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Abstract

We introduce a notion of crystalline cohomology for superschemes and show that it is isomorphic to the usual

crystalline cohomology of the underlying commutative scheme if 2 is invertible on the base.

Wess-Zumino terms play a crucial role in the matching of theoretical predictions in the framework of Quantum

Chromodynamics of the decay of the neutral pion π0 into two photons

π0 −→ γ + γ

and the experimentally observed frequency. Wess-Zumino terms are often known to correspond to suitable cohomology

groups related to de Rham cohomology of the target space of a suitable Σ-model. There are situations of physical

interest where the target space is not a commutative manifold but rather a superspace. For example, consider the

Green-Schwarz Wess-Zumino term in the superstring action as discussed in [10]. This concerns a Σ-model quantum

field theory with maps

φ : Σ −→M super

where Σ is a surface and M super is a certain supermanifold whose associated commutative manifold is simply Rm for

a suitable m. The Wess-Zumino term is given by the integral

WZ[φ] :=

∫
T

Ω3

where T is a subspace of M super with boundary φ(Σ) and Ω3 is the restriction to T of a suitable 3-form on M super.

If one wants a cohomological interpretation of this Wess-Zumino terms it is useful to have comparison theorems

between the cohomology of superspaces and the cohomology of the associated commutative spaces. For the Green-

Schwarz superstring the work of Kostant [6] is sufficient, it shows that the suitably defined de Rham cohomology of a

supermanifold agrees with the usual de Rham cohomology of the underlying commutative, or “bosonic”, manifold. In

this work, a more arithmetic version of such a cohomological comparison theorem will be shown. One motivation for

this is the following:

One can conjecture that developing tools for quantum field theories over more general ground rings than the real

or complex numbers could be useful. An example of this is the work [7] of Kontsevich-Schwarz-Vologodsky that

approaches the integrality question of instanton numbers via a p-adic version of the B-model topological string. This

is a motivation for us to study cohomology theories of superspaces in the algebro-geometric context. The action of

Frobenius on de Rham cohomology plays a central role in [7]. This action comes from positive characteristic via a

comparison with crystalline cohomology and this is one reason we do not want to restrict to variants of de Rham

theory that are more useful in characteristic 0 than in positive characteristic. Since the work of Grothendieck it has

been known that the crystalline cohomology of usual commutative schemes is a variant of de Rham cohomology that

can be more useful in positive characteristic.

This leads to the results of the current work: The relevant algebro-geometric notion of superspace, so called

superscheme, was introduced in 1974 by Leites [9]. This followed the work of Berezin in the early 1970’s, who started

developing what is now called supermathematics while working on the method of second quantization. We refer to [14]

for a clear historical description of the events and a description of the relation to the development of supersymmetric

theories in physics. In this work we define and calculate the crystalline cohomology of superschemes. Our work is
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partially motivated by the connection between supergeometry and crystalline cohomology developed in [12]. We show

that a suitable generalization of crystalline cohomology to superschemes, denoted by H•s−cris(−), agrees with the usual

crystalline cohomology H•cris(−) of the underlying even scheme under some hypothesis.

Theorem 1. Let S be a scheme over Fq with char(Fq) 6= 2, let X/S be a superscheme and let Xeven denote the

commutative scheme associated to X. Then there exists an isomorphism

Hi
s−cris(X) ∼= Hi

cris(Xeven)

for all i ≥ 0.

The idea of the proof is to show that the super-crystalline cohomology of a superscheme only depends on the

underlying even scheme and then to show that the super-crystalline cohomology of a commutative scheme is in fact

isomorphic to the usual crystalline cohomology. This is achieved by writing down functors between suitable sites and

showing that these in fact give rise to morphisms of corresponding topoi. More precisely, if X is a superscheme over a

commutative scheme S, with underlying even scheme Xeven, then there will be a functor α from the super-crystalline

site of X/S to the super-crystalline site of Xeven/S and there will be the inclusion functor β of the crystalline site of

Xeven/S to the corresponding super-crystalline site:

SCris(X/S)
α // SCris(Xeven/S) Cris(Xeven/S)

β
oo

Studying these functors and the associated Leray spectral sequences will show the theorem.

Note that there is related work by Cortiñas: In [5] Kapranov defined NC-schemes and superschemes are special

cases of these non-commutative schemes. In [3] it is shown under suitable hypotheses that if X is an NC-scheme then

the suitably defined de Rham cohomology agrees with the usual algebraic de Rham cohomology of the underlying

commutative scheme and a similar result is shown for analogues of infinitesimal cohomology in the context of NC-

schemes.

Acknowledgements: It is a great pleasure to thank B. Bhatt, B. Conrad, G. Cortiñas, A. Schwarz, I. Shapiro for

very useful exchanges. Many thanks to the referee for helpful comments and corrections.

1 Superschemes

We briefly recall basic notions concerning superschemes. Convenient references are [2] and [8]. Throughout this work,

all rings are assumed to have an identity. Moreover we will assume that 1 + 1 is a unit for all rings that we work with.

A super-commutative ring R is a Z/2Z-graded ring R = R0 ⊕R1 such that

a · b = (−1)d(a)d(b)b · a

for all a, b which are either in R0 or R1 and where d(x) = 0 if and only if x ∈ R0 and d(x) = 1 if and only if

x ∈ R1. A homogeneous one-sided ideal in R will automatically be two-sided and hence in the following we will

call such ideals simply homogeneous ideals. A super-commutative ring is called local if and only if it has a unique

maximal homogeneous ideal. The category of super-commutative rings has as objects super-commutative rings and as

morphisms grading preserving ring homomorphisms.

Let R = R0 ⊕R1 be a super-commutative ring. By a super locally ringed space we mean a ringed space such that

the sheaf of rings is a sheaf of super-commutative rings whose stalks are local rings. The affine superscheme Spec(R)

associated to a super-commutative ring R is then defined to be the super locally ringed space

Spec(R) := (Spec(R0), R̃)

where R̃ is the quasi-coherent sheaf on Spec(R0) associated to the R0-module R. Note that the stalk of R̃ at a prime

ideal p of R0 has an obvious structure of super-commutative ring.
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In analogy with usual commutative algebraic geometry, a superscheme is defined to be a a super locally ringed

space locally isomorphic to an affine superscheme. More precisely: A superscheme X is a super locally ringed space

(|X|,OX), with OX = OX,0 ⊕ OX,1 a sheaf such that (X,OX,0) is a scheme and OX,1 is a quasi-coherent sheaf of

OX,0-modules. This is equivalent to describing a superscheme to locally be an affine superscheme, see [2] (Proposition

10.1.3).

If f : X → Y is a continuous map between locally ringed spaces and F is a sheaf on X, then f∗(F) will denote the

push-forward. A morphism f : X → Y of superschemes is defined in [2] (Section 10.1) to be a pair (|f |, f ]) consisting

of a continuous map of topological spaces |f | : |X| → |Y | as well as a morphisms of sheaves

f ] : OY → f∗(OX)

which gives rise to local maps on stalks and which on open sets gives rise to morphisms of superalgebras, where the

Z/2Z-grading on f∗(OX) is given by

(f∗OX)i = f∗(OX,i)

We denote by S-Schemes the category whose objects are superschemes and whose morphisms are as defined above.

Note that in particular usual commutative schemes are objects in this category.

We will make the following definitions: A morphism f : X → Y is called a closed immersion if |f | is a homeomor-

phism from its source to the image and f ] is an epimorphism in the category of sheaves of sets on Y . Note that as for

commutative schemes, closed immersions can be described via sheaves of ideals. For a superscheme X, by a Zariski

sheaf on X we will mean a sheaf with respect to the topology on the locally ringed space X.

We assume for the remainder of this section that X is a superscheme over Z[ 12 ] in the sense that there is a morphism

of superschemes X → Spec(Z[ 12 ]).

Definition 1. Given a superscheme X, let OX,0/(OX,1)2 denote the sheafification of the presheaf given by U 7→
OX,0(U)/(OX,1)2(U). The underlying even scheme Xeven of X is defined to be

Xeven := (|X|,OX,0/(OX,1)2)

Let

iX : Xeven −→ X

denote the closed immersion of superschemes given by the identity map on underlying topological spaces and OX →
iX∗OXeven is defined such that for an open set U of |X| it is the composition of the quotient map OX(U) →
OX,0(U)/OX,1(U)2 with the sheafification.

We now define the evenization functor that maps a superscheme to its associated even scheme:

Definition 2. Let Schemes denote the category of schemes. Define a functor

S-Schemes −→ Schemes

in the following manner: An object X of S-Schemes is taken to the even scheme Xeven. If f : X → Y is a morphism

of superschemes, then one maps it to the morphism feven : Xeven −→ Yeven of underlying schemes which is defined

in the following way: Since |X| = |Xeven| and |Y | = |Yeven|, one obtains a map |Xeven| → |Yeven|. By definition of a

morphism of superschemes, for i = 0, 1 there exists a morphism

OY,i −→ (f∗OX)i

Hence one obtains a morphism

OY,0/(OY,1)2 −→ f∗(OX,0)/f∗(O2
X,1) −→ f∗(OX,0/O2

X,1)

and hence one has obtained a morphism feven.
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We will use in subsequent arguments the following properties of the above constructions:

(i) If f : X → Y is a closed immersion of superschemes then feven is a closed immersion of commutative schemes.

(ii) If Z is an even scheme, X is a superscheme and f : Z → X is a morphism of superschemes then the following

diagram commutes

Z
f

// X

Zeven
feven // Xeven

ix

OO

2 Super-crystalline site and the associated topos

In this section we define an analogue of the crystalline site in the context of superschemes. It will be the third step in

a three step process away from classical de Rham theory:

(i) Infinitesimal site

(ii) Crystalline site

(iii) Super-crystalline site

The usual crystalline site of a commutative scheme is a variant, better suited to positive characteristic, of the in-

finitesimal site. The latter site was used in the 60’s by Grothendieck to show that one can often calculate de Rham

cohomology without ever talking about differential forms. More precisely, for a scheme X which is smooth over a

scheme S of characteristic 0 Grothendieck showed in [4] (Theorem 4.1) that the algebraic de Rham cohomology of

X is isomorphic to the cohomology of the infinitesimal site. In positive characteristic situations the infinitesimal

cohomology can not easily be related to the de Rham cohomology since the analogue of the Poincaré lemma fails in

general. Instead one introduces the crystalline site which is a variant of the infinitesimal site that also requires the

existence of certain divided power structures:

If A be a commutative ring and I an ideal then a divided power structure, or pd-structure, γ = (γn)n≥0 on I is

collection of maps

γn : I −→ A

for each n ≥ 0, satisfying certain conditions, see [1] (Chapter 3), which include that for all x, y ∈ I

γ2(x+ y) = γ2(x) + xy + γ2(y)

It follows that for general ideals in super-commutative rings the above conditions do not hold for the maps

γn : x 7−→ xn

n!

assuming for example that n! is invertible for all n. Hence one should modify the notion of divided power structure when

working with superschemes. For our purpose, namely to develop a notion of crystalline cohomology for superschemes,

this is fortunately not necessary. It turns out that it suffices to work with divided power structures on underlying even

schemes. We now give precise definitions.

For the remainder of this work S will always denote a scheme over Fq with char(Fq) 6= 2 and I ⊆ OS will be a

sheaf of ideals with pd-structure γ. By a superscheme X/S we mean a superscheme X together with a morphism

of superschemes X → S such that the pd-structure γ extends to Xeven. See [1] (Chapter 3) for the definitions of

compatibility and extension of pd-structures as well as S-pd morphisms.

We now define the analogue of the crystalline site in the setting of superschemes. Note that in the context of

infinitesimal or crystalline cohomology of commutative schemes there are at least two conventions for defining the

relevant sites: In Grothendieck’s work [4] one looks at suitable closed immersions U → T defined by nilpotent ideals.
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In other references, for example [1], one looks at the more general notion of a thickening U → T , which means a

closed immersion where U and T have the same underlying topological space. We will adapt the latter definition to

the super-setting:

Definition 3. Let X/S be a superscheme such that the pd-structure γ extends to Xeven. We now define the category

SCris(X/S):

(i) An object in SCris(X/S) is a triple (U, f : U → T, δ) with

• U a Zariski open subset of X

• a closed S-immersion f : U → T which is a thickening, in the sense that U and T have the same topological

space, such that the sheaf of ideals J defining the closed immersion feven : Ueven → Teven has a pd-structure

δ which is compatible with γ.

Sometimes we will denote such a triple simply by (U, T, δ).

(ii) A morphism

(U ′, T ′, δ′) −→ (U, T, δ)

between two objects of SCris(X/S) is a pair (ρ, g) where ρ : T ′ → T is a morphism of superschemes such that

ρeven is a S-pd morphism and g : U ′ → U is an inclusion in the Zariski topology such that the following diagram

commutes:

T ′
ρ
// T

U ′

OO

g
// U

OO

The following is an example of an object in SCris(X/S): Let us take S = X = U = Spec Fq where as before

char(F2) 6= 2 and let T = Spec Fq[x, ξ1, ξ2] where x3 = ξ21 = ξ22 = 0 and x is an even variable and ξ1, ξ2 are odd

variables. Furthermore, define the pd-structure on δ = (x) via γ0(y) = 1, γ1(y) = y, γ2(y) = y2 · 2−1 and γi(y) = 0 for

i ≥ 3 for all y in δ.

Lemma 2.1. Let X/S be a superscheme, then the category SCris(X/S) has fiber products.

Proof. As discussed for example in [8] (Proposition 1.1.3), the category of superschemes has fiber products, which as

in the commutative case, is given on affine superschemes by taking the spectrum of the relevant tensor product. If

A,B,C are super-commutative rings and given maps Spec(B)→ Spec(A) and Spec(C)→ Spec(A) the corresponding

fiber product is Spec(B ⊗A C) where the grading on B ⊗A C is the following: For i = 0, 1 let b(i) denote an element

of Bi and c(i) an element of Ci. Then (B ⊗A C)0 is spanned by elements of the form b(1) ⊗ c(1) and b(0) ⊗ c(0) and

furthermore (B ⊗A C)1 is spanned by elements of the form b(0) ⊗ c(1) and b(1) ⊗ c(0). The multiplication comes from

defining for k, l,m, n being even or odd elements

(k ⊗ l) · (m⊗ n) = (−1)d(l)d(m)(km⊗ ln)

where d(−) denotes the parity. Consider now two morphisms fα and fβ in SCris(X/S) of the form:

(Uβ , Tβ , δβ)

fβ

��

(Uα, Tα, δα)
fα // (U, T, δ)

Then Uα×U Uβ can be viewed as an open sub-superscheme of X and there is a closed immersion fα,β : Uα×U Uβ −→
Tα ×T Tβ with corresponding closed immersion

f evenα,β : (Uα ×U Uβ)even −→ (Tα ×T Tβ)even
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One obtains a pd-structure, which we denote by δα × δβ , on the sheaf of ideals defining this closed immersion by

noticing that taking the fiber product commutes with passing to underlying even schemes: For example, for affine

superschemes this follows from the fact that if A → B and A → C are morphisms of supercommutative rings and if

b(1) ∈ B1 and c(1) ∈ C1 one has that b(1) ⊗ c(1) ∈ (B ⊗A C)0 is in fact in (B ⊗A C)21. Hence the fiber product in

SCris(X/S) is given by

(Uα, Tα, δα)×(U,T,δ) (Uβ , Tβ , δβ) = (Uα ×U Uβ , Tα ×T Tβ , δα × δβ)

Definition 4. A covering family of (U, T, δ) ∈ SCris(X/S) will be defined to be a collection of morphisms

fα : (Uα, Tα, δα) −→ (U, T, δ)

such that the maps Tα → T are open immersions and such that
⋃
α fα(Tα) = T .

The category SCris(X/S) together with the above defined covering families defines a pretopology as defined in

[11] (II.1.3): We need to verify the properties PT 0) - PT 3) of loc. cit. and by the definition of fiber products in

SCris(X/S) this follows from the same arguments as in the case of the usual crystalline site of a scheme. For example, if

{(Uα, Tα, δα)→ (U, T, δ)}α is a covering family of (U, T, δ) and if (UY , Y, δY )→ (U, T, δ) is a morphism in SCris(X/S),

then

{(Uα, Tα, δα)×(U,T,δ) (UY , Y, δY )→ (UY , Y, δY )}

is again a covering family. We call the site corresponding to the above pretopology, see loc. cit., the super-crystalline

site.

Following loc. cit. (IV.1.1), by a topos we mean a category which is equivalent to the category of sheaves of sets

of a site.

Definition 5. Let X/S be a superscheme. Denote by (X/S)s−cris the topos of the super-crystalline site SCris(X/S).

In complete analogy with the case of sheaves on the usual crystalline site of commutative schemes, see [1] (Propo-

sition 5.1), one has a Zariski interpretation of objects of (X/S)s−cris:

Let (U, T, δ) ∈ SCris(X/S) and let I = I0 ⊕ I1 be the sheaf of ideals defining the closed immersion U → T . Let

T ′ be an open sub-superscheme of T . Then there is a closed immersion U ∩ T ′ → T ′ defined by I|T ′ with grading

(I|T ′)i := Ii|T ′ for i = 0, 1. Recall that δ is a pd-structure on I0/I21 . Let δ|T ′ denote its restriction to T ′. Since

sheafification commutes with restriction this gives a pd-structure on the sheaf of ideals defining the closed immersion

(U ∩ T ′)even → T ′even and therefore

(U ∩ T ′, T ′, δ|T ′) ∈ SCris(X/S)

Hence the assignment

T ′ 7→ F((U ∩ T ′, T ′, δ|T ′))

defines a sheaf on the Zariski topology of T .

To give a sheaf F on SCris(X/S) is then seen to be the same as to give for every object (U, T, δ) of SCris(X/S) a

Zariski sheaf F(U,T,δ) on T and for every morphism u : (U ′, T ′, δ′)→ (U, T, δ) in SCris(X/S) a morphism of sheaves

ρu : u−1(F(U,T,δ))→ F(U ′,T ′,δ′)

satisfying certain conditions, see [1] (Proposition 5.1).

Definition 6. Let X/S be a superscheme. The structure sheaf Osuper
X/S is the object of (X/S)s−cris such that

(Osuper
X/S )(U,T,δ) = OT

for all (U, T, δ) ∈ SCris(X/S).
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Let e be a final object of (X/S)s−cris. It exists and is unique up to unique isomorphism. Let Set denote the

category of sets. The global section functor Γs−cris is defined to be the functor

Γs−cris : (X/S)s−cris −→ Set

given by F 7→ Hom(X/S)s−cris
(e,F). It is a left exact functor and since the category of sheaves of abelian groups on a

site has enough injectives we can define the corresponding right derived functors:

Definition 7. Let X/S be a superscheme and define Hi
s−cris(X,−) to be the i’th right derived functor of Γs−cris. We

will write

Hi
s−cris(X) := Hi

s−cris(X,O
super
X/S )

3 Calculation of cohomology

To prove Theorem 1 we use various morphisms of topoi and associated spectral sequences. Let X/S be a superscheme.

As mentioned earlier, the key are suitable functors between sites:

Cris(Xeven/S)

α

((

SCris(X/S)

β
vv

SCris(Xeven/S)

Here the functor α could be called the super-refinement functor and the functor β could be called the bosonization

functor. Via suitable Leray spectral sequences these functors will give rise to isomorphisms:

Hi
cris(Xeven)

∼

''

∼ // Hi
s−cris(X)

∼
ww

oo

Hi
s−cris(Xeven)

Before we carry out this strategy we now briefly recall relevant definitions concerning topoi:

Let T1 and T2 be topoi. A morphism of topoi

g = (g∗, g
∗) : T1 −→ T2

is defined to be a functor g∗ : T1 → T2 which has a left adjoint g∗ : T2 → T1 which commutes with finite inverse limits.

By [11] (V.5.3), for a morphism of topoi as above and a sheaf F in T1 which is a sheaf of abelian groups there exists

a spectral sequence

Ep,q2 = Hp(T2,Rqg∗F) =⇒ Hp+q(T1,F)

We refer to loc. cit. (V.2.1) for the definition of the cohomology of a sheaf on a site. The above spectral sequence is

called the Leray spectral sequence associated to the morphism g = (g∗, g
∗).

The morphisms of topoi that we will use will come from functors between the underlying sites in the following

manner: Let S1 and S2 be two sites, or more precisely pretopologies, with corresponding topoi T1 and T2 and consider

a continuous functor i : S1 −→ S2. Continuity means that i takes coverings to coverings and if Y → X is a morphism

in S1 and {Xα → X}α is a covering in S1 then the morphism i(Y ×X Xα) −→ i(Y ) ×i(X) i(Xα) is an isomorphism.

Let i∗ : T2 −→ T1 be given by mapping F ∈ T2 to F ◦ i. If i is a continuous functor and i∗ has an exact left adjoint i∗

then (i∗, i
∗) is a morphism of topoi.

Lemma 3.1. Let S be a scheme over Fq with char(Fq) 6= 2 and let X/S be a scheme. Consider the inclusion

i : Cris(X/S) −→ SCris(X/S)
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It gives rise to a map i∗ : (X/S)s−cris −→ (X/S)cris defined by i∗F = F ◦ i. Then i is a continuous functor and i∗ has

an exact left adjoint i∗ and therefore (i∗, i
∗) is a morphism of topoi.

Proof. Clearly i is a continuous functor. We now check that i∗ has an exact left adjoint i∗. First note that via the

Zariski interpretation of sheaves, the topoi (X/S)s−cris and (X/S)cris have enough points and so exactness of morphism

of sheaves can be checked for stalks: The sequence F → G → H is exact if and only if for every (U, T, δ) an object of

the site and every x ∈ |T | = |U | the sequence

FT,x // GT,x // HT,x

is exact. We now describe the left adjoint functor i∗:

Let (U, T, δ) ∈ SCris(X/S) and let I(U,T,δ) denote the category whose objects are pairs ((U ′, T ′, δ′), φ) with

• (U ′, T ′, δ′) ∈ Cris(X/S)

• φ ∈ HomSCris(X/S)((U, T, δ), (U
′, T ′, δ′))

The morphisms between ((U ′1, T
′
1, δ
′
1), φ1) and ((U ′2, T

′
2, δ
′
2), φ2) are the morphisms{

λ ∈ HomCris(X/S)((U
′
1, T

′
1, δ
′
1), (U ′2, T

′
2, δ
′
2))
∣∣φ2 = λ ◦ φ1

}
For F an object of (X/S)cris define a functor

F − (U, T, δ) : Iopp(U,T,δ) −→ Set

which on objects is given by

((U ′, T ′, δ′), φ) 7→ F(U ′, T ′, δ′)

Consider the presheaf ĩF on SCris(X/S) given by

(U, T, δ) 7→ colimIopp
(U,T,δ)

F − (U, T, δ)(((U ′, T ′, δ′), φ)) = colimIopp
(U,T,δ)

F(U ′, T ′, δ′)

By [13] (TAG 00VC) the functor i∗ has a left adjoint i∗ such that i∗F is given by the sheafification of ĩF .

Assume now that

F
f
// G

g
// H

is an exact sequence of objects of (X/S)cris. By the same argument as in the case of sheaves on the site SCris(X/S)

one has an interpretation of presehaves on that site in terms of a collection of presheaves on the Zariski topology of T

where (U, T, δ) is an arbitrary object of the super-crystalline site. We will use the analogous notation as in the case

for sheaves to denote these Zariski presheaves. Since sheafification is an exact functor, see for example [13] (Lemma

7.10.14), it follows that in order to show that i∗ is exact it suffices to show that the sequence of stalks

(̃iF)(U,T,δ),x // (̃iG)(U,T,δ),x // (̃iH)(U,T,δ),x

is exact for all (U, T, δ) ∈ SCris(X/S) and all x ∈ |T |. For the following arguments note that if M is an object of

(X/S)cris then the stalk of ĩM is given by

(̃iM)(U,T,δ),x = colim(Ṽ ∩U,Ṽ ,δ̃)∈SCris(X/S),x∈|Ṽ |,Ṽ⊆T

(
colimIopp

(Ṽ∩U,Ṽ ,δ̃)
M(U ′, T ′, δ′)

)
where Ṽ ⊆ T means that Ṽ is an open subscheme of T . Let us fix some notation: For t ∈M(U ′, T ′, δ′) we denote by

[t] the corresponding element of the stalk (̃iM)(U,T,δ),x.

Suppose now that

s ∈ Ker
(

(̃iG)(U,T,δ),x −→ (̃iH)(U,T,δ),x

)
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Write s = [t] where t ∈ G(A,B, µ) for some (A,B, µ) ∈ Cris(X/S) such that there there is (Ṽ ∩U, Ṽ , δ|Ṽ ) in SCris(X/S)

with x ∈ |Ṽ | and Ṽ ⊆ T and some φ such that

((A,B, µ), φ) ∈ I(Ṽ ∩U,Ṽ ,δ|Ṽ )

Then by possibly replacing (Ṽ ∩ U, Ṽ , δ|Ṽ ) we can assume that g(t) = 0. Note that x ∈ |B|. By exactness of the

sequence of stalks

F(A,B,µ),x
// G(A,B,µ),x // H(A,B,µ),x

there exists (F ∩A,F, µ|F ) ∈ Cris(X/S) with x ∈ |F | and F ⊆ B such that restriction Res(t) of t to it is in the image

of F((F ∩A,F, µ|F )) under the map f . Let r denote the inclusion morphism

r : (F ∩A,F, µ|F ) −→ (A,B, µ)

The reason that the desired exactness does not immediately follow is that one does not know if there is a ξ such that

((F ∩A,F, µ|F ), ξ) ∈ I(Ṽ ∩U,Ṽ ,δ̃) and r ◦ ξ = φ

The map φ gives rise to a morphism of schemes Ṽ −→ B which we will also denote by φ. Let W = φ−1(F ) and note

that x ∈ |W | since x ∈ |F | and x ∈ |Ṽ |. Then the following diagram commutes:

(A,B, µ)

(W ∩ U,W, δ|W )

φ|W
66

φ|W

((

(F ∩A,F, µ|F )

r

OO

In particular ((F ∩A,F, µ|F ), φ|W ) ∈ I(W∩U,W,δ|W ) and since

s = [t] = [Res(t)]

it follows that the sequence (̃iF)(U,T,δ),x // (̃iG)(U,T,δ),x // (̃iH)(U,T,δ),x is exact, as desired.

The previous lemma can be used to show:

Corollary 3.2. Let S be a scheme over Fq with char(Fq) 6= 2 and let X/S be a scheme. Then for all i ≥ 0 there is

an isomorphism

Hi
cris(X) ∼= Hi

s-cris(X)

Proof. Let

(i∗, i
∗) : (X/S)s−cris −→ (X/S)cris

be the morphism of topoi constructed in the previous lemma. Then

i∗(F)(U,T,δ) = F(U,T,δ)

Via the Zariski interpretation of sheaves on the crystalline and super-crystalline site of X/S it follows that i∗ is an
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exact functor since this can be checked on stalks for all the Zariski sheafs. Moreover,

i∗(Osuper
X/S )((U, T, δ)) = Osuper

X/S ((U, T, δ))

= OT (T )

= OX/S((U, T, δ))

and therefore

i∗(Osuper
X/S ) = OX/S

Define Rqi∗ as the q’th derived functor of i∗. Consider the Leray spectral sequence

Ep,q2 = Hp
cris(X,R

qi∗Osuper
X/S ) =⇒ Hp+q

s−cris(X,O
super
X/S )

By the exactness of i∗ the spectral sequence degenerates and it follows that

Hi
cris(X) ∼= Hi

s−cris(X)

for all i ≥ 0.

To prove the main theorem we now compare the super-crystalline cohomology of a superscheme X to the super-

crystalline cohomology of the underlying even scheme.

Lemma 3.3. Let S be a scheme over Fq with char(Fq) 6= 2 and let X/S be a superscheme. Consider the functor

i : SCris(X/S) −→ SCris(Xeven/S)

given by (U, T, δ) 7→ (Ueven, T, δ). It gives rise to a map i∗ : (Xeven/S)s−cris −→ (X/S)s−cris given by i∗F = F ◦ i.
Then i is a continuous functor and i∗ has an exact left adjoint i∗ and therefore (i∗, i

∗) is a morphism of topoi.

Proof. The proof is very similar to the proof of Lemma 3.1 and hence we will be more succinct here. If A, B, C are

superschemes and there are morphisms of superschemes f : A → C and g : B → C then there is an isomorphism for

the corresponding fiber product (A×C B)even ∼= Aeven×Ceven
Beven. Using this one sees that i is a continuous functor.

We now show that i∗ has an exact left adjoint. Let (U, T, δ) ∈ SCris(Xeven/S) and let I(U,T,δ) denote the category

whose objects are pairs ((U ′, T ′, δ′), φ) with

• (U ′, T ′, δ′) ∈ SCris(X/S)

• φ ∈ HomSCris(Xeven/S)((U, T, δ), (U
′
even, T

′, δ′))

The morphisms are defined similar to what is done in the proof of Lemma 3.1. For F an object of (X/S)cris define a

functor

F − (U, T, δ) : Iopp(U,T,δ) −→ Set

in an analogous manner to Lemma 3.1. Define the presheaf ĩF on SCris(Xeven/S) given by

(U, T, δ) 7→ colimIopp
(U,T,δ)

F − (U, T, δ)(((U ′, T ′, δ′), φ))

As before, the functor i∗ has a left adjoint i∗ such that i∗F is given by the sheafification of ĩF . Assume now that

F
f
// G

g
// H

is an exact sequence of objects of (X/S)s−cris. Let

s ∈ Ker
(

(̃iG)(U,T,δ),x −→ (̃iH)(U,T,δ),x

)

10



Write s = [t] where t ∈ G(A,B, µ) for some (A,B, µ) ∈ SCris(X/S) such that there there is (Ṽ ∩ U, Ṽ , δ|Ṽ ) in

SCris(X/S) with x ∈ |Ṽ | and Ṽ ⊆ T and some φ such that

((A,B, µ), φ) ∈ I(Ṽ ∩U,Ṽ ,δ|Ṽ )

Then we can assume that g(t) = 0. By exactness of

F(A,B,µ),x
// G(A,B,µ),x // H(A,B,µ),x

there exists (F ∩A,F, µ|F ) ∈ SCris(X/S) with x ∈ |F | and F ⊆ B and the inclusion morphism

r : (F ∩A,F, µ|F ) −→ (A,B, µ)

such that restriction Res(t) of t to it is in the image of F(F ∩A,F, µ|F ) under the map f . The map φ gives rise to a

morphism of schemes Ṽ −→ B which we will also denote by φ. Let W = φ−1(F ) and note that x ∈ |W | since x ∈ |F |
and x ∈ |Ṽ |. Then the following diagram commutes:

(A,B, µ)

(W ∩ U,W, δ|W )

φ|W
66

φ|W

((

(F ∩A,F, µ|F )

r

OO

and we conclude as in the proof of Lemma 3.1.

The following lemma completes the proof of Theorem 1.

Lemma 3.4. Let S be a scheme over Fq with char(Fq) 6= 2 and let X/S be a superscheme. Then for all i ≥ 0 there

is an isomorphism

Hi
s−cris(X/S) ∼= Hi

s−cris(Xeven/S)

Proof. Let

(i∗, i
∗) : (Xeven/S)s−cris −→ (X/S)s−cris

be the morphism of topoi constructed in the previous lemma. Note that

i∗(F)(U,T,δ) = F(Ueven,T,δ)

and note that i∗ is an exact functor. Also:

i∗(Osuper
Xeven/S

)((U, T, δ)) = Osuper
Xeven/S

((Ueven, T, δ))

= OT (T )

= Osuper
X/S ((U, T, δ))

and therefore i∗(Osuper
Xeven/S

) = Osuper
X/S . By using the Leray spectral sequence

Ep,q2 = Hp
s−cris(X,R

qi∗Osuper
Xeven/S

) =⇒ Hp+q
s−cris(Xeven,Osuper

Xeven/S
)

and the exactness of i∗ it follows that Hi
s−cris(X) ∼= Hi

s−cris(Xeven).
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M. Luu, Department of Mathematics, University of California, Davis

E-mail address: mluu@math.ucdavis.edu

12


	Superschemes
	Super-crystalline site and the associated topos
	Calculation of cohomology

