 25q10 + 11q11 − 23q12 − 43q13 + 35q14

This factorizes as

P3,2,1,1(q) = q5 · (q − 1)3 · (1 + 5q + 15q2 + 34q3 + 58q4 + 62q5 + 35q6)

A natural question is if in addition to factors of the form q and q − 1 the Kirillov polynomials are typically divisible

by other polynomials. For example the degree 6 factor R3,2,1,1(q) in the above example turns out to be an irreducible

polynomial in Q[q] (equivalently in Z[q]). A first guess is that Rλ(q) is always irreducible in the polynomial ring Z[q]

but this is not quite true as the following factorizations show:

R3,2,1(q) = (2q + 1) · (8q3 + 8q2 + 3q + 1)

R4,3,1(q) = (5q2 + 4q + 1) · (14q3 + 10q2 + 3q + 1)

R5,3,1(q) = (2q + 1) · (81q4 + 57q3 + 23q2 + 6q + 1)

R4,4,1(q) = (2q + 1) · (42q4 + 39q3 + 18q2 + 5q + 1)

R4,3,2(q) = (2q + 1) · (84q8 + 195q7 + 219q6 + 171q5 + 100q4 + 47q3 + 18q2 + 5q + 1)

R4,2,2,1(q) = (3q2 + 2q + 1) · (72q6 + 111q5 + 73q4 + 38q3 + 15q2 + 5q + 1)

R3,3,2,1(q) = (2q + 1) · (84q8 + 195q7 + 219q6 + 171q5 + 100q4 + 47q3 + 18q2 + 5q + 1)

R7,3(q) = (5q + 1) · (15q2 + 4q + 1)

R4,4,2(q) = (2q + 1) · (126q6 + 180q5 + 126q4 + 62q3 + 24q2 + 6q + 1)

However, among the more than a million partitions of all n ≤ 50 no more reducible cases show up when irreducibility

is checked with SAGE. So far we have not been able to rigorously establish irreducibility for those Kirillov polynomials

not listed above. Partially motivated by such irreducibility questions, we establish in Theorem 1 the existence and

explicit formulas for the Kirillov polynomials for the exceptional Lie algebra g2. The analogue of the Rλ(q)-polynomials

for g2 turn out to be all irreducible.

There is a second phenomenon we address. As already indicated, the leading coefficient of Pλ(q) and Rλ(q) is given

by the dimension of Vλ, the representation of the permutation group Sn associated to λ. The partitions λ can also be
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used to describe the nilpotent orbits via their Jordan normal forms. The association

nilpotent orbit of type λ Vλ

is a special case of the Springer correspondence [8], [9] that relates nilpotent orbits with representations of Weyl

groups. Hence the leading order coefficients of the Kirillov polynomials are expressed in terms of the Springer cor-

respondence. We show that this phenomenon persists for the exceptional Lie algebra g2 (a general relation between

Kirillov polynomials and the Springer correspondence will be described elsewhere).

2 The case of g2

The analogue of the number of conjugacy classes in Gn(Fq) for Chevalley groups of type G2 has been computed in [4]

and is given by

q3 + 2q2 − q − 1

See also the related algorithm in [1]. So, one can say that a study of Kirillov polynomials in this situation is not

necessary, since the adjoint orbit structure is understood. Nonetheless, this simple situation can be used to gain

insight into the properties of Kirillov polynomials beyond type A. In principle, one could approach the calculation

of g2 Kirillov polynomials by using the results of [1], [4] and calculating Jordan types, with respect to a suitable

representation, for representatives of each orbit. In the present work we carry out a more direct approach.

To define the notion of a Lie algebra of type g2 over a finite field Fq one starts with a Chevalley basis of a

complex simple Lie algebra of type g2. Then consider the Fq vector space spanned by the Chevalley basis and view

it as a Lie algebra by reducing the complex structure constants modulo p. As is customary, we assume from now

on that the characteristic p of Fq satisfies p > 3. The next step for obtaining Kirillov polynomials is to choose

a suitable representation. The paper [5] is a useful reference for a general discussion of matrix representations of

the complex exceptional Lie algebras. In particular, via folding g2 from s08 one obtains a faithful 7-dimensional

representation ξ. Let α1, α2 be a set of simple roots and assume α1 is the short root. The 6 positive roots are then

α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2. For a root α let eα be the corresponding basis element of a Chevalley

basis. A formula for ξ(eα1
) and ξ(eα2

) is given in [5] (Section 3.6). Let ei,j be the 7 × 7 matrix with 0’s everywhere

except a 1 in the i, j entry. Then

ξ(eα1
) = e1,2 + 2e3,4 + e4,5 + e6,7 (1)

ξ(eα2) = e2,3 + e5,6 (2)

Possibly up to signs, the other Chevalley basis elements for positive roots are given by

eα1+α2
= [eα1

, eα2
]

e2α1+α2
=

1

2
· [eα1+α2

, eα1
]

e3α1+α2
=

1

3
· [e2α1+α2

, eα1
]

e3α1+2α2
= [e3α1+α2

, eα2
]

Let

X := ξ(a · eα1
+ b · eα1+α2

+ c · e2α1+α2
+ d · e3α1+α2

+ e · e3α1+2α2
+ f · eα2

)
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By Equation (1) and Equation (2) it follows that

X =



0 a b 2c d e 0

0 0 f −2b −c 0 e

0 0 0 2a 0 −c −d
0 0 0 0 a b c

0 0 0 0 0 f −b
0 0 0 0 0 0 a

0 0 0 0 0 0 0


This yields a faithful representation of g2 acting on F7

q. We show from first principles that there are indeed

polynomials Pλ(q) in Z[q] counting those elements X of fixed Jordan type λ. We call them the g2 Kirillov polynomials.

Theorem 1. Consider a finite field Fq of characteristic p > 3. The Kirillov polynomials Pλ(q) for the exceptional Lie

algebra g2 with respect to its 7-dimensional faithful representation exist and are given by

P7(q) = q4 · (q − 1)2

P3,3,1(q) = q2 · (q − 1)2 · (1 + 2q)

P3,2,2(q) = q2 · (q − 1) · (1 + 2q)

P2,2,1,1,1(q) = (q − 1) · (1 + q + q2)

P1,1,1,1,1,1,1(q) = 1

Write

Pλ(q) = qa · (q − 1)b ·Rλ(q)

for a, b in Z≥0 and Rλ(0)Rλ(1) non-zero. The constant term of Rλ(q) equals 1, all other coefficients are strictly positive

integers, and Rλ(q) is irreducible in Z[q].

By Theorem 1 there are five Jordan types with non-zero g2 Kirillov polynomial. This matches the number of

nilpotent orbits in g2 and for each such orbit the Springer correspondence [8], [9] associates a representation of the

Weyl group. We show that this correspondence yields the leading coefficients of the Kirillov polynomials:

Corollary 2.1. For each partition λ of 7 such that the g2 Kirillov polynomial Pλ(q) is non-zero there is a unique

nilpotent orbit in g2 that has Jordan type λ in the 7-dimensional representation. Let Vλ be the complex representation

of the Weyl group of g2 associated to this nilpotent orbit via the Springer correspondence. Then

Pλ(q) = (dim Vλ) · qdeg Pλ(q) + lower order terms

We prove the theorem by calculating, in terms of the parameters a, b, c, d, e, f , the rank sequence (r1, · · · , r6) where

ri = rank Xi. One sees that

X2 =



0 0 af 0 ac bc+ df 2ae− 2bd+ 2c2

0 0 0 2af −2ab −2b2 − 2cf −bc− df
0 0 0 0 2a2 2ab ac

0 0 0 0 0 af 0

0 0 0 0 0 0 af

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, X3 =



0 0 0 2 a2f 0 0 0

0 0 0 0 2 a2f 0 0

0 0 0 0 0 2 a2f 0

0 0 0 0 0 0 a2f

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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X4 =



0 0 0 0 2 a3f 2 a2bf 2 a2cf

0 0 0 0 0 2 a2f2 −2 a2bf

0 0 0 0 0 0 2 a3f

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, X5 =



0 0 0 0 0 2 a3f2 0

0 0 0 0 0 0 2 a3f2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



X6 =



0 0 0 0 0 0 2 a4f2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


Since the overall number of matrices is q6 it suffices to obtain the matrix count for all but one type of rank sequence.

We will skip the count for the rank sequence (4, 2, 0, 0, 0, 0). Furthermore, from the explicit formulas for the powers of

X it follows that unless af 6= 0 the ranks of X4, X5, X6 are all zero.

Case 1: af 6= 0

The direct calculations of all power Xi shows that the rank sequence is always (6, 5, 4, 3, 2, 1). Letting a, f range

through non-zero numbers and b, c, d, e arbitrary one obtains (q − 1)2 · q4 matrices.

Case 2: a = 0 and f 6= 0

An explicit calculation shows that the rank of X equals the rank of
f −2b −c 0 e

0 2(b2 + cf) bc+ df 0 0

0 0 0 f −b
0 0 0 0 b2 + cf

0 0 0 0 −(bc+ df)


Hence if

b2 + cf = 0 = bc+ df (3)

then the rank of X is 2 and otherwise the rank is 4. The rank of X2 equals the rank of[
bc+ df 2(c2 − bd)

−2(b2 + cf) −(bc+ df)

]
Since

f(c2 − bd) = (b2 + cf)c− (bc+ df)b

it follows that if Equation (3) holds, then the rank of X2 is 0. If not both of b2 + cf and bc+ df vanish then the rank

of X2 equals to 1 if

(bc+ df)2 − 4(b2 + cf)(c2 − bd) = 0 (4)

and the rank equals 2 otherwise.

To sum up, the possible rank sequences are (4, 2, 0, 0, 0, 0), (4, 1, 0, 0, 0, 0), and (2, 0, 0, 0, 0, 0). The latter occurs

precisely when Equation (3) holds. Let us count solutions a, b, c, d, e, f that also satisfy a = 0 and f 6= 0. If b = 0 then

c = 0 and d = 0 and so one obtains q · (q − 1) solutions. If b 6= 0 let f 6= 0 be arbitrary. This uniquely determines c
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via the first equation and then d via the second equation. So one gets q · (q − 1)2 solutions. Together one gets

q2 · (q − 1)

matrices with rank sequence (2, 0, 0, 0, 0, 0). As we have seen, the rank sequence (4, 1, 0, 0, 0, 0) occurs precisely when

(i) not both of b2 + cf = 0 and bc+ df = 0 hold

(ii) (bc+ df)2 − 4(b2 + cf)(c2 − bd) = 0

We start by counting solutions to Equation (4), ignoring for now the condition f 6= 0. We consider two cases,

depending on whether d vanishes or not.

Case d 6= 0

View Equation (4) as a quadratic equation for f . Looking at the discriminant one sees that given (b, c, d) there are

solutions for f if and only if (c2 − bd)3 is a square, or equivalently if and only if c2 − bd is a square. If it is a square

and equal to 0 then there is precisely one f solution, otherwise there are two distinct solutions for f .

Suppose now c2 − bd is a square, so there is x with

bd = c2 − x2 (5)

For each of the (q+ 1)/2 possible values of x2 one can choose c arbitrary and since d 6= 0 one obtains q− 1 pairs (b, d)

solving Equation (5). Hence there are q · (q − 1)2/2 triples b, c, d such that c2 − bd is a non-zero square and there are

q · (q− 1) triples b, c, d such that c2− bd = 0. Since a = 0 and e is arbitrary, the number of choices of a, b, c, d, e, f that

solve Equation (4) is

q2 · (q − 1) +
q2 · (q − 1)2

2
· 2 = q3 · (q − 1)

Case d = 0

Equation (4) now yields

(bc)2 − 4(b2 + cf)c2 = 0 (6)

If c = 0 this automatically holds and this gives q3 solutions for a, b, c, d, e, f coming from choosing b, e, f arbitrarily.

For fixed c 6= 0 we are solving−3b2 = 4cf . Letting b be arbitrary, this uniquely determines f . Since e is arbitrary, one

obtains q2 · (q − 1) solutions of Equation (6) with c 6= 0.

Adding up the solutions with d = 0 and d 6= 0 one obtains

q3 · (q − 1) + q3 + q2 · (q − 1)

solutions to Equation (4). We have not yet imposed the condition f 6= 0. If f = 0 we are solving

(bc)2 − 4b2(c2 − bd) = 0

If b = 0 this holds automatically and one gets q3 solutions for a, b, c, d, e, f . If b 6= 0 we are solving 3c2 = 4bd and in

analogy with a previous calculation one obtains q2 · (q − 1) solutions.

In conclusion, the amount of solutions to Equation (4) with f 6= 0 is

q3 · (q − 1)

We want to count the number of these solutions that additionally satisfy b2 + cf 6= 0 or bc + df 6= 0. As calculated

earlier, the number of choices for a, b, c, d, e, f with a = 0, f 6= 0 and

b2 + cf = 0 = bc+ df
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is given by q2 · (q − 1). It follows that the number of matrices with rank sequence (4, 1, 0, 0, 0, 0) is

q3 · (q − 1)− q2 · (q − 1) = q2 · (q − 1)2

Case 3: a 6= 0 and f = 0

An explicit calculation shows that X has the same rank as
a b 2c d e 0

0 0 2a 0 −c −d
0 0 0 a b c

0 0 0 0 0 a


and hence always has rank 4. The rank of X2 equals the rank of[

2a2 2ab ac

0 0 4ae− 4bd+ 3c2

]
and hence the rank of X2 is 1 if and only if

4ae− 4bd+ 3c2 = 0

and equals 2 otherwise. Let us count the matrices with rank sequence (4, 1, 0, 0, 0, 0). Let b, c, d be arbitrary. If

4bd = 3c2 then e = 0 and a 6= 0 is arbitrary, so one gets q− 1 possible pairs (a, e). If 4bd 6= 3c2 then a 6= 0 is arbitrary

and uniquely determines e, so again one obtains q − 1 possible pairs (a, e). Hence, in total one obtains q3 · (q − 1)

matrices.

Case 4: a = 0 and f = 0

The rank of X is 4 if not both of b, c are 0. If both of b, c are 0 then the rank is 2 if not both of d, e are 0. If

b = c = d = e = 0 then the rank is 0. Let us now calculate the rank of X2. If b 6= 0 then one sees that the rank is 1 if

3c2 − 4bd = 0 and the rank is 2 otherwise. If b = 0 then the rank is 0 if c = 0 and 1 otherwise.

We now count how many matrices yield the rank sequence (4, 1, 0, 0, 0, 0). This happens exactly if one of the

following two cases holds:

• b 6= 0 and 3c2 − 4bd = 0

• b = 0 and c 6= 0

Consider the first case. If c 6= 0 then d 6= 0 is arbitrary and b is uniquely determined, if c = 0 then d = 0 and b 6= 0 is

arbitrary. The variable e is always arbitrary. So one obtains

q · ((q − 1)2 + (q − 1)) = q2 · (q − 1)

matrices. The second case yields q2 · (q − 1) matrices and hence in total one obtains

2q2 · (q − 1)

matrices with rank sequence (4, 1, 0, 0, 0, 0). The rank sequence (2, 0, 0, 0, 0, 0) occurs if a = b = c = f = 0 and not

both of d, e are 0. So this occurs for (q− 1) · (q+ 1) matrices. Finally, the rank sequence (0, 0, 0, 0, 0, 0) occurs for one

matrix.

2.2 Completion of the proof

Having completed the case by case analysis, we now count it all up. The rank sequence (r1, · · · , r6) yields the partition

of 7 in which 1 ≤ i ≤ 7 has multiplicity αi given by

αi = ri−1 − 2ri + ri+1
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Here we put r0 = rank X0 = 7 and ri = rank Xi = 0 for i ≥ 7. So the rank sequences that showed up correspond to

the following partitions:

(6, 5, 4, 3, 2, 1)  7 = 7

(4, 2, 0, 0, 0, 0)  7 = 3 + 3 + 1

(4, 1, 0, 0, 0, 0)  7 = 3 + 2 + 2

(2, 0, 0, 0, 0, 0)  7 = 2 + 2 + 1 + 1 + 1

(0, 0, 0, 0, 0, 0)  7 = 1 + 1 + 1 + 1 + 1 + 1 + 1

Adding up our various matrix counts one obtains

P7(q) = q4 · (q − 1)2

P3,2,2(q) = q2 · (q − 1)2 + q3 · (q − 1) + 2q2 · (q − 1) = q2 · (q − 1) · (1 + 2q)

P2,2,1,1,1(q) = q2 · (q − 1) + (q − 1) · (q + 1) = (q − 1) · (1 + q + q2)

P1,1,1,1,1,1,1(q) = 1

As mentioned earlier, the count for one partition type comes for free if all others are known and we obtain

P3,3,1(q) = q6 − q4 · (q − 1)2 − q2 · (q − 1) · (1 + 2q)− (q − 1) · (1 + q + q2)− 1

= q2 · (q − 1)2 · (1 + 2q)

This calculation of the Kirillov polynomials for g2 completes the proof of Theorem 1. We now show that the leading

coefficients of these polynomials can be expressed via the Springer correspondence.

The (complex) Springer correspondence [9] relates nilpotent orbits in the complex algebra g2 with complex repre-

sentations of the Weyl group of g2. In fact, the nilpotent orbits themselves inject into the set of equivalence classes of

representations and this injection is sufficient for our purposes. To obtain a bijection one enriches nilpotent orbits by

representations of a suitable group (the original correspondence is obtained by choosing the trivial representations).

For the explicit description of the Springer correspondence for g2 see [8] (Section 7.16) and also [2] (p. 427), [9]. What

matters to us is the dimension of the representation associated to a nilpotent orbit and we record these in the table

below. For each orbit we list a representative in terms of the previously described Chevalley basis and calculate the

Jordan type, written as a partition of 7, via the representation ξ. Since there are different terminological conventions

for describing nilpotent orbits, we also list for each orbit the corresponding weighted Dynkin diagram: The weighted

Dynkin diagram with a corresponding to the short root and b to the long root is denoted by (a, b).

nilpotent orbit weighted diagram representative partition dimension

0 0 1 + 1 + 1 + 1 + 1 + 1 + 1 1

A1 (0, 1) e3α1+2α2
2 + 2 + 1 + 1 + 1 1

Ã1 (1, 0) e2α1+α2
3 + 2 + 2 2

A1 + Ã1 (0, 2) eα1
+ e2α1+α2

3 + 3 + 1 2

G2 (2, 2) eα1
+ eα2

7 1

By comparing the listed dimensions to the leading coefficients of the g2 Kirillov polynomials one obtains Corollary

2.1.
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