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Abstract

There are two different ways to deform a quantum curve along the flows of the KP hierarchy. We clarify the
relation between the two KP orbits: In the framework of suitable connections attached to the quantum curve they
are related by a local Fourier duality. As an application we give a conceptual proof of duality results in 2D quantum
gravity.

1 Introduction

One way to define a quantum curve, see for example [20], is as a pair (P,Q) of ordinary differential operators in
C[z][0z] such that

Here A might be viewed as a formal parameter or a fixed complex number depending on the situation of interest. For
the remainder of this work we set A = 1. We say that the quantum curve has bi-degree (p,q) if P is a differential
operator of order p and @ is a differential operator of order q. We will work with scalar differential operators, however,
our methods can be applied also to matrix differential operators. The notion of quantum curve originates from the
fact that given a complex algebraic curve and two suitable functions f1, fo on it, it is known by work of Burchnall and
Chaundy [4] and Krichever [11], that one can construct two commuting scalar differential operators Py and Qo. Hence
an algebraic curve is related to the classical situation i = 0.

Notice that there are two natural ways to deform a quantum curve along the flows of the Kadomtsev-Petviashvili
(KP) hierarchy of partial differential equations. Namely, if P is a normalized differential operator in the sense that is

has the form 92 +a, 20272 +- -, then we can define a pseudodifferential operator L = P#. Tn terms of this operator
we can define a family of quantum curves (P(t1, -+ ,tp1q), Q(t1,- -, Tptq)) of bi-degree (p, ¢) solving the KP-equations
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aTL(tlv T ’tp-i-q) = [L(tla T ’tp+q)+’ L(tlv e atp-i-q)]
n

where the subscript + denotes the differential part of the pseudodifferential operator. The operator P(t1,- - ,tpyq) 1S
then obtained as L(t1,- - - ,tp4q)” and the operator Q(t1,- -+ ,tp4q) can be calculated by the equation

0

ath(tlﬂ to 7t;0+q) = [L(tlﬂ o 7tp+¢1)7}r7 Q(tlﬂ T 7tp+q)]

Note that one can construct a larger family of quantum curves solving the same equations where now all the KP
times t; for ¢ > 1 are allowed to flow. However, in this generality the bi-degree of these curves will not be fixed. If
Q is a normalized operator we can define another family of quantum curves (}5(517 e ,tpr), Q(fl, e 71§p+q)) solving
the KP-equations. These curves are of bi-degree (g, p) and are obtained by deforming the string equation [Q, —P] =1
along a second set £y, %y, --- of KP times. Our goal is to determine the relation between the two KP orbits by showing
in Theorem [I] that they are related by a type of Fourier duality.

It can be seen that for both KP deformations there are a priori the same amount of relevant KP time variables
and this makes it at least conceivable that there is a good correspondence between the two theories. However, the
two corresponding KP 7-functions appear to be very different and depend non-trivially on different numbers of the
time variables. The beautiful consequence, which is useful also in 2D quantum gravity, is that the duality between the



two KP deformations of the quantum curves allows to reduce the number of relevant time variables for one of the two
families of quantum curves and hence leads to a simplified description.

To formulate the main result we notice that differential operators with power series coefficients can be regarded
as operators acting in the space of polynomials C[z]. Namely, we assume that 9, acts as multiplication by z and
multiplication by z acts as —%. It is clear that this construction gives us a structure of D-module on C[z] where
D = C[x,9,] is the one-variable Weyl algebra. In other words, one obtains a D-module on the plane A'. Using this
fact and assuming that the operator P is monic we can assign a connection to a quantum curve (P, Q). To define this
connection we can consider a matrix M of the operator @) in P-basis. Here we are saying that the elements ey, ..., e, of
C[z] form a P-basis if elements P¥e; form a basis. If P is monic a P-basis exists: we can take, for example, e; = 271,
In other words, in this case the operator P specifies a structure of free module over the ring of polynomials. The
matrix M (the companion matrix of the quantum curve in the terminology of [20]) can be considered as a matrix with
polynomial coefficients. It specifies a connection

V= T M (u)
We consider it as a connection on the punctured formal disc D* centered at the point oo, meaning that we choose a
presentation of the punctured disc as D* 2 Spec C((1/u)).

If the operator @ is also monic, we can define another connection using the same construction; we prove that these
two connections are related by local Fourier transform. (Note that the local Fourier transform is defined only up to
gauge equivalence, hence it would be more accurate to say that the local Fourier transform relates equivalence classes
of connections.) Notice that this statement is true also for quantum curves specified by matrix differential operators.

To state the precise relation obtained by the Fourier transform it is best to work with the whole KP orbits. We prove

in Theoremthat the family of connections corresponding to the first family of quantum curves (P (t1,- -« , tptq), Q(t1,- -+ 1 tptq))
is related by local Fourier transform with the family of connections corresponding to the family of quantum curves
(P(t1,-+ ytprq), Q(t1, -+, tprq)) where the parameters (f1, - - - ,#,.,) are expressed in terms of the parameters (t1, - ,t,4)

in the following way:
Let s be an indeterminate. For p,q > 1, we say two functions f; € C((1/s'/?)) and f, € C((1/s'/?)) are compositional
inverses up to gauge equivalence if
fit = fo+ element of sT'C[s™1/9]

fo' = fi+ element of s~ C[s~1/7]
Then the following two functions are inverses up to gauge equivalence:

p+q p+q

1 = 1 o e
f1 :7Zktk8kTp and f2:—7~21€tk8¥
p k=1 q k=1

This is sufficient to describe each set of parameters in terms of the other one. The gauge ambiguity of the inverse
functions comes from the fact that the Fourier transform only relates gauge equivalence classes of connections.

In Section [f] we show that the duality relation between the quantum curves can be applied to give conceptual proofs
of the duality in 2D quantum gravity. This duality corresponds to a certain change in the matter content of the theory
and is called T — duality or p — q duality. The latter notation stems from the fact that for positive co-prime integers
p and ¢ the duality relates the partition function of the (p,¢) minimal model coupled to gravity to the corresponding
function of the (g, p) minimal model coupled to gravity.

Previous approaches [8], [I0] by physicists were of more computational nature. It seemed clear that a more
conceptual approach would be useful. The first step was taken in [I5], where we showed how to describe the duality
as a local Fourier duality of connections on the formal punctured disc. However, the proofs were still of computational
nature. As a consequence of our general duality results for quantum curves obtained in the present work, the reason
underlying the precise dynamics of the duality can now be much better understood as consequence of general properties
of the local Fourier transform.

Consider for example the duality between the (5,2) model and the (2,5) model of 2D quantum gravity. The former



depends a priori on the time variables ¢q,--- ,t; and the latter depends a priori on the time variables iy, --- ,i7. It
is known that the 7-function of the (5,2) model depends trivially on the variable t5 and the 7-function of the (2,5)
model depends trivially on the variables ty,%4,%5. The duality therefore leads to a simplified description of the (5,2)
model.

As a consequence of the duality the two sets of times can be expressed in terms of each other. For example we will
give a proof based on the local Fourier transform that the dynamics of the 2 — 5 duality is given by
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The shape of such coefficients occurring in relating the time flows in the two dual theories will be deduced from
general properties of the local Fourier transform of connections on the formal punctured disc. As is shown in [I6],
these are complex analogues of the symmetries underlying the numerical local Langlands duality for GL,, over local
fields.

Our results are based on [20], however, the familiarity with this paper is not necessary for the reading of present
paper: all definitions and statements we are using are repeated.

2 Quantum curves

Suppose (P, Q) is a bi-degree (p,q) quantum curve. Using the action on Cl[z] described in the introduction, we can
construct two D-modules associated to this curve, meaning two representations of the Weyl algebra D = C[x, 0;]. The
first one D1 (P, Q) is given by

Og— P and z+—Q

and the second one Dy (P, Q) is given by
Oy~ —Q and x— P

Hence, the first D-module is the analogue of the second D-module but for the string equation [@, —P] = 1 instead of
[P, Q] = 1. In other words, one has

Dl(Qafp) = D2(P7 Q)

The global Fourier transform F&'°P of a D-module is the D-module obtained by composing with the map

Oy —x and z— —0,



It is clear from the definitions that the two D-modules are globally Fourier dual:
]:glob [DQ(P7 Q)] = Dl(Pa Q)

This global Fourier duality will be crucial in our approach to the duality of KP orbits of quantum curves.

2.1 KP-flows

In this section we describe, following [20], the KP-flows on the space of quantum curves. Via the relevant dressing
operators attached to a solution to the string equation [P, Q] = 1, this is related to the fact that KP-flows can be
described geometrically in terms of the Sato Grassmannian. We start by recalling this:

As a set, the big cell Gr of the Sato Grassmannian consists of the C-subspaces of H = C((1/z)) that are comparable
to T = C[z]. This simply means that the projection map to H* that takes a Laurent series to its polynomial part is an
isomorphism. The algebra of pseudodifferential operators C[z]((9; 1)) acts on the space of Laurent series H = C((1/2))
in the following manner: For f(z) € C((1/2)) let (2™07) f(z) = (—L)™ (2" f(2)). For differential operators this action
was described in the introduction. Note that differential operators can be characterized as pseudodifferential operators
transforming C[z] into itself.

Let us review shortly the elements of Sato theory and the results of [20]. The commutative Lie algebra vy, of
polynomials )", tr2" acts on H by means of multiplication operators, hence it acts on G in a natural way. There
exists a one-to-one correspondence between the elements of the group G of monic zeroth order pseudodifferential
operators and points of Gr. Namely, every subspace V' € Gr has a unique representation in the form V = SH, where

S € G. It follows that v, acts also on G:

oS _
o, (S0y571)-8 (1)

where the subscript “—” denotes the part of the pseudodifferential operator involving negative powers of 0.
Suppose now that P is a normalized pseudodifferential operator of order p, meaning it is of the form

P=0F+a, 207 %+

Every such operator can be represented in the form S~'92S where S € G and this representation is unique up to
multiplication by an operator with constant coefficients. Using this statement we can construct the action of Lie
algebra v, on the space of normalized pseudodifferential operators differentiating the relation P(t) = S=1(¢)92S(¢)
with respect to t,. As indicated in the introduction, the action on this space can be written in the form of differential

equations
opP n
— =I[P?,P 2
o = Pi.p) @)

Notice that this formula determines also the action of Lie algebra v, on the space of normalized differential operators.
All actions we described can be considered as different forms of the KP hierarchy. Integrating the actions of Lie
algebra v, we obtain the action of a commutative group I'y, the elements of this group can be written in the form
9(t) = exp(3_k>0 ti2").

We now come back to our aim of describing the KP-flows on the space of quantum curves. We would like to solve
the string equation [P, Q] = 1. We will recall the relevant results from [20], but in contrast to loc. cit. we will assume
that P is a normalized differential operator instead of Q. One can say that we apply the results of [20] to the string
equation [—Q, P] = 1. This normalization is useful when working with the D-module D5 (P, Q) that we defined earlier.

As we mentioned, we can construct the operator S € G such that SPS~! = 9?. Introducing the notation V = SH.,
we obtain a subspace V € Gr invariant with respect to multiplication by 2P and with respect to the action of the
operator —Q = pzp%l(f—z + b(z) where b(z) stands for the multiplication by a Laurent series denoted by the same
letter. Here we use the fact that the action of 02 can be interpreted as multiplication by 2P and the fact that H, is
invariant with respect to the action of differential operators. The form of the operator —Q = S (—Q)S~! follows from
the relation [-Q, P] = 1 where P = SPS~! = 2. We can invert this consideration to obtain the following statement,



see [20]: If the point V of the big cell of the Grassmannian satisfies

1 d

p el
2PV CV  and <pzp—1 e

+ b(z)> VCcv
we can construct a differential operator P and a normalized differential operator @ obeying [P, @] = 1. The leading
term of the operator @ is determined by the leading term of the Laurent series b(z).

To summarize, finding a solution to the string equation is equivalent to finding a suitable point of the Sato
Grassmannian stabilized by two operators of the above form.

It follows that the Lie algebra ~ acts on the space of pairs (P, Q) of differential operators obeying [P, Q] = 1 under
the assumption that P is a normalized operator. The proof is based on the remark that for V' as above, the space

V(t) :==gt)V where g(t) =exp Ztkzk ely
k>0

satisfies a similar condition as V but with —Q replaced by ¢~ (t)(—Q)g(t): Namely, one has

1 4
pzP~1dz

k
PV(t) CV(t) and < S OEDY W’CP) V(t) C V() (3)
p
It follows that the KP-flows are defined on the space of quantum curves.
To simplify the formulas that we will obtain in Theorem [1} we normalize the KP times so that at times ¢1,to, - - -
the point V(t) of the KP orbit of V is stabilized by 2? and —t—-4 — 3 %tkzk*p.

pzP—1 dz

2.2 Companion matrix connections

We now describe in detail how to attach a connection on the formal punctured disc to a quantum curve. Recall first
that the category Conn(D*) of connections on the formal punctured disc D* can be defined as follows: After choosing
an isomorphism D* 2 Spec C((t)) each object in this category can be described as a pair (M, V) where M is a finite
dimensional C((t))-vector space and V is a C-linear map

4

V:M — M such that V(f-m):f-V(m)—i-dt

for all f € C((t)) and all m € M. The morphisms in the category Conn(D*) are C-linear maps that also commute
with the maps V.
The category D-Mod of left D = Clz, d,]-modules can be viewed as the category of D-modules over P!(C)\{oo}.
Hence the D-modules D; and Dy that we associated to a quantum curve are D-modules on the plane P!(C)\{oo}.
Let Hol(D-Mod) denote the full sub-category of holonomic D-modules on P!(C)\{oo}. There is a restriction functor
that captures the local information near oo:

oo : Hol(D-Mod) — Conn(D*)

It is given on objects by

N N ®cu C(£) with t=~
xr

where the C((t))-vector space structure comes from the second factor and the map

V i N — Yoo N

is given by

n®f|—>(8x~n)®(—tl2f)+n®%f



Applying the functor 1, to D-modules related by the global Fourier transform we obtain connections related
by local Fourier transform. This statement could be considered as a definition of the local Fourier transform for
connections that can be obtained from D-modules by means of the functor ¥,. See the discussion preceding Theorem
[I] for a precise statement of the result.

Let us consider a solution to the string equation [P, Q] = 1 with P normalized. For SPS™! = 92 let V = SH
be the associated point of the Grassmannian. Suppose e, ...,e,—1 is a P-basis of ., meaning that the collection of
elements PFe; for varying k and i is a C-basis. Under this assumption one has that vy, oo, Up—1 With v; = Se; is a
zP-basis of V. We obtain

Pu, = M ("), (4)

where the entries of the matrix M are polynomials with respect to zP. The matrix M coincides with the companion
matrix of the pair (P, Q) defined as a matrix of P in Q-basis.

We apply these constructions to the D-modules coming from a bi-degree (p,q) quantum curve (P, Q) where P is
monic. The D-module D2 (P, Q) is holonomic and we can apply the functor 1, to obtain a p-dimensional connection.
One sees that

B={1®1,---,2F '®1}

is a C((t))-basis of the vector space D2 (P, Q)®¢[C((t)). The connection is nothing but the companion matrix connection
introduced in [20] and we will denote it by Vs (p,q)-

Since on Dy (P, Q) we defined the 9, action to be the action of —@Q, it follows that apart from the factor —1/t2, the
matrix of the action of 9, with respect to the basis B is the matrix of the action of —@Q with respect to the P-basis
{1,2,-++,2P71} of C[z]. Hence this is simply —M (P, Q). Hence, by writing the connection with respect to the basis
B, one can write

Da(P.Q) ety €(0) = (C(OP. § ~ MP.Q/D - (-1/))

Or, more naturally, when we write this connection in terms of the coordinate u such that the punctured disc is given
by D* 2 Spec C((1/u)) the connection is simply described by

d

— — M(P

- M(P.Q)
Hence, this is the companion matrix connection V;(p,g). Furthermore, if p and ¢ are co-prime it is known, see [20],
that one obtains an irreducible connection.

2.3 Classification of connections

The isomorphism classes of connections have been classified in work of Levelt and Turrittin, see for example [5] for a
detailed exposition. Therefore, one can ask what the description of the connection of the quantum curve in terms of
this classification is. In order to answer this, we describe the Levelt-Turrittin classification.

Sometimes it is convenient to describe a connection with respect to a choice of basis of the vector space M. Then

the map V is simply of the form

d
— + A(t
3 AW

with A(t) € gl,,C((¢)). This classification implies in particular that given an irreducible connection one can simplify
the connection matrix A(t) if one changes coefficients from C((t)) to some suitable finite extension C((t'/%)). For the
extended coefficients there is g € GLn((C((tl/ 7))) such that with respect to the new basis obtained by multiplying by g
the old one, the description of the connection becomes

d d
— +gAt)g! =gt
T (t)g~ +yg 7’



with

f
d
At g 1 +g- —g ! =
gAt)g™ +g 7

fn

for some functions f; € C((t'/%)). This type of simplification is conveniently described in terms of the push-forward
and pull-back of connections along suitable maps. Given a map

p: C[t] — CJ[u]

which takes ¢ to some element in uClu] one can define associated push-forward and pull-back operations on the
categories of connections on the formal punctured disc with local coordinate ¢ and u respectively. Following the
notation in [7] we denote by [i] for i € Z=! the map p that takes ¢ to u’. If N is a d-dimensional connection over C((w))
then [¢]. N is a d - i-dimensional connection over C((¢)). If M is a d-dimensional connection over C((¢)) then [¢]*M is a
d-dimensional connection over C((u)).

Now suppose f € C((t'/9)) and ¢ is the minimal positive such integer. The connection denoted by E; in [9] denotes
the push-forward along the map C((t'/9)) — C((t)) that takes t'/9 to t of the one-dimensional connection

+ qt(qfl)/qf(tl/q)

d
dtl/q

over C((t'/%)). The classification result is then that every irreducible connection is isomorphic to some E; and f is
uniquely determined up to adding an arbitrary element in

1
2.7+ tl/Q(C[[tl/q]]
q

We will also use Fang’s results [7] later on and there a different notation is used, so we introduce it now:
Given a function o € C((¢)) one denotes by [«] the connection

d «
C(t), =+ —

(C@), 3+ 5)
The Levelt-Turrittin classification in this language implies that every irreducible connection is isomorphic to one of
the form

(g« ([td: ()] ©c() R)

where R is a suitable regular connection

d

3 7ﬁ) for some r € C

R=(C(t), 3 ++
and the tensor product of two connections (V;, V;) has underlying vector space Vi ®c(y) V2 and the connection is given
via

v1 @ v — Vi(v1) @ vg +v1 @ Va(vg)

for all v1 € V; and vy € V5.

In order to conform with usual notational conventions for Kac-Schwarz operators, it will often be useful to express
connections on the formal punctured disc with coordinate w in terms of the reciprocal coordinate z = 1/u. Hence, for
h(z) € C((1/z)) we use the notation

(C(u), &+ (=) = (C(u), o~ h(1/u)

Note that in the following we will write u for 1/z without further comment.



2.4 Companion matrices and Levelt-Turrittin normal form

Our goal is to analyze the behavior of KP-flows under duality (P,Q) — (—Q, P). We know already that on the
connection corresponding to the companion matrix M this duality acts as local Fourier transform. From the other
side we know the action of KP-flows on b (see (3))).

We now describe the relation between b(z) and M in the case when P is normalized assuming that p and ¢ are
co-prime. In this case the companion matrix connection Vs (p gy is irreducible. It follows from the Levelt-Turrittin
classification and the irreducibility of V;(p,q) that

4 &1(2)
)" V(pg) = (C(u)”, - )
&p(2)
for suitable & € C((z)) that satisfy
&i(z) € E(C[[z]]

It is shown in [19] that up to a p’th root of unity the coefficient of 1/z is given by (1 — p)/2. Moreover, it is known
that the gauge transformation can be taken to be of the form

R(2) € QL,(C[1/2])

Let R; ;(z) denote the (i + 1,7 + 1) entry of R(z) and let

t:(2) = exp < / b(z)pzpldz) pi Rm(z)%

=0

i ] d A ( )
O e ()l)lallls tllat 51 z
77t1(2) = A'L(Z)I’L(Z) Whele 7«(2)

Let the constants ¢; be such that

ti(z) = ¢ exp(/ Ai(2)pzP~1 dz)

Since
v; = z* + lower order terms

it follows that
crexp([(A1(z) = b(z))pzr~" dz) 1T+ ppz 4

cnexp([(An(2z) — b(2))pzP~t dz) 14 pinaz b+

for suitable constants p; ;. Note that since R is invertible not all ¢;’s can vanish. It also follows from the above
equation that for each ¢ such that ¢; # 0 one needs

Ai(z) —b(z) € Cl1/7]

Zp"rl
Since A;(z) € % C[z] and since b(z) € £ C[z] it follows that

P

b(z) = Ai(2)



This holds for all ¢ such that ¢; # 0. Now define a one-dimensional connection over C((u)) by

Vis = (C(w), = +b(z)) where #5(2):1)(2)

It follows from the previous calculations that

Home ) (Vis, [pl"Vir(rq)) # (0)

Furthermore, one can define a connection on this space of homomorphisms and via the projection formula for pull-back
and push-forward, see for example [I8] (Section 1), one has

[p]*Homc((u))(va, [p]*VM(RQ)) = Homc((up))([p]*VKS, vM(P,Q))

Since Vs(p,q) is irreducible it follows that
Ve = [p)Vks

as desired.
It can be seen from the description of the KP flows in Section and the calculations in [19] that the KP times
t1, -+ ,tp+q can be normalized so that

N d L, 1-p1 1E
V(P tp1), Q11 ) = [Ple | (C(w) 2 = P2 (= 4 — ) itiz"™?))

In this normalization, the connection only depends on p and ¢ and we will denote it by Vs .o ¢, 0)-

3 Duality of quantum curves

As explained previously, if P is normalized one can deform a bi-degree (p, ¢) quantum curve [P, Q] = 1 along the first
p + ¢q flows of the KP hierarchy. If @ is normalized we have another deformation coming from the quantum curve
[—Q, P] = 1. We would like to consider the case when after the deformation both P and @ remain normalized. As can
be seen from the arguments in Section this means in particular that no time evolution is taking place along the
flows of the p + ¢’th and p + g — 1’th KP times. More precisely, as can be seen from the formula at the end of Section

this formally corresponds to the following constraints for the KP times ¢1,-- - ,¢,4 of the first string equation and
the KP times f1,--- ,%,., of the second string equation:
p p
bprg= —— = —= -1
P T q Pt

tptg—1=0= £p+q—1

Our aim is to relate the companion matrix connections Vg, (¢, t,4,) and Vg 5 associated with the two
deformations.

Our main tool is the local Fourier transform: Bloch and Esnault [3] and Lopez [14] developed an analogue over C
of the ¢-adic local Fourier transform constructed by Laumon in [I3]. See also the work of Arinkin [I] for an alternate
approach.

The stationary phase principle for the local Fourier transform is crucial for our proof of the main theorem. This
is a central part of the theory of local Fourier functors. In fact, from its very introduction in the ¢-adic context, the
guidance in defining the local Fourier transform is the search for a stationary phase principle for the global Fourier
transform. We now describe the relevant results.

Fix a point co € P(C) and let (M, V) be a connection on the formal punctured disc centered at oco. A Katz
extension M of this connection is a certain connection on the punctured plane P*(C)\{0, oo} which is regular singular
at 0. See for example [2], Theorem 2.8, for a precise definition of this extension. For the connections of interest to our



considerations, namely the irreducible objects of Conn(D*) this can be described in the following manner: Consider
the connection
Ey with [ = Z aiti/p
i>>—00

The Katz extension £ of this connection is then simply given by

d .

—_ iti/P

a + ; a
—1>i>—x

It is clear from the description of Katz extension in [2] that a Katz extension of the previously introduced companion
matrix connection Vs (p gy is given by Dy (P, Q).

Let Conn(D*)>! denote the full subcategory of Conn(D*) consisting of connections with slopes strictly bigger
than 1. The condition slope(E;) > 1 simply means that there is an ¢ < —p with a; # 0. The local Fourier transform
is then a functor

F(2220) : Conn(D*)>* — Conn(D*)>!

defined in the following way: Consider the Katz extension of the connection as a D-module, take global Fourier, apply
the functor ¥. In particular, see ([3], Proposition 3.12 (v)),

'l/Joo (J—_-glob(gf)) ~ J—_-(oo,oo)(Ef)

This is an incarnation of the stationary phase principle for the Fourier transform and it is a key tool in proving the fol-
lowing theorem. Note that this result relates two connections up to gauge equivalence. Furthermore, it is useful to recall
the following definition from the introduction: For p,q > 1, f; € C(1/s'/?)) and f, € C((1/5'/9)) are compositional in-
verses up to gauge equivalence if f{ ' = fo+ element of s~ 'C[s~'/9] and f, * = f1 + element of s 'C[s~'/?]. For the
statement of the following result recall that we defined the suitably normalized family of connections Vs, (...
associated to differential operators P and () at the end of Section

. 7tp+q)

Theorem 1. Let p and q be positive co-prime integers and consider a quantum curve (P, Q) of bi-degree (p, q) with P
and Q normalized. Let ty,to,--- and t1,ts,--- be two sets of KP times such that

p p -

bptrq = —— = —— tpy
pre = Ty q e
and
tprg—1=0=1tp1q1
Then
I(OO7M)vMp,q(tla"' rtp+q) = VMq,p(£1:£2a"' a£p+q) (5)
where the relation between the times t1,--- ,tpiq and t1,- - ,fp+q is given by the fact that the following two functions
are inverses up to gauge equivalence:
1 p+q
fi=—"- Z ktys»
P4
and
1 p+q  hea
fa=—==-> kigs @

where s is an indeterminate and f1 and fo are viewed as elements of C((1/s'/?)) and C(1/sY/7)).

Proof. The relation between t,, and fp+q has already been shown. We now prove the remaining parts of the theorem.
From the previously mentioned global Fourier duality

‘FglOb[DQ(P(tlatQ?"' atp+q)7Q(t17t27"' 7tp+q))] ng(P(tlthf" atp+q)7Q(t17t27"' 7tp+q))

10



it follows from the stationary phase principle that

Yoo D1(P(t1, o, s tpirg), Qb1 ta, - tpiq)) ZFOIV 0

Furthermore, by the discussion of Section [2.4] one also has
Q/JOODI(P<t17 t27 T 7tp+q)a Q(tla t27 e 7tp+q)) = VMq.’p(fl’... ’{p+q)

for some choices of ty, - - - ,fp+q. We now relate these KP times concretely to the other set of KP times t1, - ,t,14.
To do so, we formulate the explicit description of the local Fourier transform as obtained by Fang [7], Graham-Squire
[9], and Sabbah [I§].

Let us first describe Fang’s version of the result. For Z = ¢~'/? and Z’' = ¢/~'/9 and o € C((2)) it follows from [7]
(Theorem 1.3) that for every regular one-dimensional connection R one obtains

Feo) (pl, ([Z0z(a)] @c(zy R)) = [dl+ <[Z’8Z/ (8) + Z%] ®c(z) R)

where a and S are related in the following manner:
61;0[ + t/ = O

a+tt' =4

Note that since p + ¢ > p the connection to which we apply the local Fourier transform has slope strictly bigger than
one and so the results of [7] do indeed apply. It follows from the above equations that

Oy =0 - Opt+t+t0pt=Oa+t)opt+t=t

and
OB = (—0a)~ (1)

where we consider the compositional inverse of —d;a viewed as an element in C((1/t'/?)). Note that for example by
[9] (Lemma 5.1) such an inverse does indeed exists as a formal Laurent series. We now use this to obtain the time
dynamics.

For this purpose, only the irregular part of the relevant connections matters. This part is defined in the following
manner: For an irreducible connection Ey with f = )" a;t"? the sum Y ico a;t"/? only depends on the isomorphism
class of Ey. Therefore one can define in a well-defined manner the associated connection

(Bp)iseg := By where f = Zaiti/p

<0
Note that for z = 1/Z one has
d 6Z (a)
20(0)) = (C(u), = — Z2Y)
Hence, if a function H satisfies
- 9z(c)
1
per U (z) = ~ 2
then
atOé =H

It follows that the explicit form of the local Fourier transform implies

(7 (e 5 +pH>)) = (I (@), + o 1))

11



where (—H)~! denotes the compositional inverse of —H viewed as a function of 1/z, hence as a function of 1/s'/?
where
s:=2P

The above described explicit formula for the local Fourier transform can also be verified by comparison to the formulas
given by Graham-Squire in [9] which were obtained by a different method than Fang’s. Let f be such that

By = [pl. ([20z(a)] @c(z) R)
One has, compare to the discussion in [9] (Section 5.1), that z =¢, 2 =¢' and
1
—tatO[ = gal/ta = f

and

1
= Pal/t/ﬁ = g + regular terms

Hence one obtains

f=zz
which is the first of the equations obtained by Graham-Squire. Furthermore, one has
z = (i)il(é) = —g + regular terms
z z

and this yields
g = —f + regular terms

and this is the second of the two equations given in [9].
We now apply these generalities concerning the local Fourier transform to our concrete situation: Since p and ¢
are co-prime, at least one of the numbers p and ¢ is odd. Assume first that p is odd. Recall that

v > (€, & - pri (2L S )
= * u))y, w— — Pz "9y P D 1z
Mp,q(t1, " stptq) dz P 2p 2P p i=1
Hence, since
1— 1
J S )
2p p

it follows that
Voo D1(P(t1, 2, s tprq), Qb1 tas s tprq)) = Vg (e dpey)

(00,50) d o IR
F [Pl | (C(w), 4 +p2 (—pzztlz )

1%

Therefore, if we define
p+q

1 .
H(s) := - > ity
i=1

then the coefficent of 1/s in —H(s) is zero. It then follows for example from [9] (Lemma 5.3) that the coefficient of

12



1/sin (—H(s))~! is zero as well. Therefore there are isomorphisms

(). ((C(w), & +q29 1 (3 S0 itystior)/) 1)

IR

(FEopl. (), & +prt (-5 X itisP17))) )

irreg

IR

[a] ((C((U)), R L G B A igl.safq)/q)))

Hence the following two functions are compositional inverses up to gauge equivalence:
1 p+q - 1 p+q fa
];Zktks P and — QZktks q
k=1 k=1

Assume now that ¢ is odd.
We first recall a general result about the local Fourier transform: Let a,b be indeterminates and denote by ¢ the
pull-back map of connections on the formal punctured disc along the map

C(a) — C(b) with a— —b

Suppose given a connection (M, V). The pull back is then given by the C((a))-vector space C((a)) ®c () M with the
connection map that satisfies
1@m— —-1®V(m)

Therefore one obtains

(€D 41+ 1) ) = (). 5 - h(c)

where
¢ =1

The involution ¢ is related to the local Fourier transform: By [3] (Proposition 3.12 (iv)) one has
j—_'(oo,oo) OF(OO’OO) =4
It follows that there are isomorphisms

Fles)y,,

a0 (12, ,Epiq)

IR

LVM

p-,q(tlvt%'“ »tp+q)

IR

~

) (C). s+ 97 (3 2 (27
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where (P = —1. Here for the second isomorphism we have used that ¢ is odd. It now follows by a similar reasoning as
before that the following two functions are compositional inverses up to gauge equivalence:

p+q pt+q

1 o— 1 A k=
katk(—s)% and katks%
Pio 1=

This again implies the desired result. O

4 Application to p — q duality of 2D quantum gravity

In this section we apply the previous results to give a conceptual proof, based on the local Fourier transform, of the
duality results of Fukuma-Kawai-Nakayama [8] concerning 2D quantum gravity.

For positive co-prime integers p and ¢ there exists the so-called (p, ¢) model of 2D quantum gravity (more precisely
one should talk about (p, ¢) minimal model coupled to 2D gravity). This theory has a partition function Z, 4 that can
be expressed in terms of a 7-function of the KP hierarchy. The crucial fact is that the partition function Z, , is the
square of a function 7, , that is the 7-function of the KP hierarchy satisfying certain Virasoro constraints.

The (p, q) models for varying p and ¢ are not unrelated: There exists a certain duality between the (p,q) and the
(g,p) theory. This so-called p — q duality can be expressed as a relation between the two 7-functions 7, , and 7, .
One of the nice consequences of the duality is that it allows to describe a theory by a simpler one: The (p, ¢) model
depends non-trivially only on the KP times t; with

1<i<p+q and i¢Zp

Therefore, the p — q duality can simplify the study of the (p, ¢) models. For example, the (3,2) model depends a priori
on four time variables but via the 3 — 2 duality it can be expressed in terms of three parameters.

In [I5] it was shown that the p — q duality can be expressed in terms of the local Fourier duality of certain
connections. We now use the results of the previous section to give a more conceptual proof of this fact and furthermore
we will give a Fourier theoretic proof of the results of Fukuma-Kawai-Nakayama concerning the dynamics of the duality.

It is known that (p,q) theory corresponds to a family of solutions to the string equation

[P(t17"' ’tPJrq)vQ(tlv"' >tp+q)] =1 where P(tlﬂ"' 7tp+q) = 85—1—%,265:’_2 +---Fao

is a differential operator of order p and @ is a differential operator of order q. The method that allows us to describe
the corresponding points of the Sato Grassmannian was given in [I2]. For more details see [20], [I0] or [§]. In this
description, the 7-function 7, 4 of the theory is known to satisfy

82

ap—2
6‘7& In7,,= -2
It is shown in [8] that one simply has
02 o
o2 In7y, = o2 N7+ Cty, - tpiq)
1 1

where the correction term is given by

2
l—q p+q—1 (tpiq P+q—2 tpiq—2
Clty, s tprq) = . R . pTa

2 qlpta) \ tpg 4P +4q)  tpig
Note in particular the case where p and ¢ are such that one of the following holds:

(i) ¢g#1landg=1 modp

14



(i) ¢ =2 mod p

. 2 . . .
In these cases the function % In 7, ; does not depend on one of the variables ¢,,,_1 or t,4,—2 and one can specialize
. . . 1 . . .
the value of this time variable in such a manner that the correction term vanishes:

Ct1, - stprq) =0

To really relate the second derivatives of the 7-functions it is crucial to obtain a relation between the two sets of KP
times. This time dynamics of the duality was obtained by Fukuma-Kawai-Nakayama in [§]. We now give a conceptual
proof of the relation between the (p, ¢) times and the (g, p) times based on properties of the local Fourier transform.

Theorem 2 (Fukuma-Kawai-Nakayama [8]). Let p and g be positive co-prime integers. Define

kty, d a kfk
Optq—k = ————— an Aptq—k = —————
pra (p + Q)tp+q e (p + Q)tp+q
Then
2 _q
tp+g = _; “tptg

and there are values a,,a, extending the above definition to all n > 1 such that following two functions are composi-

[e%e) 1/q
g1 =2 (1 + Z anz">
n=1

tional inverses:

and
o'e) 1/17
e <1 S )
n=1

Proof. We will be able to deduce this result from Theorem [I} It is clear that by Theorem [I|the times ¢1,--- ,tp44 and
1, 7fp+q can be related via the local Fourier transform (see ) Let fi; and f be as in the statement of Theorem

Namely

p+q

1 k—p
fi=—- ktpu
b

and
p+q

1 e
fa=— Zktku¥
1 =
Setting a,, = 0 for all n > p + ¢ one sees
g2(u) = (fa(u)!'”
Then one sees that
00 1/q
ga(w)™ = (75 ()1 = (ﬁ(uf’) Y b)
n=p

for some values b,,. Hence

pt+q—1 00 /4
go(u) ™t =u <1 + Z anz "+ Z bnu_”_q>
n=1 n=p
Therefore one can define g; by g1 := g5 ! and one obtains the desired result. O

Via standard techniques involving formulas for inverse functions one can make the time relation even more explicit.
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This has been carried out by Fukuma-Kawai-Nakayama in [8] and the general formula is given by
q 1 /(n—p-— . .
S << - 1q)/p> S i,
Pz ma, ezl S mi=n

Consider for example the 2 — 5 duality:

Choosing ¢ = 2 one can let the correction term vanish. The time variables ¢1,--- ,t7 of the (5,2) model can be
described in terms of the time variables ¢;, - - ,#7 of the (2,5) model. We set
5
t7 == ?
and hence 5
57 = 7?

Then one can calculate the formulas for the 2 — 5 duality that were presented in the introduction.

Such dynamics were previously known only through explicit calculations with pseudodifferential operators and hence
it was difficult to understand their underlying meaning. Due to the present work, the formulas can be understood
conceptually as the dynamics underlying the local Fourier transform of connections on the formal punctured disc.
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