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Abstract

The p – q duality is a relation between the (p, q) model and the (q, p) model of two-dimensional quantum gravity.

Geometrically this duality corresponds to a relation between the two relevant points of the Sato Grassmannian.

Kharchev and Marshakov have expressed such a relation in terms of matrix integrals. Some explicit formulas for

small p and q have been given in the work of Fukuma-Kawai-Nakayama. Already in the duality between the (2, 3)

model and the (3, 2) model the formulas are long. In this work a new approach to p – q duality is given: It can

be realized in a precise sense as a local Fourier duality of D-modules. This result is obtained as a special case of

a local Fourier duality between irregular connections associated to Kac-Schwarz operators. Therefore, since these

operators correspond to Virasoro constraints, this allows to view the p – q duality as a consequence of the duality

of the relevant Virasoro constraints.

1 Introduction

The local Fourier transform of `-adic sheaves was developed by Laumon in [8] and applied in an arithmetic context.

His work was inspired by Witten’s proof of the Morse inequalities. The complex version of the local Fourier transform

was defined by Bloch and Esnault in [2] and by Lopez in [9]. We show here that this complex version is of importance

in physics:

Consider a pair of positive co-prime integers (p, q). The partition function Z(t1, t2, · · · ) of two-dimensional gravity

coupled to a (p, q) conformal field is given by

Z(t1, t2, · · · ) = τ2(t1, t2, · · · )

where τ is a certain τ -function of the KP hierarchy. The p – q duality of 2D quantum gravity, which is the analogue

of T - duality for non-critical string theory, is a relation between the (p, q) theory and the (q, p) theory. Geometrically,

this can be interpreted as relating the two points of the Sato Grassmannian that give rise to the relevant τ -functions.

We show that this duality can be described as a local Fourier transform.

In our approach this duality will be a special case of the following. Consider the (W,Q) model of 2D gravity where

W and Q are general polynomials, see [6] for details. It is described by a W -reduced τ -function satisfying a suitable

Virasoro constraint. This constraint can be formulated in terms of the action of the Kac-Schwarz operator AW,Q on

the Sato Grassmannian. There is a natural way to associate an irregular connection on the formal punctured disc

to these operators and we show that one can relate the connection of the (W,Q) model with the connection of the

(Q,W ) model via the local Fourier transform. In other words we show that there is a Fourier duality between Virasoro

constraints. The p – q duality is then obtained as a special case in the following manner:

By the work of Schwarz [14], [15] one can attach D-modules to the (p, q) models generalizing the results for the

(p, 1) models due to Dijkgraaf-Hollands-Sulkowski [3]. These D-modules are constructed from the quantization results

of [14]. The D-module of the (p, q) model is related to the connection associated to the Kac-Schwarz operator and

hence the duality of Virasoro constraints yields the p – q duality.

The reason that the local Fourier transform is relevant in describing the p – q duality can be succinctly summarized.

For two polynomials W and Q consider the Kac-Schwarz operator

AW,Q :=
1

W ′(z)

d

dz
− W ′′(z)

2W ′(z)2
+Q(z).
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It will turn out that to obtain a W – Q duality one should relate AW,Q and its “dual operator” ÂW,Q and a crucial part

in this will be played by expressing W in terms of Q. In the local Fourier transform something very similar occurs:

Given a meromorphic connection associated to a suitable Laurent series f ∈ C((ζ1/p)) for some p ≥ 1, the Fourier dual

variable ζ̂ is determined via the equation

f(ζ) =
1

ζζ̂

and one needs to use this to express ζ as a functions of ζ̂. It turns out that this inversion process in the case of

connections associated to the Kac-Schwarz operators essentially corresponds to the inversion process of expressing W

in terms of Q.

2 Two-dimensional quantum gravity

In this section we recall basic aspects of the (p, q) conformal field coupled to 2D gravity. It is known that this theory

is described by a τ -function of the KP hierarchy that is p-reduced and satisfies suitable Virasoro constraints. Such

a τ -function can be constructed via the Sato Grassmannian and one can translate the problem to finding suitable

solutions to the string equation [P,Q] = 1. We now recall this procedure and refer to [4] for more details.

For all the arguments the Sato Grassmannian is crucial, we hence recall the relevant definitions. Fix an indetermi-

nate z and let H = C((1/z)). Then H = H+ ⊕H− where H+ = C[z] and H− = 1
zC[[1/z]]. Given a C-subspace V of H

let pr : V −→ H+ denote the projection map. The big cell of the Sato Grassmannian as a set is given by

Gr = {C - subspaces V of H
∣∣ pr is an isomorphism}.

Let x be an indeterminate. By a differential operator we will mean an element of the complex Weyl algebra

D := C[x, ∂x].

Differential operators act via a Fourier transform on H:

x 7→ −∂z and ∂x 7→ z.

Let Ψ denote the set of pseudo-differential operators:

Ψ :=
{∑
−∞

aj(x)∂jx
∣∣ aj(x) ∈ C[[x]]

}
.

One can reformulate, see [4], the conditions on the τ -function of the (p, q) model as finding a suitable point of the

Sato Grassmannian stabilized by certain pseudo-differential operators. For example, the point of the (p, q) model is

stabilized by

P̃ = ∂px

Q̃ =
1

p
∂1−px x+

1− p
2p

∂−px +
1

p

p+q∑
i=1

iti∂
i−p
x

with ti = 0 except for tp+q. The Kac-Schwarz operator essentially corresponds to the Q̃-action in this formulation and

this operator plays a crucial role in relating the (p, q) model and the (q, p) model via the local Fourier transform.

The (p, q) models have a generalization to the so-called (W,Q) models where W and Q are polynomials of co-prime

degree p and q. In this formalism the (p, q) model corresponds to the case W = zp and Q = zq. In [6] a generalization

of p – q duality to W – Q duality is obtained. A key feature of the work of Kharchev-Marshakov is that the known

matrix integral representation of the τ -function of the (W, z) model turns into a duality relation of τ -functions for the

case of general Q. We describe this now in more detail.
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2.1 p – q duality

We briefly recall the basic set-up of the p – q duality as described in the work of Kharchev and Marshakov [6]. In the

generality of the (W,Q) model this could be called the W – Q duality. Let W and Q be single-variable polynomials of

co-prime degree p and q. We already recalled the definition of the Kac-Schwarz operator

AW,Q =
1

W ′(z)

d

dz
− W ′′(z)

2W ′(z)2
+Q(z).

Kharchev-Marshakov define the dual operator as

ÂW,Q =
1

Q′(z)

d

dz
− Q′′(z)

2Q′(z)2
−W (z).

In fact, what we denote here by ÂW,Q is simply called AQ,W in [6]. We have chosen a different notational convention

in order to avoid assigning two interpretations to AQ,W .

To obtain a τ -function of the (W,Q) model one should obtain a point V(W,Q) of the Sato Grassmannian stabilized

by W and by AW,Q. Kharchev-Marshakov consider the “action”

SW,Q(x, µ) = Q(x)W (µ)−
∫ x

0

W (y)Q′(y)dy.

Their approach to the p – q duality is to first write the point of the Grassmannian as

V(W,Q) = SpanC(φ0, φ1, · · · )

with the φi’s of the form

φi(z) = W ′(z)1/2 exp(−SW,Q|x=µ=z)
∫
fi(x) exp(SW,Q(z, x))Q′(x)1/2dx

for suitable functions fi. It is then observed that the desired stabilization of the point V(W,Q) by W and by AW,Q

translates into the stabilization of the point

V(Q,W ) := SpanC(f0, f1, · · · )

by Q and ÂW,Q. In this manner one obtains a version of the W – Q duality. In the special case where (W,Q) = (zp, zq)

we call the point V(Q,W ) of the Sato Grassmannian and the corresponding τ -function the (̂p, q) model. As shown in

[6], one can deduce from the above considerations a relation via matrix integrals between the two relevant τ -functions

that generalizes the matrix integral representation of the τ -functions of topological models of 2D gravity:

For an invertible N ×N Hermitian matrix M let

tk :=
Trace M−k

k
.

Then the τ -function τ (W,Q) of the (W,Q) theory is given in terms of the τ -function τ (Q,W ) of the (Q,W ) theory as an

N ×N matrix integral

C[V,M ] ·
∫
τ (Q,W )[X] exp

(
Trace

(
1

2
logQ′(x) +

∫ M

X

W (z)Q′(z) +W ′(X)Q′(M)

))
dX

where C[V,M ] is a certain Gaussian integral, see [6] for a definition. This matrix integral is in a certain sense

independent of N and depends on M only through the times tk. Even though the matrix integral representation of

the W – Q duality seems rather indirect, some explicit examples are known. Already for simple cases this can become
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quite complicated:

For example in [4] Fukuma-Kawai-Nakayama show by a different method that the τ -function τ (2,3)(x1, x3, x5) of

the (2, 3) model is related to the τ -function τ (3,2)(y1, y2, y4, y5) of the (3, 2) model in the following manner: One defines

the modified versions of the τ -functions as

C2,3 := log τ (2,3) − 1

25
· x1x

3
3

x25
+

3

625
· x

5
3

x35
+

1

10
· x

2
1x3
x5

+
1

40
· log x5

and

C3,2 := log τ (3,2) +
2

25
· y

2
1y

2
4

y25
+

1

5
· y1y

2
2

y5
− 16

125
· y1y2y

3
4

y35
+

128

9375
· y1y

6
4

y55
− 4

75
· y

3
2y4
y25

+
32

625
· y

2
2y

4
4

y45

− 512

46875
· y2y

7
4

y65
+

4096

5859375
· y

10
4

y85
+

1

15
· log y5.

Then an explicit relation between the two sets of variables {x1, x3, x5} and {y1, y2, y4, y5} is known and with this

relation one obtains

C2,3 = C3,2.

2.2 D-modules for the (p, q) models

Our approach to relate the two τ -functions τ (W,Q) and τ (Q,W ) is to consider relevant D-modules. Therefore, in this

section we recall how the work of Schwarz associates D-modules to the (p, q) models of 2D gravity, generalizing the

construction for the (p, 1) case in [3] done by Dijkgraaf-Hollands-Sulkowski.

2.2.1 D-modules and τ-functions

Consider the complex Weyl algebra D = C[x, ∂x]. We start by discussing some aspects of the relation between

D-modules and the τ -functions of the (p, q) models.

Consider first the passage from suitable D-modules to τ -functions of the KP hierarchy as discussed in [3]. It is

shown there that in a certain sense the D-module D/〈∂2x−x〉 is associated to the (2, 1) model. The main idea, see loc.

cit. (Section 2.3), is to consider a suitable subspace of the space of solutions of the differential equation

(∂2x − x)f(x) = 0

and produce via the action of D a point in the Sato Grassmannian and hence a τ -function that should be the τ -function

associated to the (2, 1) model. The fact that solutions to the Airy equation are relevant for describing this model was

already shown in the early 90’s by Kac-Schwarz in [7]. The reason is that this differential equation can be related

to the desired Virasoro constraints of the τ -function. In the formulation via the Sato Grassmannian the constraints

correspond to stabilization conditions of a point of the Grassmannian by certain operators and out of solutions of the

Airy equation one can produce the basis vectors of such a special point. In order to really produce the desired point

of the Grassmannian from the Airy function one has to make several conventions which we now explain:

A problem is that the Airy function Ai(x) is a solution to the above differential equation but does not yield an

element of C((1/x)). Consider y such that y2 = x. What is true, see for example [7], is that

ϕ := y1/2 exp(2y3/3) ·Ai(x) ∈ C((1/y)).

It follows that after multiplication by the correction factor y1/2 exp(2y3/3) the D-module D/〈∂2x − x〉 can be related

to a τ -function. Hence there are two questions:

(i) How to justify the multiplication by the correction factor.

(ii) How to justify the change of variables from x to y such that y2 = x.
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We first recall the justification given in [3] and then show a different viewpoint via Kac-Schwarz operators that we will

then use for the case of general p and q.

It is argued in [3] that the exponential exp(2y3/3) can be discarded via the KP flow. Since in that reference

sometimes the arguments mix the Segal-Wilson and the Sato version of the Grassmannian we give some more details:

Let F denote the semi-infinite exterior power of the space H. Define the time evolution operator as

H = exp

( ∞∑
i=1

tiz
i

)
∈ C((1/z))[[t1, t2, · · · ]].

For a point W of the big cell of the Grassmannian there exists a basis {v0, v1, · · · } for W viewed as a C-vector space

such that

vi = zi + v−i with v−i ∈ H
−.

Let

|W 〉 := v0 ∧ v1 ∧ · · · ∈ F .

For zi with i ≥ 0 one can associate an element in the dual space of H and via the corresponding interior products one

obtains a map

〈0
∣∣−〉 : F −→ C.

See for example [12] for details. The bosonization map

F −→ C[[t1, t2 · · · , ]]

satisfies

|W 〉 7→ 〈0 | Hv0 ∧Hv1 ∧ · · · 〉.

The KP τ -function of a point W of the Sato Grassmannian is known to be the image under the bosonization map

of the corresponding point |W 〉 of F . In this sense it is suggestive to interpret the exponential exp(2y3/3) as simply

shifting the desired τ -function with respect to the third KP time. In any case, we now show that getting rid of the

correction factor as well as making the coordinate change y = x2 can be re-interpreted in a very simple manner in

terms of the Kac-Schwarz operators:

For simplicity of notation define A and a via

A := AW=zp,Q=zq =
1

pzp−1
d

dz
+ a.

Then

ρ−1Aρ =
1

pzp−1
d

dz
=:

d

dzp
for ρ = z(p−1)/2 exp(− p

p+ q
· zp+q).

Note that in the terminology of [6] this factor is essentially

W ′(z)1/2 exp(−SW,Q|x=µ=z)

with W = zp and Q = zq. Furthermore, the coordinate change zp = x is exactly what is needed in order to obtain

ρ−1Aρ = d
dx . Hence one can reinterpret the conventions made in [3] in order to attach a D-module to the (2, 1) model

as being the conventions necessary to turn the Kac-Schwarz operator into a meromorphic connection.

We now show that with this convention, one can produce a D-module for the general (p, q) model via the quanti-

zation scheme of [14].

2.2.2 D-modules from quantization of differential operators

In [14], [15] Schwarz developed a notion of quantization of commuting differential operators. As part of that work

there is an associated D-module. It has recently been shown by Liu-Schwarz that the quantization of the commuting
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pair of differential operators ∂q and ∂p produces the τ -function of the (p, q) model, see [10], and in the (p, 1) case this

produces the D-module attached to the (p, 1) model by Dijkgraaf-Hollands-Sulkowski. It then follows that the Schwarz

quantization scheme yields a D-module associated to the general (p, q) model. We now describe this in more detail.

Already for the (2, 1) model one can see easily the appearance of the so-called companion matrices: For the

Kac-Schwarz operator

A :=
1

2z

d

dz
− 1

4z2
+

3z

2

it is shown by Kac-Schwarz in [7] that the space 〈ϕ,Aϕ, z2ϕ, · · · 〉 yields a point in the big cell of the Grassmannian

which yields the τ -function of the (2, 1)-model. Note that A2ϕ = constant · z2ϕ and hence one sees here through the

A action the occurrence of the matrix [
0 1

z2 0

]
and this, after the coordinate change z2 = x, in fact can be viewed as the so-called companion matrix involved in the

quantization of the differential operators (∂1, ∂2) in the sense of [14]. We now recall this quantization scheme.

A differential operator
∑n
i=0 ai∂

i is called normalized if an = 1 and an−1 = 0. If Q0 is a normalized differential

operator of degree q then it is known that there exists

S ∈ 1 + Ψ(−1) =
{

1 +

−1∑
−∞

sj(x)∂jx
∣∣ sj(x) ∈ C[[x]]

}
such that

SQ0S
−1 = ∂qx.

Let V = SH+ ∈ Gr. For 0 ≤ i ≤ q − 1 define

vi = Szi ∈ V.

Then every v ∈ V can be written as v =
∑
ci(z

q)vi where ci(z
q) is a polynomial in zq. For a differential operator P0

the companion matrix M of (P0, Q0) is defined via the action of SP0S
−1 on the vectors vi:

It is the q × q matrix whose (i+ 1, j + 1)’th entry for 0 ≤ i, j ≤ q − 1 is denoted by Mij and which is defined via

(SP0S
−1) · vi =

∑
j

Mij(z
q)vj

where Mij(z
q) is a polynomial in zq. For example, the main case of interest for us will be

(P0, Q0) = (∂q, ∂p)

with p and q co-prime. Write q = sp+ r with 0 ≤ r < p. In this case the companion matrix is given by

M(p, q) =



0 0 zsp

. . .
. . .

0 0 zsp

z(s+1)p 0 0 0
. . .

. . .

0 z(s+1)p 0 0


where there are r columns containing a z(s+1)p.

The notion of quantization developed in [14] is based on fixing the companion matrix and letting the value of the

commutator of two differential operators vary:

Definition 2.3 (Schwarz). Let (P0, Q0) be commuting differential operators with Q0 normalized and companion
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matrix M . A quantization of (P0, Q0) is a pair (P,Q) of differential operators with Q normalized such that

[P,Q] = 1

and such that the corresponding companion matrix equals M .

For such a quantization it is known how to obtain an associated point of Gr and hence a KP τ -function. Let p

and q be positive co-prime integers. It is shown by Liu-Schwarz in [10] that the quantization of (∂q, ∂p) yields the

τ -function of (p, q) model of 2D quantum gravity. The reason that the (p, q) model corresponds to the quantization of

(∂q, ∂p) and not to the quantization of (∂p, ∂q) simply comes from different notational conventions. Note furthermore

that the calculations in [10] are obtained for the ~-dependent string equation but this does not affect the following

discussion.

In order to construct quantizations of commuting differential operators, in [14] under suitable conditions a point

V of Gr with zp-basis {v0, · · · , vp−1} is constructed such that

( 1

pzp−1
d

dz
+ b(z)

)
vi =

∑
Mijvj

for b(z) ∈ C((z)). To do so, for technical reasons one replaces the companion matrix M by a gauge equivalent matrix

B given by

Bij = Mijz
j−i − iδij

pzp
.

The advantage is that under suitable assumptions the leading order coefficient matrix of B has p distinct eigenvalues

and it follows from classical results obtained by Levelt and Turrittin that the connection

d

dx
−M(x)

can be transformed via gauge transformation to a connection with diagonal connection matrix. Here we set x = zp.

This diagonalization enables then to construct the desired point V of the Sato Grassmannian.

In the case of the companion matrix associated to (∂q, ∂p) one can show that one of these diagonal entries is up to

a normalization term given by

zq − p− 1

2p

1

zp
.

Since this is the crucial part of the Kac-Schwarz operator associated to the (p, q) model one can deduce that the point

of the Sato Grassmannian associated to the quantization has a KP τ -function that satisfies the Virasoro constraints

of the (p, q) model, as desired. To sum up, consider the connection

∇p,q :=
d

dx
−M(p, q)(x) with x := zp

on the formal punctured disc at ∞. Then one has:

Theorem 1 (Liu-Schwarz). Let p and q be positive co-prime integers. The D-module ∇p,q of the quantization of

(∂q, ∂p) is associated to the (p, q) model of 2D quantum gravity.

Note that one could interpret ∇p,q as a regular connection on the formal punctured disc centered at the point 0

of the Riemann sphere. However, it follows from the above result that instead one should interpret them as irregular

connections on the formal punctured disc centered at ∞.

Define the “dual connection”

∇̂p,q :=
d

dx
+M(q, p)(x) with x := zq.

Note that the companion matrix of −∂p with respect to ∂q is simply −M(q, p). One can deduce the following result

which will be of importance for our considerations:
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Corollary 2.4. The D-module ∇̂p,q of the quantization of (−∂p, ∂q) corresponds to the (̂p, q) model of 2D quantum

gravity.

3 Local Fourier transform

The local Fourier transform has an interesting history. Originally, partially inspired by work of Witten, Laumon

defined a local Fourier transform in the context of `-adic sheaves in order to obtain results about ε-factors. This

Fourier transform was then adapted to the context of complex connections by Esnault and Bloch and also Lopez. In

the complex as well as in the `-adic case, the relation of the local Fourier transform to classical notions of Fourier

transforms can be seen through their relations with suitable global Fourier transforms via a stationary phase principle.

See [8] and [13].

We will follow the approach of Arinkin in describing the transform. It is developed in the context of P1 and there

exists several versions: F (x,∞), F (∞,x), F (∞,∞) where x is a point of P1. For our purposes the last one is the most

relevant and we now recall its definition. Note that the point∞ in our applications will be the puncture of the Riemann

Sphere involved in the Krichever construction.

The local Fourier transform F (∞,∞) concerns connections on the formal punctured disc at ∞. In the terminology

of [1] this corresponds to so-called holonomic DK-modules where

K = C((ζ)) and DK := K[
d

dζ
].

The category Hol(DK) of holonomic DK-modules is defined by Arinkin to be the full subcategory of the category

of left DK-modules which are finite dimensional as a K-vector space. In other words, one considers the category of

finite-dimensional K-vector spaces with a meromorphic connection:

For a finite-dimensional vector space V over C((ζ)) by a connection one simply means a C-linear endomorphism ∇
that satisfies the Leibniz rule ∇(fv) = f∇(v) + ( d

dζ f)v for all f ∈ C((ζ)) and all v ∈ V . In terms of matrices such a

connection is described by

∇ =
d

dζ
+B

for B ∈ gld(C((ζ))) with d = dimC((ζ))(V ). The morphisms are the morphisms of K-vector spaces that are compatible

with the connections.

Due to work of Levelt and Turrittin one has a classification of the category of holonomic DK-modules. The

formulation involves passing to a finite extension C((ζ1/p)) of C((ζ)) for suitable p. One of the reasons for passing to

such an extension can be to have suitable eigenvalues of the connection matrix be contained in the field of scalars. See

for example [16] for historical context.

For p ≥ 1 and f ∈ C((ζ1/p)) denote by Ef,p the 1-dimensional vector space over C((ζ1/p)) with the connection

d

dζ
+
f

ζ
.

The isomorphism class of Ef,p depends only on the equivalence class of f under the equivalence relation

f ∼ f̃ if f − f̃ ∈ ζ1/pC[[ζ1/p]] +
1

p
Z.

Moreover, one can replace f(ζ) by f(µpζ) where µp is a p’th root of unity without changing the isomorphism class.

Every holonomic DK-module is built out of objects of the form Ef,p in the following sense, see for example [5]

(Proposition 2.3):
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For mi ≥ 1 let Jmi be the object of Hol(DK) given by the vector space Kmi with the connection

∇mi =
d

dζ
+

1

ζ


0 1

0 1
. . . 1

0


Then every object of Hol(DK) is the direct sum of objects of the form

Efi,pi ⊗ Jmi

with Efi,pi being irreducible, which is equivalent to the fact that fi is not an element of C((ζ1/r)) for some 0 < r < pi.

Up to permutations this decomposition is unique. Note that for two objects (M1,∇1) and (M2,∇2) of Hol(DK) their

tensor product has underlying vector space M1 ⊗C((ζ)) M2 with connection given via

m1 ⊗m2 7→ ∇1(m1)⊗m2 +m1 ⊗∇2(m2)

for all m1 ∈M1 and m2 ∈M2.

The local Fourier transform is defined on a subcategory of the category of holonomic DK-modules which we now

describe. First, one defines

slope (Ef,p) = Max (0,−ordζ(f)) .

Let Hol(DK)>1 denote the full subcategory of Hol(DK) of objects all of whose irreducible components have slopes

bigger than 1. The local Fourier transform is a functor

F (∞,∞) : Hol(DK)>1 −→ Hol(DK)>1.

To describe it more precisely, let j∞ denote the inclusion of the punctured disc at infinity into A1 and let Fglob denote

the usual global Fourier transform of D-modules on the plane. Arinkin’s approach to define the local Fourier transform

is that it should make the following diagram commute:

Hol(DK)>1
j∞,∗

//

F(∞,∞)

��

D−Mod

Fglob

��

Hol(DK)>1
j∞,∗

// D−Mod

However, in general this does not determine the transform and continuity conditions are imposed. We refer to [1] for

details. It is important for us that one can give explicit equations to describe the local Fourier transform. We follow

the exposition of Graham-Squire given in [5].

For our purposes it suffices to describe the local Fourier transform of an irreducible Ef,p: Let f ∈ C((ζ1/p)) be of

order −s/p with s > p. Let ζ̂ denote the variable of the Fourier transform. It is defined via setting

f(ζ) =
1

ζζ̂
.

Since f is of order less than −1, the Laurent series ζf(ζ) has negative order (p − s)/p and it follows for example

from [5] (Lemma 5.1) that it has a formal compositional inverse in C((1/ζ1/(s−p))). Note that there is an error in the

statement of the result in [5]. One obtains an expression of ζ as a Laurent series with respect to ζ̂1/(s−p). Then one

9



would like to define a new function g ∈ C((ζ̂1/(s−p))) via

g(ζ̂) := −f(ζ̂) +
s

2(s− p)

where f(ζ̂) is obtained from f(ζ) by substituting for ζ its expression as an element of C((ζ̂)). A priori, the composition

of the two Laruent series might not be well defined. However, without changing the isomorphism class of Ef one can

assume that f ∈ C[ζp, ζ
−1
p ] and then this issue does not arise. With this assumption on f the function g is a well

defined element of C((ζ̂1/(s−p))) and it follows from [5] (Theorem 3.6) that the Fourier transform is given by

F (∞,∞)
(
Ef,p

) ∼= Eg,s−p.

3.1 Reformulation of F (∞,∞)

Due to notational conventions concerning Kac-Schwarz operators, it will be useful for our considerations to derive

formulas for the local Fourier transform of elements of Hol(DK)>1 if they are written in terms of the local coordinate

at 0 instead of ∞. To avoid notational confusion we denote this local Fourier transform by F loc instead of F (∞,∞).

Let

F =
∑
t≤i≤s

aix
i/p ∈ C[x1/p, 1/x1/p]

for suitable t, s with at and as non-zero and suppose that F is not an element of C((1/x1/r)) for some 0 < r < p.

Suppose further that s > p. The connection
d

dx
+
F (x)

x

in terms of ζ := 1/x is given as
d

dζ
− F (1/ζ)

ζ
= E−F (1/ζ),p.

Hence, the variable ζ̂ of the Fourier transform satisfies

1

ζ̂
= −ζ · F (1/ζ).

The can be viewed as an element of C((ζ1/p)). It follows for example from [5] (Lemma 5.1) that this Laurent series has

a compositional inverse h(ζ) in C((1/ζ1/(s−p))). It then follows that

ζ = h(1/ζ̂) ∈ C((ζ̂1/(s−p)))

and
1

h(ζ)
= (−F (ζ)

ζ
)−1 ∈ C((1/ζ1/(s−p)))

where the super-script −1 denotes the compositional inverse. For x̂ = 1/ζ̂ one obtains

g(ζ̂) =
s

2(s− p)
+ F (1/ζ)

=
s

2(s− p)
− 1

ζ̂
· 1

ζ

=
s

2(s− p)
− 1

ζ̂
· 1

h(1/ζ̂)

=
s

2(s− p)
− 1

ζ̂
·
(
−F (x)

x

)−1
(x̂).
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One obtains

F loc

(
d

dx
+
F (x)

x

)
∼=

d

dx̂
− s

2(s− p)
· 1

x̂
+

(
−F (x)

x

)−1
(x̂)

∼=
d

dx̂
+

s

2(s− p)
· 1

x̂
+

(
−F (x)

x

)−1
(x̂).

This reformulation of the local Fourier transform will be useful when we apply it to connections associated to Kac-

Schwarz operators.

4 Fourier duality of Kac-Schwarz connections and p – q duality

In this section we prove the main theorems. First we define the Kac-Schwarz connections and obtain a Fourier duality

for them. We then deduce the p – q duality as a special case.

Stabilization of points of the Sato Grassmannian by Kac-Schwarz operators corresponds to Virasoro constraints

for the corresponding KP τ -functions. We now describe a procedure for attaching irregular connections on the formal

punctured disc to the Kac-Schwarz operators of the (W,Q) model. Recall that one of the relevant operators is given

by

AW,Q =
1

W ′(z)

d

dz
− W ′′(z)

2W ′(z)2
+Q(z).

It will be important for us to work with certain normalized versions of the Kac-Schwarz operators, essentially discussed

by Kharchev-Marshakov in [6]: One makes the change of variables

µp = W (z)

and

νq = Q(z).

As noted in [6], this yields equivalent solutions to the KP hierarchy. Let us now make the further change of variables

µp = x. Then one can write the Kac-Schwarz operator as

A
W,Q

=
d

dx
− p− 1

2p

1

x
+Q+O(

1

x2
).

If one interprets this as a connection at ∞ rather than at 0 then the O(1/x2) contribution does not change the

isomorphism class of the connection. This leads to:

Definition 4.1. The Kac-Schwarz connection of the (W,Q) model is given by

A
W,Q

=
d

dx
− p− 1

2p

1

x
+Q.

We will denote furthermore by Â
W,Q

the connection obtained in the analogous manner from the dual Kac-Schwarz

operator ÂW,Q.

Theorem 2. Let W and Q be polynomials of co-prime degrees p and q. For p odd one has

F loc

(
Â
Q,W

)
∼= A

Q,W
.

Proof. Since p is odd the term
1− p

2p

1

x

11



of the Kac-Schwarz connection Â
Q,W

can be gauged away and therefore

Â
Q,W

=
d

dx
+
F (x)

x
with

F (x)

x
= −(Q ◦W−1)(x).

It follows that the order of F is −s/r where

s = p+ q and r = p.

In particular, s > r and hence Â
Q,W

is an object in the category Hol(DK)>1. Moreover, since p and q are co-prime

it follows that it is an irreducible object and we now calculate its local Fourier transform following the description in

Section 3.1:

In the current situation one has

h(x) =

(
−F (x)

x

)−1
= (Q ◦W−1)−1 = W ◦Q−1

and it follows from the calculation of F loc in Section 3.1 that

F loc

(
Â
Q,W

)
∼=

d

dx̂
+
p+ q

2q

1

x̂
+ (W ◦Q−1)(x̂)

∼=
d

dx̂
+
q − 1

2q

1

x̂
+ (W ◦Q−1)(x̂)

∼=
d

dx̂
+

1− q
2q

1

x̂
+ (W ◦Q−1)(x̂).

Let us now compare this to the Kac-Schwarz connection A
Q,W

. Recall that for the corresponding Kac-Schwarz operator

one has

AQ,W =
1

Q′(z)

d

dz
− Q′′(z)

2Q′(z)2
+W (z).

Furthermore, one has

A
Q,W

=
d

dν
− q − 1

2q

1

ν
+W.

Moreover, if h is as before then h(Q) = (W ◦Q−1)(Q) = W . It follows that

A
Q,W ∼=

d

dν
+

1− q
2q

1

ν
+ h(ν) ∼= F loc

(
Â
Q,W

)
as desired.

One can deduce the p – q duality:

Corollary 4.2. Let p, q be positive co-prime integers. For p odd one has

F loc
(
∇̂q,p

)
∼= ∇q,p.

Proof. It follows from the work of Liu-Schwarz [10], as sketched in Section 2.2.2, that

∇q,p ∼= A
zq,zp

and

∇̂q,p ∼= Â
zq,zp

.
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Hence, the desired result follows from Theorem 2.

Note that since p and q are co-prime, always at least one of them will be odd. In this sense, the parity assumption

of the previous results is not restrictive. Furthermore, one can actually obtain more general results without the parity

assumption. We refer to [11] for details.
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