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Abstract

We define a connection on the formal disc that can be used to single out the vacuum of the Drinfeld-Sokolov

KdV hierarchy associated to a simple complex finite-dimensional Lie algebra. As a connection, it has a canonical

Katz extension from the disc to the sphere. We express this Katz extension in terms of the Kac coordinates of

a suitable Weyl group conjugacy class. As a consequence, we show that the Katz extension has meaning in the

context of the integrable hierarchy: It describes an additional symmetry.

1 Introduction

Let g be a finite-dimensional simple complex Lie algebra. Kostant initiated in [15] the study of cyclic elements Λ

associated to g. To define them, let {ei, fi, hi}1≤i≤r be generators of g satisfying the Serre relations. Let F be a

non-zero element in the lowest root space with respect to the Cartan algebra h̃ generated by the hi’s. A (classical)

cyclic element in g is an element of the form
∑r
i=1 ei +F . Analogously, one defines the affine variant to be an element

Λ in the loop algebra ĝ = g[z, z−1] of the form

Λ =

r∑
i=1

ei + z · F

After choosing a complex d-dimensional representation ξ of g, the cyclic element Λ acts on

|0〉 := C[z]d

The notation stems from the relation to Drinfeld-Sokolov integrable hierarches, where |0〉 describes the vacuum in

phase space. Similarly to the Λ action, the vacuum |0〉 is stabilized by the linear differential operator

∇ = ∂z + Λ

Operators closely related to ∇ have been studied in various contexts recently: See the work of Frenkel-Gross [8] related

to Langlands correspondences, the work of Masoero-Raimondo-Valeri [18] on the ODE/IM correspondence, as well as

the work of Kamgarpour-Sage [13]. Note that a variant ∂x+Λ with x an indeterminate different than the loop variable

z is a central object in the Lax operator formulation of the Drinfeld-Sokolov integrable hierarchy associated to g.

Our first aim is to show a special relation between ∇ and the vacuum |0〉. To make this precise, consider de-

formations of C[z]d inside of C((1/z))d that are complex subspaces of C((1/z))d whose projection onto C[z]d is an

isomorphism. Among these, we consider deformations coming from g in the following sense: Let U in ĝ be of the form∑
i<0 Ui where each Ui is of degree i in the principal gradation and also in z−1g[z−1]. Then by a (g, ξ)-deformation of

|0〉 we mean a subspace of C((1/z))d of the form V = exp(U)|0〉 where U is as above and acts via the representation

ξ. A natural question: Is the vacuum the only point in this collection of spaces that is stabilized by ∂z + Λ? We show

this is indeed the case:

Theorem 1. If V is a (g, ξ)-deformation of |0〉 such that ∇ V ⊆ V , then V = |0〉.

Motivated by this result, we will call ∇ the vacuum operator. Theorem 1 is a purely Lie theoretic result, but the

proof we give heavily relies on ideas coming from integrable systems, in particular certain uniqueness results related

to the Witten-Kontsevich points. The role of integrable systems should not be surprising, Cafasso and Wu show in

[5] (Theorem 3.5) that one realization of the phase space of the Drinfeld-Sokolov hierarchy associated to g and Λ is
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precisely the space of (g, ξ)-deformations of the vacuum (this kind of Grassmannian description has a long history,

certainly going back to the description of the KP hierarchy).

Special cases of Theorem 1 can be completely elementary: Consider A2 in its standard representation g = sl3 (we

will see later on that if the theorem is proved for one choice of faithful representation ξ of g then the theorem is proved

for all such representations). One can choose Λ as

Λ = e2,1 + e3,2 + z · e1,3

where ei,j has 0’s everywhere except a 1 at the (i, j) entry. Note that for each (g, ξ)-deformation V of |0〉, the natural

projection

π : V → C[z]3 = |0〉

is an isomorphism and zV ⊆ V . Let vi with 1 ≤ i ≤ 3 be the standard basis vectors of C3. Let

w = [1 + f, g, h]T := π−1v1

So f, g, h are in C((1/z)) and are O(z−1). Suppose now V is stabilized by the vacuum operator ∇ = ∂z + Λ. Since z

also preserves V , the following vector is in V as well:

(∇3 − z)w =

f
′′′ + 3h′ + g + 3zh′′ + 3zg′

g′′′ + 3f ′′ + 2h+ 3zh′

h′′′ + 3g′′ + 3f ′

 (1)

Since all entries are O(z−1) and since π is an isomorphism, it follows that the above expression is in fact the 0 vector.

Assume for contradiction that h is non-zero and write h = hrz
r + hr−1z

r−1 + · · · with r < 0 and hr 6= 0. For a

non-zero Laurent series in C((1/z)) we call the largest i with non-zero coefficient of zi the degree and we denote the

degree of 0 to be −∞. From the second entry in Equation (1) it follows that if deg(g) ≤ r+ 2 and deg(f) ≤ r+ 1 then

2hr + 3rhr = 0 with r an integer, a contradiction. It then follows from the third entry of Equation (1) that both f

and g are non-zero of degree bigger than r and deg(g) = deg(f) + 1. It then follows from the first entry of Equation

(1) that if g = gsz
s + · · · with gs 6= 0, then gs + 3sgs = 0. This is a contradiction and hence h = 0. Similar arguments

imply g = 0 and f = 0. Since ∇w and ∇2w are in V it follows that vi is in V for all i and hence so is zjvi for all

j ≥ 0. It follows that V = |0〉, as desired.

This type of elementary argument ceases to be as effective for Lie algebras with more complicated cyclic elements.

For example for e6 in one of the 27-dimensional faithful representations, cyclic elements are up to conjugation and

scaling of the form

e2,1 + e3,2 + e4,3 + e5,4 + e6,4 + e7,5 + e7,6 + e8,6 + e9,7 + e10,7 + e10,8 + e11,9 + e12,9 + e12,10 + e13,11 + e14,11 + e14,12

+e15,12 + e16,13 + e16,14 + e17,14 + e17,15 + e18,16 + e18,17 + e19,17 + e20,18 + e20,19 + e21,19 + e22,20 + e22,21 + e23,20

+e24,22 + e24,23 + e25,24 + e26,25 + e27,26 + z · (e1,21 + e2,22 + e3,24 + e4,25 + e6,26 + e8,27)

To deal with these more complicated cases, we prove Theorem 1 using the work by Cafasso and Wu [5] on the

Witten-Kontsevich point for the Drinfeld-Sokolov hierarchy associated to g.

The second aim of the present work is to show that a certain perturbation of the vacuum operator also has

meaning in the context of the Drinfeld-Sokolov hierarchy. To define this perturbation we note that since points in the

Grassmannian are special subspaces of C((1/z))d, one can say that the hierarchy lives on a formal punctured disc with

coordinate 1/z. This disc can be thought of as the disc around the point z =∞ on the sphere P1. The vacuum operator

can be viewed as a connection on this disc and as such has a canonical Katz extension to the sphere. We give the

precise definition in Section 3.2. It is a particularly nice extension, unique up to isomorphism due to its construction

via a quasi-inverse functor, see [14] (Equation 2.4.11). The Katz extension, also called canonical extension, is not

too singular near z = 0, and has normal form properties in the style of Levelt-Turrittin, similar to those enjoyed by

connections on a disc. This notion is far removed from the topic of integrable hierarchies: Katz used it in [14] for the

calculation of differential Galois groups. Surprisingly, we show in Theorem 2 that in the case of the vacuum operator

this connection has integrable meaning: It generates an additional symmetry of the hierarchy.
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Note that Theorem 1 is stated in the context of classical cyclic elements. In contrast, we are able to prove Theorem

2 for generalized Drinfeld-Sokolov hierarchies associated to arbitrary Heisenberg subalgebras of the affine Lie algebra

ĝ. In order to state the result precisely we need to recall the notion of Kac coordinates associated to conjugacy classes

in the Weyl group of g.

1.1 Kac coordinates

Kac and Peterson have shown in [16] that Heisenberg subalgebras of ĝ can be parameterized by conjugacy classes [w]

in the Weyl group of g. This parametrization can be (non-canonically) reduced to the case of primitive conjugacy

classes and we assume from now on [w] is indeed of this form. Let r denote the rank of g, let N denote the order of

w, and let ζN be a primitive N ’th root of unity. The starting point in the construction of the Heisenberg algebra H[w]

associated to [w] is a collection of r + 1 non-negative integers s = (s0, · · · , sr). To define them, one shows that there

exist two Cartan subalgebras h, h̃ of g with the following properties:

(i) There exists a finite-order inner automorphism σ = exp(ad h) of g that restricts to w on h and to the identity

on h̃

(ii) Let e1, · · · , er be generators of the simple root spaces with respect to h̃ and let e0 be a generator of the lowest

root space. There are coprime integers si in [0, N − 1] such that

σ(ei) = ζsiN · ei

for all i (for notational convenience we say that 0 is coprime to all integers)

The si’s are called the Kac coordinates of [w] and are well defined up to permutations coming from diagram automor-

phisms. In general, there is also an ambiguity coming from choosing different liftings σ of the Weyl group element

w, but since we assume that [w] is a primitive conjugacy class, the Kac coordinates turn out to be well defined. We

list below all regular primitive cases, with the ordering of simple roots as in [3]. Most of these Kac coordinates are

calculated by Bouwknegt in [4], see also [19]. For completeness we calculate the remaining cases in Section 3.2.

regular primitive conjugacy class Kac coordinates

F4(a1) (1, 0, 1, 0, 1)

E6(a1) (1, 1, 1, 1, 0, 1, 1)

E6(a2) (1, 1, 0, 0, 1, 0, 1)

E7(a1) (1, 1, 1, 1, 0, 1, 1, 1)

E7(a4) (1, 0, 0, 0, 1, 0, 0, 1)

E8(a1) (1, 1, 1, 1, 0, 1, 1, 1, 1)

E8(a2) (1, 1, 1, 1, 0, 1, 0, 1, 1)

E8(a3) (1, 1, 0, 0, 1, 0, 0, 1, 0)

E8(a5) (1, 1, 0, 0, 1, 0, 1, 0, 1)

E8(a6) (1, 0, 0, 0, 1, 0, 0, 1, 0)

E8(a8) (1, 0, 0, 0, 0, 1, 0, 0, 0)

D2n(an−1) (1, 1, 0, 1, 0, 1, 0, 1, · · · , 0, 1, 1)

Coxeter class (1, · · · , 1)

The Kac coordinates are used in the construction of H[w] by singling out a suitable twisted realization of the loop

algebra: Consider the type s-realization ĝ(s) of ĝ together with the isomorphism

Φ : ĝ −→ ĝ(s)
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as described in [12] (Chapter 8). The Heisenberg algebra H[w] is then obtained as the inverse image via Φ of a

subalgebra of ĝ(s) built out of loops with suitable coefficients that are in particular in h.

1.2 Katz extensions

It follows from the construction of H[w] that the Kac coordinates s yield a gradation on ĝ for which H[w] has a

homogeneous basis. Fix an element Λ in H[w] that is of s-degree 1 and introduce the vacuum operator

∇vac = ∂z + Λ

If [w] is the conjugacy class of the Coxeter elements one can see that this recovers our earlier definition.

Let (−,−) be a non-degenerate symmetric invariant bilinear form on g and via its restriction to the Cartan algebra

h̃ we view the fundamental weights ωi as elements of h̃. Let αi denote the simple roots. We show that the Kac

coordinates describe the Katz extension of the vacuum operators:

Theorem 2. Let [w] be a regular primitive conjugacy class in the Weyl group of g, let N be the order of w and let

s = (s0, · · · , sr) be the Kac coordinates. The Katz extension of the vacuum operator is

(∂z + Λ)Katz = ∂z + Λ +
1

Nz
·
r∑
i=1

si ·
2

(αi, αi)
· ωi

As for Theorem 1, this result makes sense without any mention of integrable hierarchies. However, as indicated

earlier, our motivation comes from showing that these Katz extensions of vacuum operators do in fact play a crucial role

in integrable systems. Delduc and Feher describe in [6] how to construct for every suitable element Λ inH[w] of s-degree

1 an integrable hierarchy of Drinfeld-Sokolov type (the original construction of Drinfeld and Sokolov in [7] is recovered

by letting [w] be the conjugacy class of a Coxeter element). See also the work of de Groot-Hollowood-Miramontes [10]

for another construction of the generalized Drinfeld-Sokolov hierarchies. As shown by Hollowood-Miramontes-Guillen

in [11], these hierarchies possess additional symmetries which commute with the flows but amongst themselves obey

commutation relations of Virasoro type. As a consequence of Theorem 2 we will show:

Corollary. The Katz extension of the vacuum operator ∂z + Λ describes an additional symmetry of the generalized

Drinfeld-Sokolov hierarchy associated to g and Λ.

This shows that the a priori unrelated notion of the Katz extension does indeed play a crucial role in this integrable

hierarchy. The proof is by direct calculation: We calculate the Katz extension and compare it to the known shape of

additional symmetries. This leaves open a more conceptual understanding between the two notions and a more direct

understanding of this relation would be desirable!

2 Characterizing the vacuum

In this section we prove Theorem 1. Write γ = exp(−U) where U =
∑
i<0 Ui with Ui in ĝ of principal degree i, and

as mentioned before assume that U is in z−1g[z−1]. Suppose the point V = γ|0〉 of the Grassmannian is stabilized by

the vacuum operator:

(∂z + Λ)V ⊆ V (2)

Equivalently, |0〉 is stabilized by γ−1(∂z+Λ)γ. Let us rewrite this stabilization condition as a vanishing result. Expand

γ−1(∂z + Λ)γ = exp(ad U)(∂z + Λ) = ∂z + Λ +
∑
i≤0

Aiz
i (3)

with Ai in g independent of z. Then the stabilization is equivalent to the vanishing result

Ai = 0 for all i < 0 (4)
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In particular, the validity of Theorem 1 is independent of the choice of faithful representation ξ of g. We now show

how to deduce the theorem from various results by Cafasso and Wu in [5], concerning the existence and uniqueness of

the Witten-Kontsevich point in Drinfeld-Sokolov phase space. This point can be characterized by various versions of

what is called the string equation, and Equation (2) turns out to be closely related.

For U as before, following standard notation in the setting of integrable systems, we call elements of the form

exp(−U) gauge transformations. Consider the Drinfeld-Sokolov hierarchy associated to g. This considers the choice of

a cyclic element L, and we choose L = −Λ. Cafasso and Wu show in [5] (Theorem 3.11) the existence and uniqueness

of a Witten-Kontsevich point in the phase space. Write it as

W = µ|0〉

for a gauge transformation µ. Let h denote the Coxeter number of g and let ρ∨ be half the sum of positive co-roots,

viewed as an element of h̃. By [5] (Lemma 3.9)

µ−1
(
∂z +

ρ∨

h
· 1

z
+ Λ

)
µ = ∂z + Λ (5)

By Equation (4) it follows that (
∂z +

ρ∨

h
· 1

z
+ Λ

)
(µγ|0〉) ⊆ µγ|0〉 (6)

Equation (6) is nothing but the string equation for the dressing operator, [5] (Equation 3.29), when all flow variables

are set to 0. Let ti be the flow variables, indexed by the positive exponents of ĝ, and let the Λi’s be principal degree i

basis elements of the principal Heisenberg algebra as in. Since

exp

(
−
∑
i

tiΛi

)
(∂z +

ρ∨

h
· 1

z
) exp

(∑
i

tiΛi

)
= ∂z +

ρ∨

h
· 1

z
−
∑
i

iti
h

Λi−h

it follows that [5] (Equation 3.29) also holds for non-zero time variables ti. Put differently, µγ|0〉 is the Witten-

Kontsevich point. By the uniqueness of the Witten-Kontsevich point it follows that

µγ|0〉 = µ|0〉

Therefore γ = 1 and V = |0〉, as desired. This completes the proof of Theorem 1.

Remark. Some of the arguments by Cafasso and Wu in [5] depend on the construction and properties of tau functions

associated to each point in Drinfeld-Sokolov phase space. Such arguments can be subtle since the very definition of

the tau function has a certain non-uniqueness and furthermore, arguments that involve a shifting of time variables

have to be treated very carefully since in general the tau functions are only formal power series in the time variables.

We therefore outline an algorithm that sidesteps the tau function arguments. The starting point is to calculate

exp(ad U)(∂z + Λ) recursively with respect to principal degree. Equation (4) then puts constraints on the Ui’s. The

crucial point is that one can show that these equations force A0 = 0 and hence

γ−1(∂z + Λ)γ = ∂z + Λ (7)

This in fact implies the theorem: By [5] (Lemma 3.9, Theorem 3.11) there is a unique gauge transformation µ such

that

µ−1(∂z +
ρ∨

h
· 1

z
+ Λ)µ = ∂z + Λ (8)

This result does not depend on tau function arguments. It now follows from Equation 7 that γ = 1, as desired.

We illustrate the algorithm for sl2. Consider a standard basis E,F,H. The elements Ui are given by

U−1 =
a1
z
· E , U−2 =

a2
z
·H , U−3 =

a3
z2
· E +

a4
z
· F , U−4 =

a5
z2
·H, · · ·
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where the aj ’s are arbitrary constants. Note that U−1 has no contribution from F since by assumption all Ui’s are not

only of principal degree i but also of negative z-degree. One calculates

A0 = a1 ·H − 2a2 · F

The equations up to principal degree −5 yield

0 = a21 − 2a2

0 = a1a2 − a3 + a4

0 = a1a4 + 2a22 − 2a5

0 = a1a4 + 2a22 − 2a1a3 − a1 + 2a5

These equations force a1 = a2 = 0 and hence A0 = 0, as desired.

The algorithm can be seen to work for all simple Lie algebras. Even for, say, e6 the resulting system of equations

becomes quite involved, so we do not list them here.

3 Katz extension and additional symmetries

In his work on the calculation of differential Galois groups, Katz introduced in [14] the notion of the canonical extension

of a connection on a formal disc to a connection on the sphere. One useful property in this context is that the local

Galois group of a connection agrees with the global Galois group of the canonical Katz extension. These notions are

far removed from the Drinfeld-Sokolov hierarchies but we show, somewhat surprisingly, that the Katz extension of the

vacuum operator is an important object for the associated integrable hierarchy.

3.1 Additional symmetries

It is known, see for example [6] and [10], that for suitable graded elements Λ in a Heisenberg subalgebra of an affine

Lie algebra there exists an associated generalized Drinfeld-Sokolov hierarchy. The Heisenberg algebras are classified

by Kac and Peterson in [16]. Up to conjugacy they are parameterized by conjugacy classes in the Weyl group of g.

Equivalently, this yields a classification of maximal abelian subalgebras of loop algebras ĝ = g[z, z−1] and it is for this

variant that we now recall relevant aspects of the constructions.

Let w denote a Weyl group element and let σ = exp(ad h) be a finite-order inner automorphism of g that restricts

to w on a Cartan algebra h. Let a0, · · · , ar be the Kac labels of g (see [12] Table Aff 1 in Chapter 4). Note that a0 = 1

and the highest root of g is written in terms of the simple roots αi as
∑r
i=1 aiαi. Kac has shown that, possibly after

conjugation, one can assume that h is in a Cartan algebra h̃ and there is a choice of generators {ei, fi, hi}1≤i≤r of g

satisfying the Serre relations, the hi’s span h̃, and

σ(ei) = exp(
2πisi∑r
j=0 ajsj

) · ei

where the si’s are non-negative integers and the non-zero si’s are co-prime. In the following, we let

N :=

r∑
i=0

aisi (9)

The si’s are called the Kac coordinates of σ and we define s = (s0, · · · , sr). Fix a primitive N ’th root of unity ζN and

for any integer i denote by g[i] the subspace of g on which σ acts by multiplication by ζiN . Consider the Lie algebra

ĝ(σ) =
⊕
i

g[i] · zi

For each root α =
∑
i kiαi define its degree as deg α =

∑
i kisi. As discussed in [12] (Chapter 8), there is an
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isomorphism of Lie algebras

Φ : ĝ→ ĝ(σ) (10)

that on a root space gα is given by multiplication by zdeg α. More generally, on gαz
k the map Φ is given by

xzk 7→ xzdeg α+kN (11)

Consider the subalgebra of ĝ(σ) given by

ĥ(σ) =
⊕
i

h[i] · zi

where h[i] = h ∩ g[i]. The Heisenberg algebra H[w] associated by Kac and Peterson to the conjugacy class of w is then

given as

H[w] = Φ−1
(
ĥ(σ)

)
Since for all integers k clearly h[i+kN ] = h[i] it follows that one can choose indices it with 0 ≤ i1 ≤ · · · ≤ ir < N and

elements µit in h[it] · zit such that

µit · zit+kN with 1 ≤ t ≤ r , k ∈ Z (12)

is a basis of ĥ(σ). Let E denote the multi-set {it + kN | 1 ≤ t ≤ r , k ∈ Z} and let E≥0 denote the multi-set

corresponding to k ≥ 0. The above basis of ĥ(σ) can then be labeled as {λj}j∈E such that λj is in h[j] · zj and

z1−N∂zλj = jλj−N (13)

Define the corresponding basis of H[w] as

Λj := Φ−1 (λj) (14)

Let θ denote the highest root, let Eθ and E−θ be certain non-zero elements in the highest and lowest root space of g,

see [12] (§7.4) for the precise definition. Let e0 = zE−θ and let f0 = Eθ/z. For a collection d0, · · · , dr of non-negative

integers (not all zero), define a Z-gradation on ĝ by

deg ei = di , deg fi = −di

for 0 ≤ i ≤ r. If one chooses di = si for all i then Λj is of degree j, see [12]. We call this the s-gradation. For example

s0 := (1, 0, · · · , 0) yields the standard homogeneous gradation.

As in [6] we now assume Λ in H[w] is of s-degree 1, where the gradation s satisfies s ≥ s0 (hence the first entry

of s is non-zero). Let x be an indeterminate. The Lax operator of the corresponding generalized Drinfeld-Sokolov

hierarchy is of the form

L = ∂x + Λ + q

where q is in ĝ≥0(s0) and in ĝ<1(s), meaning q in ĝ is of non-negative s0-degree and of s-degree less than 1.

For a Lie algebra element M let M+ denote the non-negative part of M in the s-gradation and M− = M −M+

the negatively graded part. The simple observation for defining flows on operators of the form L is that if M satisfies

[M,L] = 0 then

[M+, L] = −[M−, L]

is both in ĝ≥0(s0) and ĝ<1(s). Therefore one can define a flow, with flow variable tM say, by

∂tML = [M+, L]

Since L can be gauge transformed to an operator of the form ∂x + H with H in the Heisenberg algebra (cf. [10]

Proposition 3.2), it follows that gauge transforms of elements in H[w] can play the role of M . This yields the usual

flows of the hierarchy. The fact that the elements inH[w] commute amongst themselves implies that the flows commute.

The notion of additional symmetry of the hierarchy is obtained by relaxing in the equation [M,L] = 0 the require-
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ment that M is in the Lie algebra. Rather, it can now involve also the derivations acting on ĝ. Suppose there is a

derivation d such that for all k in E≥0

[d,Λk] =
k

N
· Λk−N (15)

Let tk denote the flow variable associated to the Heisenberg algebra element Λk. Then for all k as aboved+
1

N

∑
j∈E≥0

jtjΛj−N , ∂tk − Λk

 = 0 (16)

In analogy with the construction of the flows, this allows to define an evolution equation for the Lax operator L: One

defines

∂βL = [L, δ<0]

where δ<0 is obtained from d + 1
N

∑
j∈E≥0 jtjΛj−N via a dressing procedure. We refer to the work of Hollowood-

Miramontes-Guillen [11] and Wu [23] (Equation 4.26, note that we use slightly different sign conventions) for details.

This evolution commutes with the flows, here Equation (16) is the crucial ingredient. See [11] (Equation 3.11) and [23]

(Proposition 4.5). One obtains an additional symmetry of the hierarchy. It is not called a flow itself since it is part of

an infinite family of analogous symmetries that all commute with the flows but amongst themselves obey commutation

relations of Virasoro type.

The operator d can be viewed as the generator of the symmetry and we now describe how to find such a derivation.

Let λ = Φ(Λ). Consider on ĝ(σ) the derivation

D := z1−N · ∂z +Nλ

where λ stands for the derivation [λ,−]. We now calculate what this derivation looks like on ĝ.

Let as before {ei, fi, hi}i=1,··· ,r be a set of generators of g satisfying the Serre relations. For all 1 ≤ i ≤ r one has

Φ(ei) = zsiei

Since θ =
∑r
i=1 aiαi it follows from Equation (11) that

Φ(e0) = zs0E−θ

It now follows for 1 ≤ i ≤ r that

(Φ−1 ◦D ◦ Φ)(ei) = siΦ
−1(zsi−Nei) + [NΛ, ei] =

siei
z

+ [NΛ, ei]

Since Φ(E−θ) = zs0−NE−θ one also has

(Φ−1 ◦D ◦ Φ)(e0) = s0Φ−1(zs0−NE−θ) + [NΛ, e0] =
s0e0
z

+ [NΛ, e0]

We now describe Φ−1 ◦D ◦Φ in a slightly different manner. For each 1 ≤ i ≤ r let ωi be the i’th fundamental weight,

viewed via a choice (−,−) of non-degenerate invariant bilinear form as an element of h̃. So

[ωi, ej ] = δi,j ·
(αj , αj)

2
· ej

Recall that for the Weyl group element w that we started with we have chosen a lift σ = exp(ad h) for some h in h̃.

Rescale the element h as h = 2πiR, so that

[R, ei] =
si
N
ei

8



Concretely, R is given by

R =
1

N
·
r∑
i=1

2

(αi, αi)
siωi (17)

Then for i ≥ 1 [
N(∂z +

R

z
+ Λ), ei

]
=
si
z
ei + [NΛ, ei]

For i = 0 one has [
N(∂z +

R

z
+ Λ), e0

]
= NE−θ −

r∑
i=1

aisiE−θ + [NΛ, e0] = s0E−θ + [NΛ, e0]

It follows that the derivation Φ−1 ◦D ◦Φ agrees with the derivation N(∂z + R
z + Λ) on a set of generators and hence

the two derivations are equal. Hence

N(∂z +
R

z
+ Λ)(Λj) = jΛj−N

Therefore, for the desired derivation d in Equation (15) one can take

d = ∂z +
R

z
+ Λ

See for example [22] for a more in-depth discussion of these kind of derivations.

3.2 Katz extension

In Section 2 we have shown in what manner the vacuum operator ∂z + Λ characterizes the Drinfeld-Sokolov vacuum

|0〉. In the Grassmannian formulation, the hierarchy corresponds to certain subspaces of a C((1/z))-vector space and

in this sense the hierarchy lives on a punctured disc around z =∞. It is then natural to view the vacuum operator as

a connection on this disc. After embedding the disc into a sphere, one can ask what the canonical Katz extension of

the vacuum operator is. We answer this question in the current section.

Let us recall the notion of the Katz extension. Let t be an indeterminate. A connection ∇ on a formal punctured

disc Spec C((t)) is by definition a C-linear endomorphism ∇ of a finite-dimensional C((t))-vector space V that satisfies

the Leibniz identity

∇(f(t) · v) = (∂tf(t)) · v + f · ∇(v)

for all f in C((t)) and v in V . After choosing a basis, the connection corresponds to a linear differential operator

∇ = ∂t +A

with A in GLnC((t)) where n = dimC((t))V .

Starting with work of Levelt [17] and Turrittin [21] in the 1950’s, it is known that connections on a formal disc

possess a normal form resembling the Jordan canonical form. In general, this normal form is only achieved after

extending scalars to a finite extension of C((t)): Let r ≥ 1 be an integer and let s = t1/r. The pull-back of a connection

(V,∇) over C((t)) to a connection over C((s)) has underlying C((s))-vector space simply V ⊗C((t)) C((s)). The analogue

of ∇ is [r]∗∇ which satisfies in particular

[r]∗∇(v ⊗ 1) = v ⊗ rsr−1

The results of Levelt and Turrittin imply that for a suitable r, the connection [r]∗∇ is isomorphic to a successive

extension of one-dimensional connections in an essentially unique manner.

For connections on the sphere the analogous statement fails in general. The idea of the canonical Katz extension

is to find nonetheless a special connection on the sphere that restricts to ∇ while simultaneously exhibiting behavior

of Levelt-Turrittin type. Let us give a precise definition in the case where after a suitable pull-back ∇ is the direct

sum of one-dimensional connections. This will be the case of interest in our application to vacuum operators of

Drinfeld-Sokolov hierarchies.
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Given a connection ∇ = ∂t + A on the disc Spec C((t)), an extension to the sphere is simply ∇′ = ∂t + B with B

in GLnC[t, t−1] such that ∇ and ∇′ are isomorphic on Spec C((t)): There is g in GLnC((t)) such that

g∂tg
−1 + gAg−1 = B

Given such an extension ∇′ one can consider its local behavior around the disc t = ∞: Under the coordinate change

z = 1/t the connection ∂t +B changes as

∂t +B  ∂z −
1

z2
·B

If there is a gauge transformation in GLnC((z)) that puts this operator into the form

∂z + C−1
1

z
+ C0 + C1z + · · ·

with each Ci constant, then we call the connection regular singular around z = 0. A canonical Katz extension ∇can of

∇ is by definition an extension of ∇ to the sphere that is regular singular around z = 0 and that after a finite pull-back

is a direct sum of one-dimensional connections.

As before, we now choose a faithful complex representation ξ : g→ gl(V ) and we usually simply write x for ξ(x).

If now A is in g[z, z−1] then via ξ one can view ∂z +A as a connection on the formal disc around z =∞. In the case

where A is a suitable element in a Heisenberg algebra we calculate in Theorem 2 the Katz extension.

Proof. (of Theorem 2)

Let [w] be a regular primitive conjugacy class in the Weyl group. Let N denote the order of w and fix a primitive

N ’th root of unity ζ. Fix a Cartan algebra h in g and view the Weyl group via its reflection representation on the

corresponding space of roots. Let us recall why the Kac coordinates associated to primitive Weyl group elements are

uniquely determined. A conjugacy class [w] is called primitive if in the reflection representation

det(1− w) = det(A)

where A is the Cartan matrix of g. In particular, this determinant is non-zero and hence 1 is not an eigenvalue of

w. It follows that w is an elliptic element. The desired uniqueness is then implied for example by [1] (Lemma 1.1.3):

Suppose for i = 1, 2 there is a lift σi = exp(ad gi) of w to an inner automorphism of g. Then

σ2 = exp(ad h)σ1

for some h in h. Since w is elliptic, the kernel of the endomorphism of h given by t 7→ t− w(t) is 0. Hence the map is

surjective and there exists t in h such that

t− w(t) = h

Then

exp(ad t)σ1exp(−ad t) = exp(ad t)Adexp(g1)exp(−t)exp(−g1)exp(g1)

= exp(ad t)Adexp(w(−t))exp(ad g1)

= exp(ad (t− w(t)))exp(ad g1)

= σ2

Hence the conjugacy class of lifts of w is well defined and the Kac coordinates are unique.

Using this uniqueness together with [19] (Proposition 2.2) it follows that the order N of w is also equal to
∑r
i=0 aisi,

where the si’s are the Kac coordinates of σ and as before the ai’s are the Kac labels of g. Hence our notation is consistent

with Equation (9). By definition, [w] being regular means that there is an eigenvector λ in the Cartan algebra h such

that (λ, α) 6= 0 for all roots α. Put differently:

Centg(λ) = h (18)

By [20] (Theorem 4.2) the eigenvalue corresponding to λ is a root of unity of the same order as w. Furthermore, by loc.
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cit. (Proposition 4.7), if i is co-prime to the order of w then wi is conjugate to w. Hence, possibly after moving within

the conjugacy class [w], we can assume that the eigenvalue is our chosen primitive root of unity ζ. Let s = (s0, · · · , sr)
be the Kac coordinates of [w]. As in Equation (17) define

rs =
1

N
·
r∑
i=1

2

(αi, αi)
siωi

Suppose now that the following holds:

Condition 1. N − 1 is the largest eigenvalue of ad Nrs on g

Previously, we denoted by g[i] the subspace of g on which σ acts by ζi. Now define a Z-gradation on g by putting

for all 1 ≤ i ≤ r
deg ei = si , deg fi = −si , deg hi = 0

and denote by gi the degree i space. Since for all i one has dim gi = dim g−i it follows from Condition 1 that 1−N is

the smallest eigenvalue of ad Nrs on g. The only two integers in [1 −N,N − 1] congruent to 1 modulo N are 1 and

1−N and therefore

λ = a1 + a1−N

for ai in gi. Similar to a previous calculation one sees that for

Λ = a1 + z · a1−N

in ĝ one has Φ(Λ) = λ · z. We want to show that there is ν in g solving the equation

[ν,Λ] = rs (19)

The existence of ν follows from a case by case analysis (with respect to the Weyl group conjugacy class [w]) from

results due to various authors and collected by Delduc and Feher in [6]. In the following we summarize the relevant

arguments. The idea is that no matter what a1 is, for every element a0 in g0 (and hence in particular for a0 = rs),

there is a−1 in g−1 such that [a−1, a1] = a0.

Since λ is regular semi-simple it follows that the kernel of ad (a1 + a1−N ) has 0 intersection with g<0 since the

elements of the latter space are nilpotent. Since 1−N is the smallest eigenvalue this implies that the above kernel is

in fact equal to the kernel of ad a1. Hence [a1, g−1] and g−1 have the same dimension. Suppose one knows:

Condition 2. dim g−1 = dim g0

If Condition 2 holds, since [a1, g−1] ⊆ g0, it follows that [a1, g−1] is all of g0. In particular, there exists ν in g−1
such that [ν, a1] = rs. Since [a1−N , g<0] = 0 it follows that that

[ν, a1 + z · a1−N ] = rs

and Equation (19) does indeed have a solution.

The fact that for all primitive regular conjugacy classes Condition 1 and Condition 2 do hold is part of what is

shown in [6] (Appendix A), using the results of various authors. Since not all details are given in loc. cit. we give

some illustrative sample calculations below.

Example 1. Consider the conjugacy class of a Coxeter element, hence N = h is th Coxeter number. Kostant

showed in [15] that the Kac coordinates are s = (1, · · · , 1). Write the highest root αmax as αmax =
∑r
i=1 aiαi. Then∑r

i=1 ai = h− 1 and therefore

αmax (hrs) =

r∑
i=1

ai = h− 1

and hence Condition 1 holds. In terms of a basis {ei, fi, hi}1≤i≤r of g satisfying the Serre relations one sees that g0 is
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the span of the hi’s and g−1 is the span of the fi’s. Hence

dim g−1 = r = dim g0

and Condition 2 holds.

Example 2. Consider the conjugacy class E6(a1). The order of the Weyl group element is 9, see for example [4]

(Table I) for orders of all primitive Weyl group elements. We follow the ordering of simple roots as in [3]:

1 3 4 5 6

2

The Kac coordinates are s1 = 1, s2 = 1, s3 = 1, s4 = 0, s5 = 1, s6 = 1, see the work of Bouwknegt [4]. The highest

root has coordinates (1, 2, 2, 3, 2, 1) and therefore the largest eigenvalue of ad rs is

1 · 1 + 2 · 1 + 2 · 1 + 3 · 0 + 2 · 1 + 1 · 1 = 8 = 9− 1

and hence Condition 1 holds. As can be seen for example in [9], the coordinates with respect to the simple roots of

the list of positive roots is

(1, 0, 0, 0, 0, 0) , (0, 1, 0, 0, 0, 0) , (0, 0, 1, 0, 0, 0) , (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0) , (0, 0, 0, 0, 0, 1) , (1, 0, 1, 0, 0, 0)

(0, 1, 0, 1, 0, 0) , (0, 0, 1, 1, 0, 0) , (0, 0, 0, 1, 1, 0) , (0, 0, 0, 0, 1, 1), (1, 0, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0), (0, 1, 0, 1, 1, 0)

(0, 0, 1, 1, 1, 0), (0, 0, 0, 1, 1, 1), (1, 1, 1, 1, 0, 0), (1, 0, 1, 1, 1, 0), (0, 1, 1, 1, 1, 0), (0, 1, 0, 1, 1, 1), (0, 0, 1, 1, 1, 1)

(1, 1, 1, 1, 1, 0), (1, 0, 1, 1, 1, 1), (0, 1, 1, 2, 1, 0), (0, 1, 1, 1, 1, 1), (1, 1, 1, 2, 1, 0), (1, 1, 1, 1, 1, 1), (0, 1, 1, 2, 1, 1)

(1, 1, 2, 2, 1, 0), (1, 1, 1, 2, 1, 1), (0, 1, 1, 2, 2, 1), (1, 1, 2, 2, 1, 1), (1, 1, 1, 2, 2, 1), (1, 1, 2, 2, 2, 1), (1, 1, 2, 3, 2, 1)

(1, 2, 2, 3, 2, 1)

We have boxed the roots of s-degree 1. It follows that

dim g−1 = dim g1 = 8

and similarly

dim g0 = rank g + 2 · 1 = 8

and hence Condition 2 holds.

Example 3. Consider the conjugacy class D2n(an−1). For n ≤ 4 the Kac coordinates are calculated by Bouwknegt in

[4]. We now calculate the Kac coordinates for all n. The order of the Weyl group element is 2n. By [19] (Proposition

2.2) all Kac coordinates are either 0 or 1 and N =
∑r
i=0 aisi = 2n. Since the highest root is α1 +2(α2 + · · ·+α2n−1)+

α2n−1 + α2n this implies

s0 + s1 + 2(s2 + · · · s2n−2) + s2n−1 + s2n = 2n (20)

We will show that

s = (1, 1, 0, 1, 0, 1, 0, 1, 0, 1 · · · , 0, 1, 1) (21)

In [19] a general formula for the dimension of g0 is given. In the current situation it gives

dim g0 =
hr

2n
=

(4n− 2) · (2n)

2n
= 4n− 2

Our strategy is to show that unless s is as in Equation (21), dim g0 is bigger than 4n− 2.
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Let t1, t2, · · · be the lengths of intervals consisting of 0’s in the sequence of Kac coordinates. So for example if

s = (1, 1, 0, 0, 1, 1, 0, 1, 1) then t1 = 2 and t2 = 1. The set of positive roots includes
∑
i≤k<j αk with 1 ≤ i < j ≤ 2n.

Let us count how many of these are of s-degree 0: All αk’s need to be part of the same interval of 0’s. Therefore the

number of degree 0 positive roots of this type is ∑
j

tj(tj + 1)

2

Since the Cartan algebra is contained in g0 and there is an equal number of positive and negative roots of s-degree

0 it follows that

4n− 2 = dim g0 ≥ 2n+ 2 ·
∑
j

tj(tj + 1)

2

Let K0 =
∑
j tj denote the number of Kac coordinates equal to 0. Then

2n− 2 ≥ K0 +
∑
j

t2j (22)

One sees from Equation (20) that there are three possibilities for K0, namely n − 1, n, and n + 1. One also has∑
j t

2
j ≥

∑
j tj = K0 with equality if and only if tj = 1 for all j. Hence it follows from Equation (22) that K0 = n− 1

and tj = 1 for all j. From K0 = n − 1 it follows from Equation (20) that s0 = s1 = s2n−1 = s2n = 1. But then the

only way to avoid tj > 1 for some j is to have

s = (1, 1, 0, 1, 0, 1, 0, 1, · · · , 0, 1, 1)

as desired.

Since s0 = 1 it follows that Condition 1 holds. We have already seen that dim g0 = 4n − 2, let us now calculate

dim g−1 = dim g1. Consider first the positive roots of the form
∑
i≤k<j αk with 1 ≤ i < j ≤ 2n. Out of these, for

s-degree 1 one obtains n roots of height 1, 2n− 2 roots of height 2, n− 2 roots of height 3. There are two more types

of positive roots:

(i) α2n +
∑
i≤k≤2n−2 αk with 1 ≤ i ≤ 2n− 1 (where for i = 2n− 1 the summation simply is ignored)

(ii)
∑
i≤k<j αk + 2

∑
j≤k≤2n−2 αk + α2n−1 + α2n with 1 ≤ i < j ≤ 2n

The first case yields the two roots α2n and α2n−2 +α2n of s-degree 1 and the second case yields nothing. In total one

obtains

dim g1 = n+ (2n− 2) + (n− 2) + 2 = 4n− 2

and Condition 2 holds.

Example 4. In the case of F4(a1) the Ansatz of the previous example does not single out the Kac coordinates uniquely:

The order of the Weyl group element is 6, and the highest root is given by 2α1 + 3α2 + 4α3 + 2α4. Hence the Kac

labels are a0 = 1, a1 = 2, a2 = 3, a3 = 4, a4 = 2. Since all si’s are 1 or 0 it follows that the quintuples (1, 1, 1, 0, 0)

or (1, 0, 1, 0, 1) or (0, 1, 0, 1, 0) or (0, 0, 0, 1, 1) are exactly the possible choices of (s0, · · · , s4) satisfying
∑4
i=0 aisi = 6.

One has

dim g0 =
hr

6
= 8

From the list of positive roots, see for example [9], one directly calculates that exactly for (1, 0, 1, 0, 1) or (0, 1, 0, 1, 0)

one has

dim g0 = 4 + 2 · 2

So the numerics do not distinguish between those two possibilities for the Kac coordinates and we refer to [6] (Appendix

A) for details that Conditions 1 and 2 do indeed hold for F4(a1). Assuming this, we can deduce the Kac coordinates:

Since a0 = 1 in order for Condition 1 to hold one needs s0 = 1. Hence the Kac coordinates of F4(a1) are (1, 0, 1, 0, 1).
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By Equation (18) and since λ is semi-simple, it follows via the isomorphism Φ that

ker ad Λ = H[w] (23)

as well as

ĝ = ker ad Λ⊕ Im ad Λ (24)

Since

[rs, a1] =
1

N
· a1 , [rs, a1−N ] =

1−N
N

· a1−N

it follows for Λ = a1 + z · a1−N that [
∂z +

rs
z
,Λ
]

=
1

Nz
· Λ

More generally, it follows from our previous arguments that for the basis elements Λj of H[w] given in Equation (14)

one has [
∂z +

rs
z
,Λj

]
=

j

N
· Λj−N (25)

The next part of the proof follows closely the arguments by Cafasso and Wu in [5] (Theorem 3.11). Let γ = exp(Y )

where Y in ĝ has a decomposition with respect to the s-gradation as Y =
∑
i<0 Yi. We want to show that there is

such Y such that

exp(ad Y )
(
∂z +

rs
z

+ Λ
)

= ∂z +
rs
z

+ Λ + [Y, ∂z +
rs
z

+ Λ] +
[Y, [Y, ∂z + rs

z + Λ]]

2!
+ · · · = ∂z + Λ (26)

We make the Ansatz that Yj = 0 if j is not divisible by N + 1 and show recursively with respect to s-degree that

Equation (26) can be solved. Note that under our Ansatz one has for any indices i1, · · · , ik that

degs [Yi1 , [Yi2 , · · · , [Yik , ∂z +
rs
z

] · · · ] ≡ −N ≡ 1 mod N + 1

as well as

degs [Yi1 , [Yi2 , · · · , [Yik ,Λ] · · · ] ≡ 1 mod N + 1

Hence to prove Equation (26) one has to check it for s-degree −i · (N + 1) + 1 with i ≥ 0. For i = 0 the equation

simply is Λ = Λ. The first non-trivial equation corresponds to i = 1 and hence is in s-degree −N :

[Y−N−1,Λ] = −rs
z

(27)

This has a solution by Equation (19): There is ν in g−1 such that [ν,Λ] = rs and hence one can take

Y−N−1 = −ν
z

In degree −i · (N + 1) + 1 one needs to solve

[Y−i(N+1),Λ] = −[Y−(i−1)(N+1), ∂z +
rs
z

]− 1

2
[Y−(i−1)(N+1), [Y−(N+1),Λ]]− 1

2
[Y−(N+1), [Y−(i−1)(N+1),Λ]] + C (28)

where C depends only on Y−j(N+1) for j ≤ i− 2. We now show that there exists Y solving these equations.

By Equation (24) every element x of ĝ can be written uniquely as a sum x1 +x2 with x1 in the Heisenberg algebra

H[w] and x2 in the image of the adjoint action of Λ. We call x1 the Heisenberg part of x. Suppose now Equation (28)

has been solved up to a certain i− 1. To prove the existence of Y−i(N+1) with the desired properties we will show that

after adding a suitable element of the Heisenberg algebra to Y−(i−1)(N+1) the Heisenberg part of the right-hand side
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of Equation (28) can be made to equal 0. Let H denote the Heisenberg part of

−1

2
[Y−(i−1)(N+1), [Y−(N+1),Λ]]− 1

2
[Y−(N+1), [Y−(i−1)(N+1),Λ]] + C

Then

H̃ := H · N

(i− 1)(N + 1)
· z

is again an element of the Heisenberg algebra and of degree −(i−1)(N+1). We now modify Y−(i−1)(N+1) by subtracting

H̃. Since H[w] is commutative this does not affect the validity of the equations in degree −j(N + 1) + 1 for j ≤ i− 2.

Using Equation (25) one obtains [
∂z +

rs
z
, H̃
]

=
−(i− 1)(N + 1)

N
· H̃ · 1

z
= −H

Hence, the new Heisenberg part of −[Y−(i−1)(N+1), ∂z + rs
z ] is obtained by subtracting H. Also, the Heisenberg part of

[Y−(i−1)(N+1), [Y−(N+1),Λ]] does not change: Since H[w] is commutative, subtracting an element H̃ of the Heisenberg

algebra from Y−(i−1)(N+1) changes [Y−(i−1)(N+1), [Y−(N+1),Λ]] by

−[H̃, [Y−(i−1)(N+1),Λ]] = [Λ, [H̃, Y−(i−1)(N+1)]]

This is in the image of ad Λ and hence has 0 Heisenberg part. It follows that the Heisenberg part of the right-hand

side of Equation (28) can be made 0. Hence there is Y−i(N+1) solving Equation (28) and hence by induction there

exists a solution Y to Equation (26).

Recall that we have fixed a faithful representation ξ : g→ gl(V ) of g. In order to prove Theorem 2 it now suffices

to show that, possibly after a finite pull-back, the connection

∂z +
rs
z

+ Λ

can be diagonalized by an element of GLdim ξ(C[z, z−1]). Consider the weight space decomposition V =
⊕

ν Vν . The

eigenvalues of ad rs are integers after multiplication by N . It follows there is i with N |i such that rs acts on each Vν
as multiplication by an element aν = bν/i in Z/i. For w = z1/i one obtains

[i]∗
[
∂z +

rs
z

+ Λ
]
∼= ∂w +

i · rs
w

+ iwi−1(a1 + a1−Nw
i)

Now consider the gauge transformation g that multiplies Vν by zaν = wbν . Then g∂w(g−1) acts on Vν as −bν/w and

hence

g∂w(g−1) = − i · rs
w

(29)

Furthermore, an element Eα in the root space of α takes Vν to Vν+α and hence on each Vν one has

gEαg
−1 = wi·((ν+α)(rs)−ν(rs))Eα = wi·α(rs)Eα (30)

Using Equations (29) and (30) it follows that

g
(

[i]∗
[
∂z +

rs
z

+ Λ
])
g−1 ∼= ∂w −

i · rs
w

+
i · rs
w

+ iwi−1(a1w
i/N + a1−Nw

i+i(1−N)/N )

= ∂w + iw
i
N+i−1(a1 + a1−N )

Since N ≥ i this connection is regular at 0 and since λ = a1 + a1−N is by assumption regular semi-simple it follows

that the connection can be diagonalized by a constant gauge transformation. This completes the proof of Theorem

2.
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Remark. A priori, Theorem 2 does not rule out that ∂z+Λ is also its own Katz extension since it could be isomorphic

to ∂z + rs/z + Λ on the sphere. In particular, the two connections would be isomorphic on a formal disc around 0.

However, in general this does not hold as we now show. Let us consider the example of E6(a1). Let A−1 denote the

inverse of the e6 Cartan matrix. One obtains

rs = (1, 1, 1, 0, 1, 1)TA−1(h1, · · · , h6)T

=
1

9
(6h1 + 8h2 + 11h3 + 15h4 + 11h5 + 6h6)

In one of the two faithful 27-dimensional representations of e6 the element rs can be conjugated to a diagonal matrix

of the form

rs =
1

9
· diag(6, 5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0,−1,−1,−2,−1,−2,−2,−3,−3,−4,−4,−5,−6) (31)

As described by Babbitt and Varadarajan [2] (p. 24) the semi-simple part of the monodromy of the connection

∂z + rs/z + Λ is the exponential exp(2πirs). Since in Equation (31) not all entries of rs are integers, it follows that

the monodromy is non-trivial. However, the monodromy of ∂z + Λ is trivial around 0 and it follows that ∂z + Λ is not

its own Katz extension.

Acknowledgements: It is a great pleasure to thank Mattia Cafasso and Chao-Zhong Wu for very helpful ex-

changes. Thanks also to important corrections and remarks by the referee.

References

[1] J. Adams, X. He, S. Nie: From conjugacy classes in the Weyl group to semisimple conjugacy classes, Pure and

Applied Math. Quart. 17 (2021), 1159-1189

[2] D. G. Babbitt, V. S. Varadarajan: Formal reduction theory of meromorphic differential equations: A group

theoretic view, Pacific J. Math. 109 (1983), 1-80
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