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Abstract

The masses of affine Toda theories are known to correspond to the entries of a Perron-Frobenius eigenvector of

the relevant Cartan matrix. The Lagrangian of the theory can be expressed in terms of a suitable eigenvector of a

Coxeter element in the Weyl group. We generalize this set-up by formulating Lagrangians based on eigenvectors of

arbitrary elements in the Weyl group. Under some technical conditions (that hold for many Weyl group elements),

we calculate the classical mass spectrum. In particular, we indicate the relation to the relative geometry of special

roots, generalizing the affine Toda mass spectrum description in terms of the Cartan matrix. Related questions of

three point coupling and integrability are left to be addressed on a future occasion.

1 Introduction

In low temperatures, below around 2.95 K, Cobalt-Niobate CoNb2O6 is in a magnetically ordered phase, see [20]. The

magnetic structure is dominated by the Cobalt ions Co2+ since these possess the only unpaired electrons, having 7

electrons in the 3d orbital. The solid exhibits quasi-1D behavior due to the chain geometry in which the Cobalt ions

assemble. Describing the CoO6 environment, the oxygen atoms assemble in a slightly deformed hexagonal octahedron

around zig-zag chains of Cobalt ions. Schematically:

...

...

· · · · · ·

...

...

There is a magnetically preferred easy axis at an angle of around ±30◦ with the Cobalt chain direction, see [15]. As

a consequence, Cobalt-Niobate is well modeled by the 1D quantum Ising model. The situation becomes very interesting

with an externally applied magnetic field orthogonal to all the Cobalt chain easy axes. For suitable field strength of

the external field, the 1D transverse field quantum Ising model has a quantum phase transition and is described by a

central charge 1/2 minimal model conformal field theory. From a Lie algebraic perspective, this conformal field theory

can be described, see [16], as a Toda theory:

Let g be a simple complex finite-dimensional Lie algebra of rank r, with a real form g∗=1 of “Hermitian operators”,

we recall the definition in Section (1.1). Let h be a Cartan subalgebra of g and consider a field φ : R2 → h∩ g∗=1. Let

R be a subset of the roots. Let (−,−) denote the Killing form and define the Lagrangian

LR =
1

2
(∂µφ, ∂

µφ)−
∑
αi∈R

exp(αi · φ)

If R = {α1, · · · , αr} is chosen to be a set of simple roots, one obtains the usual conformal and massless Toda theory

(we have set all coupling constants to 1, for simplicity). Its quantization, as carried out in [16], describes for g = sl2

1



and g = e8 the previously mentioned minimal model.

The actual magnetic structure of CoNb2O6 incorporates a non-zero, yet small, interchain coupling. One obtains a

Hamiltonian with an additional term corresponding to magnetization along the easy axis. This magnetic deformation

of the transverse field Ising model has a beautiful Lie algebraic formulation on the level of Toda theory: Replace

the set R of simple roots by Rnew = R ∪ {α0} for the lowest root α0. The resulting affine Toda theory acquires a

fascinating mass spectrum, that is known to correspond to the entries of a Perron-Frobenius eigenvector of the Cartan

matrix of g, see [12]. Since in the case g = e8 affine Toda theory describes the quantum phase transition of CoNb2O6

in the presence of a small interchain coupling, this confirms the mass spectrum predicted in groundbreaking work by

Zamolodchikov [22]. Coldea et al. in [6] were able to confirm experimentally for CoNb2O6 some of these predictions

using neutron diffraction, in particular that the ratio of second lightest to lightest mass is given by the golden ratio.

As we are about to recall, affine Toda theory is intimately linked to the Coxeter element of the Weyl group of g. The

aim of the present work is to generalize these mass spectrum calculations for Lagrangians based on much more general

Weyl group elements. We show that the classical masses can again be expressed in terms of the relative geometry of

a special collection of roots, generalizing the mass expression in terms of the Cartan matrix.

The starting point is Freeman’s slight reformulation in [9] of affine Toda theory. For Rnew as before, rewrite the

field as φmin + φ where φmin is a minimum. The resulting Lagrangian for the new field φ is

1

2
(∂µφ, ∂

µφ)−
∑

αi∈Rnew

ni exp(αi · φ) (1)

where n0 is normalized to be 1 and the ni’s are such that

α0 = −
r∑
i=1

niαi (2)

See for example [3] (Section 2) for details. Using the Killing form, identify roots as elements of the Cartan subalgebra

h of g. For each root α fix a generator Eα of the corresponding root space with respect to h, normalized so that

[Eα, E−α] = α ∈ h

Let

Λ+ =

r∑
i=0

aiEαi

Λ− =

r∑
i=0

biE−αi

where aibi = ni for each i. Since α0 is the lowest root, [Eαi , E−αj ] = δi,jαi for all 0 ≤ i, j ≤ r. Hence, the Lagrangian

in Equation (1) can be re-written as

1

2
(∂µφ, ∂

µφ)− (exp(ad φ)(Λ+),Λ−) (3)

One can show, see the work of Kostant [18] (Section 6), that the centralizer of Λ+ is a Cartan algebra, denote it by

hWeyl. It follows from Equation (2) that Λ− is in hWeyl. The Weyl group W of g acts on this Cartan algebra and

Kostant has shown in loc. cit. that there is a Coxeter element σCoxeter in W such that

σCoxeter(Λ±) = e±
2πi
h · Λ±

where h is the Coxeter number. In this manner, Equation (3) allows to formulate affine Toda theory in terms of the

linear algebra of Coxeter elements. We extend this formalism to more general Weyl group elements and calculate the

classical mass spectrum.

For usual affine Toda theory, the masses were calculated in the early 90’s by Dorey [8], Freeman [9], and Fring-

Liao-Olive [12]: They can beautifully be expressed in terms of the Perron-Frobenius eigenvector of the Cartan matrix
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of g. More recently, Brillon-Schechtman in [4] considered the case of the Coxeter element but with Λ+ replaced by an

arbitrary eigenvector. Many other works concern various generalizations of Toda theory, see for example [7], [10], [11],

[13], [14].

1.1 The Toda-Weyl Lagrangians

In this section we generalize the affine Toda Lagrangians described by Equation (3). As before, let g be a simple

finite-dimensional complex Lie algebra of rank r, and fix a Cartan subalgebra hWeyl. Let (−,−) denote the Killing

form and identify elements in root space as elements of hWeyl by associating to x in hWeyl the functional (x,−). For

every root α consider the endomorphism of hWeyl given by

rα(β) = β − 2 · (α, β)

(α, α)
· α

The Weyl group W of g is the group generated by the rα’s. For σ in W we aim to construct an analogue of the

Lagrangian in Equation (3). This requires two things: Define the target space of the field φ, and generalize the special

elements Λ± in the Lie algebra g.

For each root α choose generators e±α of the root space of ±α (with respect to hWeyl), normalized so that [eα, e−α] =

α. Let a be the real subalgebra of g given by the R-span of the following elements, as α ranges through the set of all

roots:

(i) α

(ii) eα + e−α

(iii) i(eα − e−α)

Consider the involution ∗ : g→ g discussed in detail by Kostant [18] (Section 6): It is given by

∗ : x+ iy 7→ x− iy

where x and y are in a. Then a = g∗=1 can be considered the space of Hermitian operators, it is a real form of the

complex algebra g. The field φ will take values in a real subspace of g∗=1. To define this subspace, we appeal to results

by Kac.

Starting with σ and the Cartan algebra hWeyl, we recall how to construct a second Cartan algebra hKac as well as

a gradation g = ⊕kgk (if σ is a Coxeter element, the two Cartan algebras hKac and hWeyl are in apposition, in the

terminology of Kostant [18]). Kac showed, see [17] (Theorem 8.6), that there is a Cartan algebra hKac and a collection

of non-negative integers s = (s0, · · · , sr) with the following properties:

(i) There is a finite-order inner automorphism σ̃ of g (of order ñ, say) such that

σ̃|hWeyl = σ

σ̃|hKac = id

(ii) Let ζ = e
2πi
ñ , let α1, · · · , αr be a set of simple roots, and let α0 denote the lowest root. For all j = 0, · · · , r

σ̃(Eαj ) = ζsj · Eαj

where Eαj generates the αj root space with respect to hKac.

(iii) The sj ’s that are non-zero are co-prime.

The collection of integers s = (s0, · · · , sr) are called Kac coordinates of σ. In general, there are multiple possible

coordinates s associated to a given Weyl group element. In some situations however, for example if σ lies in a regular

conjugacy class, they are uniquely defined. See for example [19] for more details. Associate to σ̃ a Z/ñZ-gradation on
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g, by letting gk denote the σ̃-eigenspace with eigenvalue e2πik/ñ. The space g0 then contains hKac but is in general

larger. We can now define the target space of the field φ: We assume

φ : R2 −→ g0 ∩ g∗=1

Furthermore, let from now on Λ+ in hWeyl denote an eigenvector of σ with eigenvalue µ, say, and let Λ− = ∗(Λ+). It

follows from the definition of ∗ that it maps hWeyl to itself. Hence Λ− is again in hWeyl and is in fact an eigenvector

of σ with complex conjugate eigenvalue compared to Λ+. To summarize the situation:

R2 φ
// g0 ∩ g∗=1 �

�
// g0 σ(Λ±) = µ±1Λ±

hKac

?�

OO

oo
generalized apposition

// hWeyl ⊃ {Λ+,Λ−}

Definition 1. For φ, Λ+, and Λ− as above, define the Lagrangian exactly as in Equation (3) by

LToda-Weyl =
1

2
(∂µφ, ∂

µφ)− (exp(ad φ)(Λ+),Λ−)

We call this the Toda-Weyl theory.

Suppose σ is a Coxeter element and Λ+ has eigenvalue e2πi/h. The Kac coordinates are known to be (1, · · · , 1) and

hence g0 = hKac. If the Cartan algebra h in Section 1 is identified as hKac, the Toda-Weyl theory recovers affine Toda

theory.

2 Mass calculations

For 1 ≤ i ≤ s consider complex-valued scalar fields φi : R2 → C. Let φ = (φ1, · · · , φs)T and consider a Lagrangian

density

L =
1

2
· ∂µφ

T
A∂µφ+Bφ+ φ

T
Cφ+ · · ·

where A and C are s × s matrices and B is of the form (b1, · · · , bs). Under a field redefinition φ 7→ Xφ (with X

invertible) one obtains

L 7→ LX =
1

2
· ∂µφ

T
(X

T
AX)∂µφ+BXφ+ φ

T
(X

T
CX)φ+ · · ·

Suppose that for some X

LX =
1

2
· ∂µφ

T
∂µφ−

1

2
· φT


m2

1

m2
2

. . .

m2
s

φ+ · · · (4)

where the mi’s are non-negative real numbers. The masses of the Lagrangian are then by definition m1, · · · ,ms. If the

masses exist, they are well defined: If Y is another field redefinition such that LY is as in Equation (4), then Y = XU

for a unitary matrix U . Hence the spectrum of X
T
CX agrees with the spectrum of Y

T
CY . Furthermore, the linear

φ term in LX vanishes if and only if B = 0 and hence vanishes in LY as well.

In the remainder of this work we calculate the masses of the Toda-Weyl Lagrangians. The key idea is to construct

a basis of g0 in terms of the root space decomposition with respect to hWeyl (for Coxeter elements such a description

goes back to work of Kostant [18]). This allows a description of the masses in terms of pairings Λ+ · α := α(Λ+) for

suitable roots α, viewed as functionals on hWeyl.

Theorem 1. Let g be a simple finite-dimensional complex Lie algebra with a Cartan subalgebra hWeyl. Let σ be an

element in the Weyl group of g such that:

(i) 1 is not an eigenvalue of σ acting on hWeyl.
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(ii) There is an inner automorphism σ̃ of g such that σ̃|hWeyl = σ and ord σ̃ = ord σ.

Let Λ+ ∈ hWeyl be an eigenvector of σ and let Λ− = ∗(Λ+). Let γ1, · · · , γs denote orbit representatives for the action

of the cyclic group 〈σ〉 on the set of roots. Then the masses of

L =
1

2
(∂µφ, ∂

µφ)− (exp(ad φ)(Λ+),Λ−)

are given by

mi = |Λ+ · γi|

Proof. Let us show that the absolute values |Λ+ · γi| are independent of the choice of orbit representatives: Let

Λ̃+ = (Λ+,−) be the element in root space associated to Λ+. Recall that Λ+ is an eigenvector of σ, denote the

corresponding eigenvalue µ, a suitable root of unity. It follows that for all j

|Λ+ · σjγi| = |(σjγi)(Λ+)|

= |(σjγi, Λ̃+)|

= |(γi, σ−jΛ̃+)|

= |µ−j(γi, Λ̃+)|

= |Λ+ · γi|

where we have used that the inner product in root space is invariant under the Weyl group action.

Let σ̃ be a finite-order inner automorphism lifting σ. For each root α let eα be a generator of the root space with

respect to hWeyl. Then σ̃eα is a generator of the root space of σ(α). By the assumptions of the theorem, we can

assume that σ̃ is of the same order as σ. Hence, one can choose the generators of the root spaces such that for each

root α

σ̃eα = eσ(α) (5)

For each orbit Oi pick a representative γi and define

Ai :=
1√
|Oi|

·
|Oi|−1∑
j=0

eσj(γi)

From Equation (5) it follows that Ai is fixed by σ̃ and hence lies in g0. Since the root space generators are linearly

independent, so are the Ai’s. We have seen that σ̃ permutes the various root spaces, and since σ̃|hWeyl = σ it follows

that g0 has a basis given by the Ai’s together with a basis of (hWeyl)σ=1. By our assumption on σ, (hWeyl)σ=1 = 0

and therefore the Ai’s are in fact a basis of g0. We now show that in this basis one can read off the masses of the

Toda-Weyl Lagrangian. Write

φ =

s∑
i=1

φiAi

Since (eα, eβ) = 0 unless α+ β = 0, one can deduce that

(Ai, Aj) = δi,π(j) (6)

where π is a permutation of the indices such that −γj is in Aπ(j) for all j. By [4] (Theorem 2.4)

[[Aj ,Λ+],Λ−] = (Λ+ · γj) · (Λ− · γj) ·Aj

Note that by [18] (Equation 6.1.1), for every complex scalar c

(c · eα)∗ = c · e−α (7)
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It follows from the construction of ∗ that for all x, y in g

(∗(x), ∗(y)) = (x, y)

In particular:

Λ− · γj = ∗(Λ+) · ∗(γj)

= Λ+ · γj

Therefore

([Ai, [Aj ,Λ+]],Λ−) = (Ai, [[Aj ,Λ+],Λ−])

= (Λ+ · γj) · (Λ− · γj)(Ai, Aj)

= |Λ+ · γi|2 · δi,π(j)

Together with Equation (6), this implies that the Toda-Weyl Lagrangian density is given by

L =
1

2
·
s∑
i=1

∂µφi∂
µφπ(i) − (Λ+,Λ−)−

s∑
i=1

φi([Ai,Λ+],Λ−)− 1

2!

∑
i,j

φiφj([Ai, [Aj ,Λ+]],Λ−) + higher order terms

=
1

2
·
∑
i

∂µφi∂
µφπ(i) − (Λ+,Λ−)−

s∑
i=1

φi(Ai, [Λ+,Λ−])− 1

2!

∑
i,j

φiφj |Λ+ · γi|2 · δi,π(j) + higher order terms

To simplify further, note that by construction the image of φ is contained in the space fixed by ∗. Hence

s∑
i=1

φiAi = ∗

(
s∑
i=1

φiAi

)

=

s∑
i=1

φiAπ(i)

and therefore

φπ(i) = φi

for all i. Furthermore [Λ+,Λ−] = 0. Therefore, up to the constant (Λ+,Λ−), the Lagrangian density is given by

L =
1

2
·
∑
i

∂µφi∂
µφi −

1

2

∑
i

|φi|2|Λ+ · γi|2 + higher order terms

This implies the theorem.

Remark 1. The number of Toda-Weyl masses often has a very simple expression. Suppose for example σ is a regular

Weyl group element such that 1 is not an eigenvalue. As discussed by Reeder in [19] (Proposition 2.2), since σ is

regular there indeed exists a lift σ̃ of the same order as σ. Hence the conditions of Theorem 1 are satisfied. Since σ

is regular, it follows from the work of Springer [21] (Proposition 4.1) that every orbit has exactly n = ord σ elements.

The total number of roots is known to be hr where h is the Coxeter number and r is the rank of g. It follows that the

number s of orbits of σ satisfies

ord σ · s = h · rank g

In particular, the number of Toda-Weyl masses is given by

s =
h · rank g

ord σ
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In Section 2.1 and Section 2.2 we give two illustrative examples of how to use Theorem 1 to obtain the precise

mass spectrum.

2.1 Example I

Let g = e6, with simple roots α1, · · · , α6 indexed as in [1]. Consider the Weyl group element

σ = rα1
rα2

rα5
rα6

rα2+α4
rα3+α4

Since the 6 roots involved in the definition of σ are a basis of root space, it follows from work of Carter [5] (Lemma

3) that 1 is not an eigenvalue of σ. Furthermore, one can calculate that the eigenvalues are distinct: For ζ9 = e2πi/9,

they are ζ9, ζ
2
9 , ζ

4
9 , ζ

5
9 , ζ

7
9 , ζ

8
9 , see for example [2] (Table 1). Hence, by work of Springer [21] (Lemma 4.11), the element

σ is regular. By Remark 1 it follows that the conditions of Theorem 1 are satisfied. We apply the theorem with Λ+

an eigenvector with eigenvalue ζ9. Since ζ9 has multiplicity 1, up to an overall scaling, the masses are independent of

Λ+.

Let ζ = e2πi/36 be a primitive 36’th root of unity. It has minimal polynomial over Q given by x12 − x6 + 1. We

claim that one can take Λ+ as

ζα1 + (−ζ7 + ζ5 + ζ)α2 + (−ζ9 + ζ3 + ζ)α3 + (−ζ11 − ζ7 + ζ5 + ζ3 + ζ)α4 + (−ζ11 + ζ5 + ζ3)α5 + (−ζ11 + ζ5)α6

(8)

To show this, note that the 8 orbits O1, · · · ,O8 of the cyclic group 〈σ〉 acting on the set of roots can be calculated

easily:

O1 O2 O3 O4

−α6 −α2 − α4 α3 − α4 α5

α5 + α6 α4 + α5 α1 + · · ·+ α5 α1+α2+α3+2α4+2α5+α6

α1+α2+α3+2α4+α5 α2+α4+α5+α6 α1 +α2 + 2α3 + 2α4 + 2α5 +α6 α1+2α2+2α3+3α4+2α5+

α6

α2 + · · ·+ α6 α1+α2+α3+α4 α1 +α2 + 2α3 + 3α4 + 2α5 +α6 α1+α2+2α3+2α4+α5+α6

α1 + α3 + α4 α3 α2 + α3 + 2α4 + α5 + α6 α3 + α4

−α1 −α2 −α5 −α1 − · · · − α5

−α2 − α3 − α4 − α5 −α1 − α3 −α1−α2−α3−2α4−2α5−α6 −α1−α2−2α3−2α4−2α5−
α6

−α1−α3−α4−α5−α6 −α3 − α4 − α5 −α1−2α2−2α3−3α4−2α5−α6 −α1−α2−2α3−3α4−2α5−
α6

−α2 − α3 − 2α4 − α5 −α4 − α5 − α6 −α1−α2−2α3−2α4−α5−α6 −α2 − α3 − 2α4 − α5 − α6
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O5 O6 O7 O8

α2 α1 α4 α1 + α3 + α4 + α5

α1 + α3 α2 + · · ·+ α5 −α1 − α3 − α4 − α5 α2 + α3 + 2α4 + 2α5 + α6

α3 + α4 + α5 α1+α3+· · ·+α6 −α2 − α3 − 2α4 − 2α5 − α6 α1+α2+α3+2α4+α5+α6

α4 + α5 + α6 α2 + α3 + 2α4 +

α5

−α1 − α2 − α3 − 2α4 − α5 − α6 α2 + α3 + α4

α2 + α4 α6 −α2 − α3 − α4 −α2 − α4 − α5

−α4 − α5 −α5 − α6 α2 + α4 + α5 −α1 − · · · − α6

−α2 − α4 − α5 − α6 −α1−α2−α3−
2α4 − α5

α1 + · · ·+ α6 −α1−α2− 2α3− 2α4−α5

−α1 − α2 − α3 − α4 −α2 − · · · − α6 α1 + α2 + 2α3 + 2α4 + α5 −α3 − α4 − α5 − α6

−α3 −α1 − α3 − α4 α3 + α4 + α5 + α6 −α4

In particular

σ(α1) = α2 + α3 + α4 + α5

σ(α2) = α1 + α3

σ(α3) = −α2

σ(α4) = −α1 − α3 − α4 − α5

σ(α5) = α1 + α2 + α3 + 2α4 + 2α5 + α6

σ(α6) = −α5 − α6

It follows that

σ(Λ+) = ζ4 · Λ+ = ζ9 · Λ+

and Λ+ is indeed the desired eigenvector. Orbit representatives for the σ action on the set of roots are given by

α1 , α2 , α3 , α4 , α5 , −α1 , −α4 , −α5

By Theorem 1 one obtains the following 8 masses:

|Λ+ · ±α1| = |ζ9 − ζ3 + ζ| ≈ 0.684

|Λ+ · α2| = |ζ11 − ζ7 + ζ5 − ζ3 + ζ| ≈ 0.446

|Λ+ · α3| = |ζ11 − 2ζ9 + ζ7 − ζ5 + ζ3| ≈ 0.446

|Λ+ · ±α4| = | − ζ11 + ζ9 − ζ7| ≈ 0.879

|Λ+ · ±α5| = |ζ7 + ζ3 − ζ| ≈ 1.286

Let us normalize the masses so that the lowest mass equals 1 and let us index these normalized masses as

m1 ≤ · · · ≤ m8

In the following calculations we repeatedly exploit that ζ12 − ζ6 + 1 = 0. One has
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∣∣∣∣ ζ11 − ζ7 + ζ5 − ζ3 + ζ

ζ11 − 2ζ9 + ζ7 − ζ5 + ζ3

∣∣∣∣ =
∣∣ζ8 − ζ2∣∣

=
∣∣ζ13 · (ζ8 − ζ2)

∣∣
=
∣∣−ζ9∣∣

= 1

Hence m1 = m2 = 1. Furthermore

m3 = m4 =

∣∣∣∣ ζ9 − ζ3 + ζ

ζ11 − ζ7 + ζ5 − ζ3 + ζ

∣∣∣∣
=
∣∣ζ4 + ζ−4

∣∣
= 2 cos

(
2π

9

)

m5 = m6 =

∣∣∣∣ −ζ11 + ζ9 − ζ7

ζ11 − ζ7 + ζ5 − ζ3 + ζ

∣∣∣∣
=
∣∣−ζ2 − 1

∣∣
=
∣∣−ζ17 · (ζ2 + 1)

∣∣
=
∣∣ζ1 + ζ−1

∣∣
= 2 cos

( π
18

)

m7 = m8 =

∣∣∣∣ ζ7 + ζ3 − ζ
ζ11 − ζ7 + ζ5 − ζ3 + ζ

∣∣∣∣
=
∣∣−ζ11 + ζ5 + ζ3 + ζ

∣∣
=
∣∣ζ · (ζ2 + ζ−2) · (ζ4 + ζ−4)

∣∣
= 4 cos

(π
9

)
cos

(
2π

9

)
Recall that if σCoxeter is a Coxeter element, the mass spectrum corresponds to the Perron-Frobenius eigenvector of the

Cartan matrix. In particular, the mass spectrum has elegant trigonometric expressions. We have shown that similar

formulas hold for our choice of σ:

9



σCoxeter σ

order 12 9

m1 1 1

m2 1 1

m3 2 cos
(
3π
12

)
2 cos( 2π

9 )

m4 4 cos( π12 ) cos( 4π
12 ) 2 cos( 2π

9 )

m5 4 cos( π12 ) cos( 4π
12 ) 2 cos( π18 )

m6 4 cos
(
π
12

)
cos
(
3π
12

)
2 cos( π18 )

m7 4 cos(π9 ) cos( 2π
9 )

m8 4 cos(π9 ) cos( 2π
9 )

In Table 1 we plot the normalized masses for the Coxeter case, denoted by E6, as well as for σ, denoted by E6(a1)

(since this is the conjugacy class of σ in the notation of [5]).

Table 1:

1 2 3 4 5 6 7 8

1

2

3

4

i

m
i

Mass ratios

E6(a1)
E6 E6 E6(a1)

1 1
1 1

1.414... 1.532...
1.932... 1.532...
1.932... 1.970...
2.732... 1.970...

2.879...
2.879...

2.2 Example II

Let g = f4 and let α1, · · · , α4 be simple roots, indexed as in [1]. Consider the Weyl group element

σ = rα1
rα3+α4

rα2
rα1+α2+α3

It is of order 6 and by the same argument as in Example I one sees that 1 is not an eigenvalue of σ. For ζ6 = e2πi/6

the eigenvalues are

ζ6, ζ6, ζ
5
6 , ζ

5
6

See [2] (Table 1). The check for regularity is different than in Example I since both eigenvalues occur with multiplicity

bigger than 1. One approach is to calculate explicitly an eigenvector that is not orthogonal to any root, along the lines

of the calculations in the current section. Instead, we show in Section 2.3 that σ lies in the conjugacy class F4(a1),

which is known to be regular. Either way, the conditions of Theorem 1 are satisfied.

Let ζ = ζ24 = e2πi/24 be a primitive 24’th root of unity, its minimal polynomial over Q is x8 − x4 + 1. We claim

that

Λ+ = ζα1 + (ζ + ζ−3)α2 + 2ζα3 + 2ζα4 (9)
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is an eigenvector of σ with eigenvalue ζ6. The 8 orbits O1, · · · ,O8 of the action of the cyclic group 〈σ〉 on the set of

roots are as follows:

O1 O2 O3 O4

α1 α2 α3 α4

−α2 − 2α3 −α1 − α2 − 2α3 − 2α4 α1 + α2 + 2α3 + α4 α2 + α3 + α4

−α1 − α2 − 2α3 −α1− 2α2− 2α3− 2α4 α1 + α2 + α3 + α4 α2 + α3

−α1 −α2 −α3 −α4

α2 + 2α3 α1 + α2 + 2α3 + 2α4 −α1 − α2 − 2α3 − α4 −α2 − α3 − α4

α1 + α2 + 2α3 α1 + 2α2 + 2α3 + 2α4 −α1 − α2 − α3 − α4 −α2 − α3

O5 O6 O7 O8

α3 + α4 α1 + α2 + α3 α1 + α2 α1 + 2α2 + 2α3

α1 + 2α2 + 3α3 +α4 −α2 − 2α3 − α4 −α1− 2α2− 4α3− 2α4 −α2 − 2α3 − 2α4

α1 + 2α2 + 2α3 +α4 −α1 − 2α2 − 3α1 − α4 −2α1−3α2−4α3−2α4 −α1− 3α2− 4α3− 2α4

−α3 − α4 −α1 − α2 − α3 −α1 − α2 −α1 − 2α2 − 2α3

−α1−2α2−3α3−α4 α2 + 2α3 + α4 α1 + 2α2 + 4α3 + 2α4 α2 + 2α3 + 2α4

−α1−2α2−2α3−α4 α1 + 2α2 + 3α3 + α4 2α1 + 3α2 + 4α3 + 2α4 α1 + 3α2 + 4α3 + 2α4

In particular

σ(α1) = −α2 − 2α3

σ(α2) = −α1 − α2 − 2α3 − 2α4

σ(α3) = α1 + α2 + 2α3 + α4

σ(α4) = α2 + α3 + α4

It follows that

σ(Λ+) = ζ4 · Λ+ = ζ6 · Λ+

as desired. Orbit representatives for the σ action on the set of roots are given by

α1 , α2 , α3 , α4 , α3 + α4 , α1 + α2 + α3 , α1 + α2 , α1 + 2α2 + 2α3

11



Using Theorem 1 one obtains the following 8 masses, repeatedly using ζ8 − ζ4 + 1 = 0:

|Λ+ · α1| = |ζ − ζ−3| = |ζ5| = 1

|Λ+ · α2| = | − ζ + 2ζ−3| = |ζ5 · (−ζ + 2ζ−3)| = |ζ2 + ζ−2| = 2 cos
(π

6

)
|Λ+ · α3| = | − ζ−3| = 1

|Λ+ · α4| = |ζ| = 1

|Λ+ · (α3 + α4)| = |ζ − ζ−3| = 1

|Λ+ · (α1 + α2 + α3)| = 0

|Λ+ · (α1 + α2)| = |ζ−3| = 1

|Λ+ · (α1 + 2α2 + 2α3)| = | − ζ + ζ−3| = 1

As in Example I, we have shown that the Toda-Weyl mass spectrum for σ has trigonometric expressions analogous to

those for affine Toda theory:

σCoxeter σ

order 12 6

m1 1 0

m2 2 cos
(
3π
12

)
1

m3 2 cos( π12 ) 1

m4 4 cos( π12 ) cos( 3π
12 ) 1

m5 1

m6 1

m7 1

m8 2 cos
(
π
6

)
The masses are plotted in Table 2, normalized so that the first non-zero mass equals 1.

Table 2:

2 4 6 8 10

1

2

3

4

5

i

m
i

F4

F4(a1)
F4 F4(a1)

1 0
1.414... 1
1.932... 1
2.732... 1

1
1
1

1.73205...

12



2.3 A general theory

As demonstrated in Example I and II, Theorem 1 allows the effective calculation of the Toda-Weyl mass spectrum.

Nonetheless, the meaning of the spectrum might still be open. To this end, recall that in the Coxeter case a crucial

insight is the relation to the Perron-Frobenius eigenvector of the Cartan matrix. With some mathematical effort, a

corresponding theory can be developed for the Toda-Weyl Lagrangians. The full details will be presented elsewhere,

but we describe the approach for the two previously considered examples.

In Example I, the Weyl group element of e6 is given by

σ = rα1
rα2

rα5
rα6

rα2+α4
rα3+α4

For simple roots, the relative geometry is captured by the Cartan matrix and the Dynkin diagram. Consider now

analogous constructions that capture the geometry of the six roots

α1, α2, α5, α6, α2 + α4, α3 + α4

involved in the definition of σ. Order them arbitrarily as γ1, · · · , γ6 and define the Carter matrix K in complete

analogy with the Cartan matrix via Ki,j = 2 · (γi, γj)/(γj , γj). Now define a graph with vertices corresponding to the

γi’s and the i’th and j’th vertices are joined by Ni,j lines where

Ni,j = Ki,j ·Kj,i

This graph generalizes the notion of Dynkin diagram and was introduced in seminal work by Carter in [5], classifying

conjugacy classes of Weyl groups. In the present situation one obtains

α2 α3 + α4 α1

α2 + α4 α5 α6

In the notation of [5], this means that σ lies in the conjugacy class E6(a1). If we let γ1 = α1, γ2 = α2, γ3 = α5, γ4 =

α6, γ5 = α2 + α4, γ6 = α3 + α4 one obtains the corresponding Carter matrix

K =



2 0 0 0 0 −1

0 2 0 0 1 −1

0 0 2 −1 −1 −1

0 0 −1 2 0 0

0 1 −1 0 2 0

−1 −1 −1 0 0 2


Let ζ = e2πi/36. A simple calculation yields an eigenvector (x1, · · · , x6)T of K with eigenvalue λ = 2− (ζ2 + ζ−2):

x1 = 1 = x4

x2 = ζ10 − ζ8 + 1 = 1− 2 cos

(
4π

9

)
= x5

x3 = −ζ10 + ζ4 + ζ2 = 2 cos
(π

9

)
= x6

It turns out that the relative geometry of the roots γi allows to write down the desired eigenvector Λ+ of σ. The

definition of Λ+ in Equation (8) is simply

Λ+ = ζ · (x1γ1 + x2γ2 + x3γ3) + ζ−1 · (x4γ4 + x5γ5 + x6γ6)

Therefore, the eigenvector of the Carter matrix determines the pairings of Λ+ with a basis of root space, and hence

via Theorem 1 determines the mass spectrum.
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To make this even more clear, re-scale our choice of eigenvector (x1, · · · , x6)T of K such that the smallest entry is

1, in other words we divide the original entries by 1− 2 cos
(
4π
9

)
. Ordered by size, the re-scaled entries are then

1, 1, 2 cos

(
2π

9

)
, 2 cos

(
2π

9

)
, 4 cos

(π
9

)
cos

(
2π

9

)
, 4 cos

(π
9

)
cos

(
2π

9

)
So (rank g) = 6 out of the 8 masses of the Toda-Weyl theory associated to σ come from the eigenvector of the Carter

matrix. In this manner, the celebrated relation between the affine Toda mass spectrum and the Perron-Frobenius

eigenvector of the Cartan matrix is generalized to the element σ in the conjugacy class E6(a1).

The same phenomenon persists in Example II where we consider the element of the Weyl group of f4 given by

σ = rα1
rα3+α4

rα2
rα1+α2+α3

The corresponding graph equals

α1 α2

α1 + α2 + α3 α3 + α4

Let γ1 = α1, γ2 = α3 + α4, γ3 = α2, γ4 = α1 + α2 + α3. The corresponding Carter matrix is then

K =


2 0 −1 2

0 2 −1 −1

−1 −2 2 0

1 −1 0 2


Note that it is non-symmetric and we now choose a left eigenvector! Let ζ = e2πi/24 and let λ = 2− (ζ2 + ζ−2). One

possible corresponding left eigenvector of K is given by (x1, x2, x3, x4)T with

x1 = 1

x2 = 2

x3 = 2 cos
(π

6

)
x4 = 0

As in Example I, the desired eigenvector Λ+ of σ can be expressed in terms of this data: The choice of Λ+ in Equation

(9) is simply

Λ+ = ζ · (x1γ1 + x2γ2) + ζ−1 · (x3γ3 + x4γ4)

To realize part of the mass spectrum in terms of the eigenvector entries x1, · · · , x4 requires more care than in example

I: In non-simply laced cases an interesting duality occurs, the σ eigenvector is expressed in term of a left eigenvector

of K, whereas the inner products of Λ+ with the roots γi are expressed in terms of a right eigenvector. This duality

is already present in the classical Coxeter case, see [12] (Equation 24). To make this explicit, let us normalize the

root lengths so that α2
1 = α2

2 = 2 and α2
3 = α2

4 = 1. Then γ21 = γ23 = 2 and γ22 = γ24 = 1 and the right eigenvector

corresponding to the left eigenvector (x1, x2, x3, x4)T has entries γ2i · xi. Its entries are therefore

2, 2, 4 cos
(π

6

)
, 0

Hence, after scaling to make the lowest entry 1, one sees that (rank g) = 4 of the Toda-Weyl masses calculated in

Section 2.2 can be read off from a suitable eigenvector of the Carter matrix.

This relation between the relative geometry of special sets of roots (the “Carter roots” γi) and eigenvectors of

Weyl group elements allows to generalize the mass description of affine Toda theories in terms of the Perron-Frobenius

eigenvector of the Cartan matrix. We will describe the full mathematical details elsewhere.
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3 Conclusions

Starting with the formulation of affine Toda theory in Equation (3), we generalized this set-up by considering La-

grangians involving eigenvectors Λ+ of other Weyl group elements σ.

Note that the resulting Toda-Weyl theory does not usually have a simple description of the form as in Equation

(1): Typically, when the Weyl group element eigenvector is described in terms of root spaces, it involves two roots ξ

and ν such that ξ − ν is again a root. This is one of the reasons we simply took the formulation of affine Toda theory

in Equation (3) as our starting point.

Under some technical conditions on σ that are frequently satisfied, we obtained a description of the classical mass

spectrum in terms of the pairings of Λ+ with orbit representatives of the action of 〈σ〉 on the set of roots. After

calculating the masses in some illustrative examples, we sketched in Section 2.3 how one can construct the desired

eigenvectors Λ+ in terms of eigenvectors of generalized Cartan matrices. We will describe the full mathematical

details elsewhere. This relation between the linear algebra of Weyl group elements and matrices describing the relative

geometry of special sets of roots generalizes the celebrated description of the affine Toda mass spectrum in terms of a

Perron-Frobenius eigenvector of the relevant Cartan matrix.

There are many open questions regarding these Toda-Weyl theories. For example, one should calculate the three

point couplings, as is done in usual Toda theory in [12]. Another open question concerns the integrability or failure

thereof. We do not address this issue here at all but hope to return to it on a future occasion.
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