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Abstract

The deformation theory of automorphic representations is used to study local properties of Galois representations

associated to automorphic representations of general linear groups and symplectic groups. In some cases this allows

to identify the local Galois representations with representations predicted by a local Langlands correspondence.
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1 Preface

Parts of this memoir are based on my Ph.D. thesis written at Princeton University under the direction of professor

Christopher Skinner. I am deeply indebted to professor Skinner for sharing numerous mathematical ideas with me,

many of which are used in this work. I also thank him for many discussions of the mathematics treated in this

memoir. It is also my great pleasure to thank B. Conrad, S. Dasgupta, A. Jorza, C. Sorensen for conversations and

correspondences that have been very helpful. Moreover, I thank the referee for remarks concerning the improvement

of the exposition.

2 Introduction

Let τ be in the complex upper half-plane and let q = exp(2πiτ). Fix a prime number `. In the year 1954 Martin

Eichler associated to the modular form

f =
∑
n≥1

anq
n = q − 2q2 − q3 + 2q4 + q5 + · · ·

of weight 2 and level Γ0(11) a very different type of object: A group representation

ρf,` : Gal(Q/Q) −→ GL2(Q`)

such that for all primes p 6∈ {11, `} the representation ρf,` is unramified at p and

Trace ρf,`(Frp) = ap

and

det ρf,`(Frp) = p

where Frp denotes a lift of Frobenius at p. A priori, this association makes no connection between the local properties

at p = 11 of the modular form and the group representation. It is then natural to attempt to strengthen Eichler’s

correspondence between the analytic object f and the algebraic object ρf,`, and many results for generalizations of

Eichler’s correspondence to more general settings have been obtained in the last half a century in this direction. Such

questions are now often called the problem of local-global compatibility of Langlands correspondences. The current

memoir is meant to contribute to these ongoing efforts.

Traditionally, the main tool in this area is the detailed study of the geometry of Shimura varieties. This should

not be too surprising: The very construction by Eichler of ρf,` uses modular curves. For modular forms a reference for
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the traditional approach to local-global compatibility is [LAN], for Hilbert modular forms there is for example [CAR],

and a more recent work in this tradition is the work [HT] by Harris-Taylor.

The methods of our work are different, we use the deformation theory of automorphic forms and Galois represen-

tations instead: The description of f above as an element of Z[[q]] lends itself to an obvious notion of congruences to

other such formal power series in q. In many situations one knows the existence of an abundance of such congruences

to other modular forms. We will exploit this to develop an approach to local-global compatibility questions that largely

avoids the study of bad reduction of Shimura varieties. Phrased in terms of Eichler’s modular form f we would like to

advertise the following maxim: The local behavior at 11 of the associated Galois representation is governed in a direct

way by unramified local behavior of modular forms, not necessarily of the individual modular form f itself but of

families of modular forms deforming f . This approach is very different than the standard approach to such problems

via studying singularities of Shimura varieties and therefore in particular is useful in the following situations:

(i) there is no variety to work with in the first place

(ii) the singularities of the relevant Shimura varieties are not sufficiently well understood

Examples for these two situations that we treat in this memoir are:

(i) Hilbert modular forms of partial weight one

(ii) Automorphic forms on symplectic groups

Let us come back to Eichler’s modular form f . To study the behavior of ρf,` at p = 11 we look at the corresponding

Weil-Deligne representation (r,N). See for example [TAT] for a definition. We refer to r as the semi-simple part and

to N as the monodromy operator. We use the following methods to study r and N as well as their analogues for more

general automorphic Galois representations:

To study r we use the vertical deformation theory of automorphic forms, namely eigenvarieties and associated

families of Galois representations. Our approach to calculating the local monodromy operator N is given by the

following principle:

automorphic congruences

+

modularity lifting theorems

 automorphic monodromy operators

We now illustrate these approaches to local-global compatibility in some examples. The examples hopefully demon-

strate the usefulness of the deformation theoretic approach to local-global compatibility questions concerning Galois

representations whose local properties are not easily detectable by standard approaches via singularities of Shimura

varieties. On a more philosophical level they might illustrate that ramified local-global compatibility can sometimes

be deduced from unramified local-global compatibility in pleasing accordance with the way unramified properties often

abstractly determine the Galois representation via the Chebotarev density theorem.

Calculating N for Eichler’s modular form:

Let us explain our approach to monodromy operators in the case of Eichler’s modular form f . The space S2(SL2(Z))

sitting inside S2(Γ0(11)) is actually trivial. A reflection of this fact for the Galois representation ρf,` is that one

expects the inertia action at 11 to be non-trivial and unipotent and this has been known for many decades. However,

analogous questions in higher dimensions can be much more difficult, hence we now sketch in this simple situation of

Eichler’s modular form a deformation theoretic approach to studying the ramification:

The key are the revolutionary techniques developed by Wiles [WIL] in his proof of Fermat’s last theorem, namely

modularity lifting results. The idea of modularity lifting theorems can be described schematically as:

ρf,`

!!

ρ

~~

?
ρg,`

ρf,`
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By this we mean that ρ is a representation whose reduction is isomorphic to the reduction ρf,` of ρf,` and we want to

study if ρ is equal to ρg,` for a suitable modular form g. With this in mind our idea to prove the above described form

of the inertia action of ρf,` at 11 is an approach that can schematically be described by the following diagram:

R

��

∼ // T(11)

��

R(11-unr)
∼ // T(1)

Here R parametrizes suitable deformations of the residual representation ρf,` and R(11-unr) parametrizes the subclass

of deformations unramified at 11, T(11) denotes a Hecke algebra corresponding to certain modular forms whose level

divides 11 and T(1) corresponds to the subclass of modular forms of level 1. However, since S2(SL2(Z)) is trivial, the

above diagram can not be used directly. This is similar to a problem Wiles faced in the proof of Fermat’s last theorem:

When working with so called minimal deformation problems it can be non-trivial to show that the relevant Hecke

algebras are non-empty. In the work of Wiles this is solved by using level-lowering theorems. In our case, we can use

the potential level-lowering results of Skinner and Wiles to bypass the above described problem: In many situations

one can find congruences to less ramified modular forms after a suitable base change. An added advantage of the

Skinner-Wiles results for our aims is that it avoids the study of singularities of Shimura varieties that is employed to

prove more classical level-lowering results.

Since modularity lifting theorems are known in many situations, variants of the above described arguments can

also be used to study monodromy operators in situations not easily accessible via more standard geometric methods.

Hilbert modular forms of partial weight one are one such example which we treat in the current memoir. Since the

Galois representations for such modular forms are constructed by using families of modular forms one loses control

of the monodromy operators at places of Steinberg ramification. We demonstrate how the deformation theory can be

used to calculate the monodromy operators nonetheless in certain situations.

Calculating r (and consequences for N) in a symplectic example:

We now discuss an example of our approach to the semi-simple parts of Weil-Deligne representations associated to

automorphic Galois representations. In the case of modular forms we have indicated earlier for the example of Eichler’s

modular form how the horizontal deformation theory, by which we mean the theory of modularity lifting, can be used to

study N . To study r we use the theory of eigenvarieties: Under suitable assumptions many automorphic representations

can be put into p-adic families and there are corresponding families of Galois representations. It follows from the

important work of Kisin in [KIS] that for such families one often has a variation of crystalline periods. We use this to

obtain the matching of r with what is predicted by the local Langlands correspondence in some cases. For this method

we study p-adic families of Galois representations and we study the local properties of the Galois representations at p.

If independence of ` results are known then one can safely restrict to this case of critical characteristic. The control of

the variation of only one crystalline period translates the study of r into a combinatorial problem involving exterior

powers of Galois representations and different ways of injecting a suitable local component of π into a principal series

representation. We discuss some of the resulting combinatorics, in particular in low dimensions, in this memoir. Note

that very recent results on strengthening of Kisin’s work towards existence of global triangulations allow to discard

the combinatorics in many situations and we briefly discuss this later on.

The motivation for choosing the specific example we are about to discuss stems from the work of Skinner-Urban

[SU] on the main conjecture of modular forms. There, it would be useful to know certain local-global compatibility

results for automorphic representations of GSp4. Since the existence of a Langlands transfer to GL4 is not always

known one cannot simply appeal to the well established results for automorphic representations of general linear and

unitary groups. Moreover, contrary to the detailed study of the bad reduction of certain unitary group Shimura

varieties carried out by Harris-Taylor in [HT], the corresponding understanding of the bad reduction of symplectic

Shimura varieties is much less developed. Hence this is a situation where the methods developed in this memoir come

into play.
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Let F be a totally real number field and let π be a suitable automorphic representation of GSp4(AF ) which is in

particular cuspidal, algebraic and globally generic. Let recGSp4
denote the local Langlands correspondence for GSp4

constructed by Gan and Takeda. In the following statement we in fact use it only for unramified representations where

it is a classical result.

For ` a prime and ι an isomorphism from Q` to C there exists a unique continuous semi-simple representation

ρπ,`,ι : Gal(F/F ) −→ GL4(Q`)

such that for v - ` with πv an unramified principal series representation one has

WDι(ρπ,`,ι|WFv
)F-ss ∼= recGSp4

(πv ⊗ |c|−3/2)

where c denotes the symplectic similitude character. An analogue of the behavior of Eichler’s modular form f at

p = 11 is to assume that v - ` is a finite place of F such that

πv ↪→ Ind(χ1| · |1/2, χ1| · |−1/2;χ2)

where |·| is normalized absolute value of Fv and χ1 and χ2 are unramified characters of F×v such that χ2
1 6∈ {|·|±1, |·|±3}

and the right hand side is the normalized induction of the character of the diagonal torus of GSp4(Fv) given by

t =


t1

t2
c(t)t−1

2

c(t)t−1
1

→ χ1(t1)|t1|1/2χ1(t2)|t2|−1/2χ2(c(t))

Let (r,N) denote the Weil-Deligne representation associated to ρπ,`,ι at the place v. Let $ be a uniformizer of Fv, let

q be the size of residue field of Fv, let Frv be a lift of geometric Frobenius and let S be the multiset of eigenvalues of

r(Frv) multiplied by q−3/2. Local-global compatibility predicts that

S = {αβq1/2, αβq−1/2, α2β, β} where α := χ1($) and β := χ2($)

By using the vertical deformation theory, by which we mean the theory of eigenvarieties, we show under some assump-

tions, including an independence of ` assumption, the following: Let 1 ≤ j ≤ 4 and let

µ =


µ1

µ2

µ3

µ4


be an unramified character of the diagonal torus of GL4(Fv) such that

St2(χ1χ2) � χ2
1χ2 � χ2 ↪→ Ind

GL4(Fv)
BGL4(Fv)

(µ)

Then there exists a multiset {x1, · · · , xj} contained in S such that

j∏
k=1

xk =

j∏
k=1

µk($)

Remark 1. Assuming an independence of ` hypothesis deserves some discussion since it might sound rather strong.

However, this type of result has already proven to be useful, for example in the work of Jorza in [JOR]. There, via a

multiplicity one result, symplectic local-global compatibility is related to GL4 local-global compatibility but only up to

a quadratic twist. Via the methods developed in the current memoir this twist can be removed, since the independence
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of ` for GL4 is indeed known.

We now use the above described result for various pairs (µ, j) and the combination of the information obtained

from these applications will yield that S is as predicted by the local Langlands correspondence.

• Pair 1:

Here we take

(µ, j) = (


χ1χ2| · |1/2

χ1χ2| · |−1/2

χ2
1χ2

χ2

 , 1)

It follows that αβq−1/2 ∈ S

• Pair 2:

Here we take

(µ, j) = (


χ2

χ2
1χ2

χ1χ2| · |1/2
χ1χ2| · |−1/2

 , 3)

It follows that there is {x1, x2, x3} ⊂ S such that

x1x2x3 = α3β3q−1/2

• Pair 3:

Here we take

(µ, j) = (


χ2

χ2
1χ2

χ1χ2| · |1/2
χ1χ2| · |−1/2

 , 4)

It follows that there is {y1, y2, y3, y4} = S such that

y1y2y3y4 = α4β4

Hence, without loss of generality,

y4 = αβq1/2 ∈ S

• Pair 4:

Here we take

(µ, j) = (


χ2

χ2
1χ2

χ1χ2| · |1/2
χ1χ2| · |−1/2

 , 1)

It follows that β ∈ S and since α2 6∈ {q±1, q±3} one has β 6= αβq±1/2 and therefore

S = {αβq−1/2, αβq1/2, β, z}

for some number z. Now using the pair (µ, 4) implies α2β3z = α4β4 and hence

z = α2β

6



and S is as desired.

Note that this local-global compatibility result concerning r has consequences for what N can be. The analogue

of the conjecture of Skinner-Urban in our current situation predicts that the rank of N equals one. In fact, for their

applications it is only necessary to show that the rank is at most one and this can be deduced from results of the

above type concerning r.

Remark 2. The approach to local-global compatibility that we outlined above actually allows to go beyond the

results based on singularities of Shimura varieties. By working directly with symplectic group eigenvarieties one can

attack the non-globally generic case as well. Note that the conjecture of Skinner-Urban is now essentially a theorem

of Jorza. He proves this by showing a certain strong multiplicity one result for automorphic representations of GSp4

and using the already known local-global compatibility results for automorphic representations of GL4. To prove the

full compatibility, there was originally a problem with quadratic-twists. After learning of these results we suggested

to solve this problem via the methods outlined above and this is now included in [JOR2]. The general deformation

theoretic approach that we wish to develop gives another, more self-contained, approach to showing such local-global

compatibility results. Since it does not appeal to GL4 results it should be easier to apply it in more general situations

where the understanding of bad reduction of Shimura varieties is less developed.

A more detailed outline of this memoir:

We focus throughout this work on automorphic representations of GLn and GSp2n and while we usually focus on

Iwahori-spherical ramification one can obtain more general results by using base change methods. One should also

note that several of the results we prove in this work are not new. Namely, some results are special cases of the

local-global compatibility results of [HT] and [TY] and subsequent variations of the methods of these two references.

The results in these references are proved by a detailed study of singularities of Shimura varieties and related algebraic

varieties, which our approach avoids. Some new results that we prove via the deformation theoretic methods include:

Suppose the automorphic Galois representation is not known to be realized in the cohomology of an algebraic variety.

To show how deformation theory can deal with this situation, in this case we prove non-triviality results for monodromy

operators for Hilbert modular forms of partial weight one.

We also obtain lower bounds on the rank of monodromy operators associated to symplectic automorphic represen-

tations. In this symplectic example we show how to bypass the possible lack of strong multiplicity one results by the

use of the γ-factors coming from the doubling method. These methods should work more generally. Another difficult

case for the standard approach to local-global compatibility is if the automorphic Galois representation is known to

be realized in the cohomology of an algebraic variety but a detailed understanding of the singularities of the variety is

not known: To show how deformation theory can deal with this situation we prove local-global compatibility results

for symplectic automorphic representations. These results not withstanding, the aim of this memoir is not only to

present new results: In particular for results concerning automorphic representations of GLn, the modest aim of much

of what we do in the present work is to illustrate the usefulness of the deformation theoretic approach which then can

be applied to more difficult situations in the future. We now give a brief outline of the structure of this memoir.

In Chapter 2 we recall some results about Iwahori-spherical representations and p-adic Hodge theory. These results

will be used extensively in the applications of families of automorphic forms. In Chapter 3 we give examples for

Hilbert modular forms of the way eigenvarieties and modularity lifting theorems can be used to obtain local-global

compatibility results for automorphic Galois representations. In Chapter 4 the deformation theoretic approach to

local-global compatibility questions is developed in the setting of unitary groups and general linear groups. In Chapter

5 the results of the previous chapter are used to obtain local global compatibility results for automorphic Galois

representations of general linear groups. In Chapter 6 the results of the Chapter 4 are used to obtain local global

compatibility results fro automorphic Galois representations of symplectic groups. In Chapter 7 we prove potential

level-lowering results for general linear groups, unitary groups, and symplectic groups. In Chapter 8 we prove non-

triviality results for monodromy operators associated to automorphic Galois representations of general linear groups.

In Chapter 9 we develop, via the example of symplectic groups, a variant of the modularity lifting approach to

monodromy operators that is developed in Chapter 8 that is based on γ-factors from the doubling method rather than

strong multiplicity one results.
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3 Preliminaries

Since such results will be used on many occasions throughout this memoir, in this chapter we collect some preliminary

results about Iwahori-spherical representations as well as crystalline periods of Galois representations.

3.1 Notation

Fix throughout an algebraic closure Q of Q and Qp of Qp for each prime p. We will denote by vp(−) the valuation on

Qp such that vp(p) = 1 and let | · |p denote the corresponding absolute value such that |p|p = 1/p. Throughout this

work, by a p-adic field we will mean a finite extension of Qp for some rational prime p. For a p-adic field K let | · |K
denote the absolute value normalized such that for a uniformizer $ one has |$|K = 1/q where q denotes the size of

the residue field of K. If the context is clear then | · |K will sometimes simply be denoted by | · |.
For a p-adic field K normalize local class field theory so that uniformizers correspond to lifts of geometric Frobenius.

Let GK := Gal(K/K) and let WK ⊂ GK denote the Weil group and for g ∈ WK let ν(g) ∈ Z be such that g is a

lift of the ν(g)’th power of geometric Frobenius. For a character χ of K× we will denote by χ̃ the character of WK

corresponding to it by local class field theory. Let the maximal absolutely unramified subfield of K be denoted by K0

and let Kur
0 denote its maximal unramified extension.

Suppose F is a number field and ρ : Gal(F/F ) → GLn(Q`) is a continuous representation. Consider the isomor-

phism class of the semi-simplification of the residual representation of the representation on a Galois stable lattice

coming from ρ. Let ρ denote the scalar extension of this representation to the algebraic closure.

For an extension B/A of number fields let SplB/A denote the set of finite places of A which split completely in B.

3.2 Weil-Deligne representations

We briefly recall some standard results on Weil-Deligne representations and refer to [BH, Chapter 7] for more details.

Let K be a p-adic field and fix an algebraic closure K. Let WK be the Weil group which is a topological group

such that the inertia group IK is open and the topology of IK agrees with the topology on IK viewed as a subset

of Gal(K/K) equipped with the Krull topology. With this topology the Weil group is a locally profinite topological

group. As for any locally profinite topological group, one defines a smooth representation of WK as follows: Let E be

a field of characteristic zero and V an E-vector space. Then a smooth representation is defined to be a homomorphism

from WK to the group of E-linear automorphisms of V such that every v ∈ V has an open stabilizer.

Let vK : K −→ Z be defined by taking geometric Frobenius elements to 1, let q denote the size of the residue field

of K and let ||σ|| := q−vK(σ) for σ ∈WK . A Weil-Deligne representation (ρ,N) of WK over a field E of characteristic

zero consists of a smooth representation ρ of WK on a finite-dimensional E-vector space V and a nilpotent E-linear

endomorphism N of V such that

ρ(σ)Nρ(σ)−1 = ||σ||N

for all σ ∈ WK . A morphism between Weil-Deligne representations over E is defined to be an E-linear map between

underlying E-vector spaces which commutes with the relevant smooth representations and nilpotent endomorphisms.

Let WD-RepE(WK) denote the category of Weil-Deligne representations of WK on E-vector spaces. Suppose ι : E −→
E′ is a field isomorphism of fields of characteristic zero. Consider the corresponding functor from WD-RepE(WK) to

WD-RepE′(WK) which on objects takes a Weil-Deligne representation (ρ,N) with underlying E-vector space V to the

Weil-Deligne representation (ρ′, N ′) over E′ whose underlying E′-vector space is V ⊗E E′ with

ρ′(σ)(v ⊗ 1) = ρ(σ)(v)⊗ 1 and N ′(v ⊗ 1) = N(v)⊗ 1

for v ∈ V . This yields an equivalence of categories. In particular, for any choice ι of isomorphism between Q` and C
there is an equivalence of categories between WD-RepQ`(WK) and WD-RepC(WK).

Let p denote the residue characteristic of K and let ` 6= p be a rational prime. View Q` as a topological space via
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the `-adic topology and hence consider GLn(Q`) as a topological space. Let

Repf
Q`

(WK)

category of f.d. continuous representations of WK on Q`-vector spaces

Fix a lift Fr ∈WK of Frobenius and fix a surjection t : IK −→ Z`. It is well known, see for example [BH, p.204], that

if ρ is a continuous finite-dimensional representation of WK on a Q`-vector space V then there is a unique nilpotent

Q`-linear endomorphism Nρ of V such that for all σ in some open subgroup of IK one has

ρ(σ) = exp(t(σ)Nρ)

For ρ an object in Repf
Q`

(WK) define the homomorphism

ρFr : WK −→ GLn(Q`)

by

ρFr(Friσ) := ρ(Friσ)exp(−t(σ)Nρ)

for all i ∈ Z and all σ ∈ IK . This is a smooth representation of WK . It is well known, see for example [BH, p.206], that

there is an equivalence of categories between Repf
Q`

(WK) and WD-RepQ`(WK) which takes an object ρ of Repf
Q`

(WK)

to (ρFr, Nρ) and that the isomorphism class of (ρFr, Nρ) is in fact independent of the choice of surjection t : IK −→ Z`
and choice of lift of Frobenius Fr.

The typical situation encountered in this work is that F is a number field, ι is an isomorphism from Q` to C and

ρ : Gal(F/F ) −→ GLn(Q`)

a continuous homomorphism and v a finite place of F . Hence, via the above described equivalence of categories, one

obtains a Weil-Deligne representation of WFv over Q` and via ι a Weil-Deligne representation of WFv over C. If W =

(r,N) is a Weil-Deligne representation over Q` we will denote by Wι the corresponding Weil-Deligne representation

over C via ι. We let WF-ss denote the Frobenius semi-simplification of W and let W ss denote the Frobenius semi-

simplification of r.

Let ρ1 = (r1, N1) and ρ2 = (r2, N2) be two Weil-Deligne representations of WK , with underlying vector spaces

V1 and V2. The direct sum ρ1 ⊕ ρ2 = (r′, N ′) of ρ1 and ρ2 is defined to have underlying vector-space V1 ⊕ V2 and

r′ = r1 ⊕ r2 and N ′ is defined via

N ′((v1, v2)) = (N1(v1), N2(v2)

for v1 ∈ V1 and v2 ∈ V2. The tensor product (r,N) := ρ1 ⊗ ρ2 of ρ1 and ρ2 is defined to be the Weil-Deligne

representation with underlying vector space V1 ⊗ V2 and for every σ ∈WK one has

r(σ)(v1 ⊗ v2) = r1(σ)v1 ⊗ r2(σ)v2 and N(v1 ⊗ v2) = N1v1 ⊗ v2 + v1 ⊗N2v2

The i’th exterior product ∧iρ1 of ρ1 is defined by viewing ∧iV1 as a sub-space of the i-fold tensor product V ⊗i1 .

3.3 Iwahori-spherical representations

The local components of the automorphic representations to which we will later apply arguments involving families of

automorphic representations are of a specific type: They are Iwahori-spherical representations. Hence we now describe

now for later use some known results about Iwahori-spherical and closely related types of representations. Let us first

fix some notation:

Let K be a p-adic field, let O be its valuation ring and let k be its residue field. Let G = GLn(K) for some n ≥ 2.

9



Let B be the upper triangular Borel subgroup of GLn(K). Let I denote the Iwahori subgroup of GLn(O) associated

to B and let I1 denote the subgroup of I corresponding to unipotent matrices in the reduction modulo the maximal

ideal of O. Let T be the diagonal torus of GLn. Let δB : B → C× be the modulus character, which takes b ∈ B to

|detb |K where detb denotes the determinant of the conjugation action of b on the set n of strictly upper triangular

matrices in Mn(K).

Definition 1. Let π be an irreducible admissible representation of GLn(K).

• Let πI := {v ∈ π
∣∣i · v = v for all i ∈ I}

• For any character ρ : I → C× that is trivial on I1 define

πρ := {v ∈ π
∣∣ i · v = ρ(i)v for all i ∈ I}

The representation π is called Iwahori-spherical if πI 6= (0).

Note that automorphic representations whose local components at some finite place satisfy πρ 6= (0) for some

non-trivial character ρ as above will be used in the potential level-lowering results that we prove in Section 8.1.

3.3.1 Hecke action

For a character ρ : I → C× as in the above definition, define

H(G, ρ) := {f : G −→ C
∣∣f(xgy) = ρ−1(x)f(g)ρ−1(y) for all x, y ∈ I and g ∈ G}

where all functions are required to be locally constant and with compact support. Fix a Haar measure on G such that

I has measure 1. The product of f1, f2 ∈ H(G, ρ) is defined by

(f1 ∗ f2)(x) =

∫
G

f1(xy−1)f2(y)dy

The algebras H(G, ρ) are in general not abelian and we will sometimes work with certain subalgebras which we now

describe. Fix a uniformizer $ of K and let

T+ := {


$a1

$a2

. . .

$an

 ∣∣a1, · · · , an ∈ Z and a1 ≥ a2 · · · ≥ an}

Definition 2. For t ∈ T+ let

φρt ∈ H(G, ρ)

be the element which has support ItI and which satisfies φρt (t) = 1. LetH+
ρ denote the subalgebra ofH(G, ρ) generated

by φρt for t ∈ T+. Note that the elements φρt as above are invertible as recalled in [HAI, Cor. 5.2.2].

For any irreducible admissible representation π of GLn(K) there is an action of H(G, ρ) on πρ given by

f · v =

∫
G

f(y)(y · v)dy

for f ∈ H(G, ρ) and v ∈ πρ. The vector space πρ with its H+
ρ -action has an alternative description in terms of the

Jacquet module of π which we describe in Theorem 1. First let

ξ : T (O) −→ C×
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be the character given by the composition of the natural map T (O)→ T (k) with the character of T (k) determined by

ρ via the isomorphism I/I1 ∼= T (k). Let J(π) denote the Jacquet module of π with respect to B and for ξ as above

let J(π)ξ denote the subspace of J(π) on which T (O) acts through ξ. The following theorem in the case ξ = 1 is due

to Borel and Casselman and a proof in the case where ξ is non-trivial can be found in [HAI, Prop. 6.0.1]:

Theorem 1. Let π be an irreducible admissible representation of GLn(K). There is a T (O)-equivariant isomorphism

of C-vector spaces

πρ ∼= J(π)ξ ⊗ δ−1
B

Furthermore, this isomorphism is T+-equivariant where t ∈ T+ acts on πρ via φρt and on J(π)ξ ⊗ δ−1
B via the T (K)-

action.

Note that the T+-equivariance follows from [HAI, Lem. 6.0.3, Lem. 6.0.4] and [CAS, Lem. 1.5.1]. This equivariance,

both for the case where ρ is trivial and where it is non-trivial, will be used in Section 8.1 to obtain certain residual

local-global compatibility results for automorphic Galois representations.

3.3.2 Refinements

We now describe some known results about realizing Iwahori-spherical representations as sub-representations of princi-

pal series representations. This leads to the notion of accessible refinement of an Iwahori-spherical representation and

the notion of accessible refinement is crucial for our intended application to local-global compatibility questions: Dif-

ferent accessible refinements of relevant local components of an automorphic representation, if they exist, correspond

in general to different families deforming the automorphic representations. In the applications to Hilbert modular

forms in Chapter 4 the phenomenon of multiple accessible refinements does not yet play a role but it becomes crucial

in the higher dimensional cases treated later on.

Let χ be a smooth character of T (K). For 1 ≤ i ≤ n define χi : K× → C× by

x 7→ χ(diag(1, · · · , 1, x, 1, · · · , 1))

where x is at the i’th entry. For the characters χi as above we will write

χ =

n∏
i=1

χi

Throughout this work we identify the principal series representation associated to χ as

IndGB(χ) =

{f : G→ C
∣∣f(bg) = δB(b)1/2χ(b)f(g) for all b ∈ B and g ∈ G and f smooth }

This representation will also be denoted by Ind(χ) as well as Ind(χ1, · · · , χn). As in [CHE] we make the following

definition:

Definition 3. Let π be an irreducible admissible representation of GLn(K) which is Iwahori-spherical. A smooth

unramified character χ : T (K)→ C× such that

π ↪→ Ind(χ)

is called an accessible refinement of π.

One can deduce from Theorem 1 that if π is as in the above definition, then it has an accessible refinement. In

Theorem 2 we will describe in more detail such accessible refinements in the case where π is generic.

Definition 4. Let χ : K× → C× be a smooth character. By [ZEL, Thm. 6.1 (a)] the representation

Ind(χ| · |
n−1

2 , χ| · |
n−3

2 , · · · , χ| · |
1−n

2 )
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of GLn(K) has a unique irreducible subrepresentation which we will denote by Stn(χ).

For a partition n =
∑r
i=1 ni let Pn1,··· ,nr be the corresponding standard parabolic subgroup of GLn(K) given by

matrices of the form

A =


A1 ∗ · · · ∗

0 A2 ∗
...

... 0
. . . ∗

0 · · · 0 Ar


for some Aj ∈ GLnj (K). Suppose now that π is an irreducible admissible representation of GLn(K) which is Iwahori-

spherical and generic. It then follows from [ZEL, Thm. 9.7(b)] that there exist numbers n1, · · · , nr in Z≥1 and smooth

characters χ1, · · · , χr of the form K× → C× such that n =
∑r
i=1 ni and

π ∼= IndGLn
Pn1,··· ,nr

(Stn1
(χ1), · · · ,Stnr (χr))

and such that the corresponding segments are unlinked in the sense of [ZEL, Sect. 4.1]. Here the induction is normalized

induction.We will denote the above representation by

Stn1
(χ1) � · · ·� Stnr (χr)

For such representations one has:

Theorem 2 (Bernstein-Zelevinsky). Assume π is an irreducible admissible Iwahori-spherical generic representation

of GLn(K) which is isomorphic to a representation of the form Stn1
(χ1) � · · ·� Stnr (χr) where

∑r
i=1 ni = n. Then

π ↪→ IndGLn
P1,··· ,1

(µ1, · · · , µn)

if there is a permutation w in the symmetric group Sr such that there is an equality of ordered n-tuples

(µ1, · · · , µn) =

(χw(1)| · |
nw(1)−1

2 , · · · , χw(1)| · |
1−nw(1)

2 , · · · , χw(r)| · |
nw(r)−1

2 , · · · , χw(r)| · |
1−nw(r)

2 )

The theorem is a special case of [ZEL, Thm. 1.2] as we will now explain. Let us fix the following notation:

Definition 5. For a sub-partition n = m1 + · · ·+ms of a partition

n = n1 + · · ·+ nr

and for a collection of irreducible admissible representations πi of GLni(K) let ⊗ri=1πi denote the corresponding

representation of
∏r
i=1 GLni(K) and let

J
(m1,··· ,ms)
(n1,··· ,nr) (⊗ri=1πi)

denote the Jacquet module of the representation with respect to Pm1,··· ,ms . Denote by

J
(m1,··· ,ms)
(n1,··· ,nr) (−)BZ

the corresponding Jacquet module with the action normalized as in [BZ, Sect. 1.8]. For ease of notation let J(−) :=

J
(1,··· ,1)
(n) (−) and note that

J(−) ∼= δ
1/2
B ⊗ J(−)BZ

Fix π as in the statement of Theorem 2 and for such a representation we say that two numbers 1 ≤ i, j ≤ n belong

to the same block if there is k ∈ Z such that

n1 + · · ·+ nk < i, j ≤ n1 + · · ·+ nk+1
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Let W = Sn be the symmetric group and consider it as a subgroup of GLn(K) by taking w ∈ W to the matrix, also

denoted by w, whose (i, j)’th entry is δi,w(j). For a character λ of T (K) let w ◦ λ be the character of T (K) defined by

x→ λ(w−1xw)

for all x ∈ T (K). Let

W ′ = {w ∈W
∣∣w(i) < w(j) whenever i < j and i, j belong to the same block}

By applying [ZEL, Thm. 1.2, Prop. 1.5, Sect. 9.1] one obtains

J(π)ssBZ
∼=

⊕
w∈W ′

[w ◦ J
(1,··· ,1)
(n1,··· ,nr)(⊗iStni(χi))BZ]

∼=
⊕
w∈W ′

[w ◦ (⊗iJ(1,··· ,1)
(ni)

(Stni(χi))BZ]

∼=
⊕
w∈W ′

[w ◦ (⊗i(⊗ni−1
k=0 χi| · |

ni−1

2 −k))]

And it follows from [ZEL, Cor. 1.3] that J(π)BZ has ⊗i(⊗ni−1
k=0 χi| · |

ni−1

2 −k)) as a quotient. Furthermore, since π is

generic it follows that for any permutation w ∈ Sr one has

π ∼= Stnw(1)
(χw(1)) � · · ·� Stnw(r)

(χw(r))

By [CAS, Thm. 3.2.4] one has

HomGLn(K)(π, Ind(χ)) = HomT (K)(J(π), χ⊗ δ1/2
B )

Hence Theorem 2 follows.

3.4 Crystalline periods

Proving the existence of certain crystalline periods of automorphic Galois representations and their exterior powers

plays a key role in our deformation theoretic approach to local-global compatibility. In this section we recall relevant

notions from p-adic Hodge theory and collect useful results concerning crystalline periods for later use.

3.4.1 Preliminaries

Let Bcris, B+
cris, Bst, BdR and B+

dR be the period rings of p-adic Hodge theory as defined in [FON1]. Let t ∈ B+
dR be

a generator of the maximal ideal of B+
dR that is a period for the cyclotomic character. Let ϕ denote the crystalline

Frobenius as defined in [FON1, Sect. 2] and let N : Bst → Bst be as defined in [FON1, Sect. 3]. Fix a finite extension

K/Qp, let q = pf denote the size of the residue field of K and let ϕK := ϕf . The Galois group Gal(K/K) acts on the

period rings mentioned above and this action commutes with ϕ and N . For a finite dimensional Qp-vector space V

with continuous GK-action define

•
Dcris(V ) = (V ⊗Qp Bcris)

Gal(K/K)

•
Dst(V ) = (V ⊗Qp Bst)

Gal(K/K)

•
Dpst(V ) = ∪L/K s.t. L⊂K and [L:K]<∞(V ⊗Qp Bst)

Gal(K/L)
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•
DdR(V ) = (V ⊗Qp BdR)Gal(K/K)

The representation V is called crystalline if Dcris(V ) is a free Qp ⊗Qp K0-module of rank dimQp(V ). One similarly

defines what it means for V to be semi-stable, potentially semi-stable or de Rham.

The action of WK on Dpst(V ) is Qp-linear and Kur
0 -semi linear, where Kur

0 is as defined in the beginning of the

current chapter. A Qp⊗QpK
ur
0 -linear action of WK on Dpst(V ) is defined in [FON3] with g ∈WK acting on v ∈ Dpst(V )

by

v → g · ϕν(g) · v

For any embedding Kur
0 ↪→ Qp the previous construction together with the action of N defines a Weil-Deligne repre-

sentation over Qp. The isomorphism class of this is independent of the embedding and we will denote it by WD(ρ).

If ρ is a Hodge-Tate representation of Gal(K/K) then for any embedding τ : K ↪→ Qp let HTτ (ρ) denote the

corresponding multiset of Hodge-Tate weights. If ρ is de Rham these are the opposites of the jumps in the filtration

on DdR(ρ) coming from the filtration of BdR. For use in later chapters let us also fix the following notation. Suppose

all elements of HTτ (ρ) are in Z. Order the elements of HTτ (ρ) in increasing order and for i ∈ Z≥1 let HT(i)
τ (ρ) denote

the i’th element of this ordered set in the sense that for example HT(1)
τ (ρ) denotes a smallest element of HTτ (ρ).

Let us recall some definitions from [FON2]. Let σ be the absolute Frobenius of K0. A (ϕ,N)-module is a K0-vector

space D with a σ semi-linear injective map ϕ : D −→ D and a K0-linear endomorphism N of D such that

Nϕ = pϕN

The dimension of a (ϕ,N)-module is the K0-dimension of D. Let Mod(ϕ,N) denote the category whose objects are

finite dimensional (ϕ,N)-modules. Let D1 and D2 be two objects of Mod(ϕ,N) whose underlying K0-vector spaces

we denote by V1 and V2. Then the tensor product D1⊗D2 is defined to be the object in Mod(ϕ,N) whose underlying

K0-vector space is V1 ⊗K0
V2 and ϕ(d1 ⊗ d2) := ϕd1 ⊗ ϕd2 and

N(d1 ⊗ d2) := Nd1 ⊗ d2 + d1 ⊗Nd2

for d1 ∈ V1 and d2 ∈ V2.

A filtered (ϕ,N)-module is (ϕ,N)-module D with a decreasing, exhaustive and separated Z-indexed filtration on

DK := D⊗K0
K. Let MFK(ϕ,N) denote the category whose objects are filtered (ϕ,N)-modules whose underlying K0-

vector space is finite dimensional and a morphism between two such objects D1 and D2 is a morphism η of underlying

(ϕ,N)-modules whose extension of scalars ηK to a map D1,K −→ D2,K satisfies ηK(Fili(D1,K)) ⊆ Fili(D2,K) for all

i ∈ Z. Let D1 and D2 be two objects in MFK(ϕ,N). Their tensor product D1 ⊗ D2 is defined to be the object in

MFK(ϕ,N) whose underlying (ϕ,N)-module is the tensor product of the underlying (ϕ,N)-modules of D1 and D2

and whose filtration is given by

Fili(D1 ⊗D2)K :=
∑
j+k=i

FiljD1,K ⊗ FilkD2,K

Hence one can define exterior products: Let D be an object in MFK(ϕ,N) of K0-dimension equal to r and with

underlying K0-vector space V . For 1 ≤ i ≤ r the exterior product ∧iV is a sub-object of the i-fold tensor product of

V ⊗K0 · · · ⊗K0 V . One hence can view it as an object in MFK(ϕ,N) which will be denoted by ∧iD.

Let D be an object of MFK(ϕ,N) and let r be dimK0
D and consider the object ∧rD ∈ Mod(ϕ,N) whose K0-

dimension is 1. Let d ∈ ∧rD be such that ϕd = λd and define tN (D) := vp(λ) which is well defined. Define tH(D) to

be the largest integer i such that Fili((∧rD)K) 6= (0). An object D in MFK(ϕ,N) is called weakly admissible if

tN (D) = tH(D) and tN (D′) ≥ tH(D′)

for all sub-objects, see [FON2] (Section 4.3.3), D′ of D.
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3.4.2 Rigid geometry

We recall some important notions from rigid geometry which will be used in describing families of automorphic

representations as well as associated families of Galois representations. For more details we refer to [BGR].

Let K be a field with a non-trivial complete non-archimedean valuation. Then a K-algebra with a complete K-

algebra norm is said to be a K-Banach algebra. For n = 0 let T0 = K and for n ∈ Z≥1 and X1, · · · , Xn indeterminates

consider the K-algebra

Tn := K〈X1, · · · , Xn〉 = {
∑

ci1,··· ,inX
i1
1 · · ·Xin

n

∣∣ci1,··· ,in ∈ K and lim ci1,··· ,in = 0}

An affinoid K-algebra R is a K-Banach algebra such that there exists a continuous epimorphism Tn −→ R for some

n ≥ 0. For an affinoid K-algebra let Sp(R) denote the set of maximal ideals of R. A locally G-ringed space over K

consists of a G-topological space X and an associated sheaf OX of rings which are K-algebras and such that the stalk

of OX at every x ∈ X is a local ring. A rigid space X over K is a locally G-ringed space over K that locally looks like

Sp(R) for an affinoid K-algebra R in a sense made precise in [BGR] (Section 9.3). Define OX .

Suppose R is a Tate algebra and U ⊆ Sp(R). Then U is called Zariski dense if U equals W an for a Zariski open

and scheme-theoretically dense W ⊆ Spec(R). Here W an denotes the analytification of W as defined in [BGR, Section

9.3.4].

3.4.3 Variation of crystalline periods

In later chapters, to study an automorphic Galois representation we will work with all its exterior powers and the

following lemma will turn out to be useful:

Lemma 3.5. Let K be a p-adic field and let V be an n-dimensional Qp-vector space which is a potentially semi-stable

representation of Gal(K/K). Suppose α ∈ Qp is such that

Dcris(∧iV )ϕK=α 6= (0)

for some 1 ≤ i ≤ n. For σ ∈WK let Sσ denote the set of eigenvalues of σ acting on WD(ρ). Then if ν(σ) = [K0 : Qp]
there exists a subset {α1, · · · , αi} ⊆ Sσ such that

i∏
j=1

αj = α

Proof. If Dcris(∧iV )ϕK=α 6= (0) then also

Dpst(∧iV )GK=1,N=0,ϕK=α 6= (0)

Hence, for any σ ∈ WK with ν(σ) = [K0 : Qp] the action on WD(∧iV ) has α as an eigenvalue. Since V is potentially

semi-stable so is ∧iV and

WD(∧iV ) ∼= ∧iWD(V )

Hence there is a subset {α1, · · · , αi} ⊆ Sσ such that
∏i
j=1 αj = α.

When we apply this lemma in later chapters, the existence of the relevant crystalline periods will be obtained via

families of automorphic Galois representations and Kisin’s results on variation of crystalline periods in such families.

We now describe the work of Kisin in more detail.

Let E be a finite extension of Qp contained in K and containing the Galois closure of K in K. Let R be an affinoid

E-algebra and M a finite free R-module with a continuous R-linear GK-action. As discussed for example in [NAK,

Sect. 3.2] let

PM (T ) ∈ (K ⊗Qp R)[T ]
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denote the Sen polynomial and note that via the isomorphism K ⊗Qp E
∼= ⊕σ:K↪→KE it factors as

(PM (T )σ)σ ∈ ⊕σR[T ]

In case that PM (T )σ(0) vanishes for all σ we will write that PM (T ) = T ·Q(T ) for some Q(T ) ∈ (K ⊗Qp R)[T ]. For

the statement of the next theorem note that if X and X ′ are rigid analytic spaces over E and Y ∈ O(X)× then in

[KIS, Sect. 5.2] it is defined what it means for a map of analytic spaces f : X ′ → X to be Y -small: Namely, there

exists a finite extension E′/E and λ ∈ OX′⊗EE′(X ′ ⊗E E′)× such that E′(λ) is a product of finite field extensions of

E and Y λ−1 − 1 is topologically nilpotent on X ′ ⊗E E′. For the following theorem see [KIS, Cor. 5.15] and [NAK,

Prop. 3.14]:

Theorem 3 (Kisin-Nakamura). Let K and E be as above. Let R be an affinoid E-algebra and M a finite-free R-

module with a continuous GK-action. Let Y ∈ R× and assume that the identity map Sp(R) → Sp(R) is Y -small.

Assume that

PM (T ) = T ·Q(T ) ∈ (K ⊗Qp R)[T ]

for some

Q(T ) ∈ (K ⊗Qp R)[T ]

Let {Ri}i∈I be a collection of affinoid E-algebras which are R-algebras and let Yi denote the image of Y in Ri. Assume

for all k ∈ Z≥1 there exists Ik ⊂ I such that

• For every i ∈ Ik the natural map gives rise to an isomorphism

(B+
cris⊗̂Qp(M ⊗R Ri))GK ,ϕK=Yi ⊗K0

K
∼ // (B+

dR/t
kB+

dR⊗̂Qp(M ⊗R Ri))GK

• For every i ∈ Ik the image of
∏k−1
j=0 Q(−j) in Ri is a unit

• The map

R →
∏
i∈Ik

Ri

is injective

Let E ⊂ Cp be a closed subfield and f : R → E a continuous map. Then

(B+
cris⊗̂Qp(M ⊗R,f E))GK ,ϕK=f(Y ) 6= (0)

To verify the first assumption of Theorem 3 we will later use the following standard lemma:

Lemma 3.6. Let k ∈ Z≥1 be an integer. Suppose M is an n-dimensional Qp-vector space with a continuous GK-action

such that

Dcris(M)ϕK=α 6= (0)

for some α ∈ Q×p and suppose that M is Hodge-Tate such that for all τ : K ↪→ Qp one has HTτ (M) = {0, kτ,2, · · · , kτ,n}
with

• 0 > kτ,2 ≥ · · · ≥ kτ,n

• |kτ,2| > max(k, [K : Qp]vp(α))

Then the natural map gives rise to an isomorphism

(B+
cris⊗̂QpM)GK ,ϕK=α ⊗K0 K

∼ // (B+
dR/t

kB+
dR⊗̂QpM)GK

of K ⊗Qp Qp-modules.
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Proof. Since for all τ : K ↪→ Qp one has

#{j ∈ HTτ (M)
∣∣|j| ≤ k} = 1

it follows from [KIS, Cor. 2.6] that (B+
dR/t

kB+
dR⊗̂QpM)GK is a finite flat K⊗QpQp module of rank 1. Since HTτ (M) ⊂

Z≤0 for all τ it follows from [NAK, Lem. 3.8] that

(Bcris ⊗Qp M)GK = (B+
cris ⊗Qp M)GK

and hence it follows from the assumptions of the lemma that

(B+
cris ⊗Qp M)GK ,ϕK=α 6= (0)

and this is a free K0 ⊗Qp Qp-module of rank at least 1. Consider the natural map

f : (B+
cris⊗̂QpM)GK ,ϕK=α ⊗K0

K → (B+
dR⊗̂QpM)GK

Suppose now for contradiction that the image of f has non-trivial intersection with

(tkB+
dR⊗̂QpM)GK

where k ∈ Z≥1 is as in the statement of the lemma. Since Dcris(M) is weakly admissible and since for all τ : K ↪→ Qp
one has

j ∈ {i ∈ HTτ (M)
∣∣|i| ≥ k} =⇒ |j| ≥ |kτ,2|

and since by assumption one has |kτ,2| > [K : Qp]vp(α), it follows [careful, see [Kisin] (Lem. 6.7) where somehow the

inequalities are in opposite if expected direction!] that

vp(α)/[K0 : Qp] > vp(α)

This is a contradiction. Let

g : (B+
cris⊗̂QpM)GK ,ϕK=α ⊗K0

K −→ (B+
dR/t

kB+
dR⊗̂QpM)GK

be the natural map. Then the image of g is a free K ⊗Qp Qp-submodule of rank at least 1 and the lemma follows.

4 Local-global compatibility for Hilbert Modular Forms

In this chapter we illustrate the main ideas of this memoir at the example of Hilbert modular forms. First we will deal

with Hilbert modular forms of cohomological weight where we simply reprove some classical results via our deformation

theoretic methods. Afterwards we prove new results about the non-triviality of monodromy operators associated to

Hilbert modular forms of partial weight one. The relevant Galois representations were constructed via congruences

by Jarvis in [JAR]. A drawback to this method is that one looses control over local monodromy operators at places

of Steinberg ramification. To generalize our methods from cohomological to non-cohomological weight we develop

a slightly different version of the approach to monodromy operators via monodromy lifting theorems that we use

in the case of cohomological weight. While the methods should work more generally, we focus here on the case of

Hilbert modular forms for simplicity. Roughly speaking the idea is to replace identification of small deformation rings

and small Hecke algebras with the corresponding identification of big deformation rings and big Hecke algebras. For

simplicity of exposition we restrict to the case of ordinary forms but the methods can be adapted to deal with the

general case as well and we hope to address this matter in the future.
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4.1 Cohomological weight

Note that we will not prove the most general results possible in this chapter in order to present the main ideas in a

simplified setting. In particular, this allows us to appeal directly to the families of Hilbert modular forms used in [SKI]

and the potential level-lowering results of [SW], and this shortens the arguments.

Let F be totally real field and let π be a cuspidal automorphic representation of GL2(AF ). It is said to be of weight

κ = ((kτ )τ∈Hom(F,R);w) ∈ (Z)Hom(F,R) × Z

if for the infinite place vτ corresponding to τ the representation πvτ is an essentially discrete series representation of

GL2(Fvτ ) of Blattner parameter kτ and with central character

x 7→ sign(x)ki |x|−w

The weight is called cohomological if kτ ≥ 2 and w ≡ kτ mod 2 for all τ .

Let recGL2(−) be a local Langlands correspondence for GL2 normalized such that in particular the following holds.

Suppose K is a p-adic field and χ1 and χ2 are characters of K× such that the normalized induction Ind(χ1, χ2) is

irreducible. Then

recGL2
(Ind(χ1, χ2)) ∼= χ̃1 ⊕ χ̃2

Here χ̃1 and χ̃2 are as defined at the beginning of Chapter 3.

The following local-global compatibility hypothesis will be combined with the deformation theory of automorphic

forms to deduce more general local-global compatibility results. The compatibility at all places where the automorphic

representation is unramified is crucial, as is the independence of ` hypothesis at places of Iwahori-spherical ramification.

Hypothesis 4.1.1. Let F be a totally real field and let π be a cuspidal automorphic representation of GL2(AF ) of

cohomological weight

κ = ((kτ )τ∈Hom(F,R);w)

For any rational prime ` and choice of ι : Q`
∼ // C there exists a continuous semi-simple representation

ρπ,`,ι : Gal(F/F ) −→ GL2(Q`)

such that

(i) for all finite places v - ` of F such that πv is a principal series representation one has

WDι

(
ρπ,`,ι|WFv

)F-ss ∼= recGL2(πv ⊗ | det |− 1
2 )

(ii) if v|` then

• if πv is unramified then ρπ,`,ι|GFv is crystalline and

WDι

(
ρπ,`,ι|GFv

)F-ss ∼= recGL2(πv ⊗ | det |− 1
2 )

• ρπ,`,ι is Hodge-Tate at v and if τ ∈ Hom(F,R) corresponds to v via ι then the Hodge-Tate weights with

respect to τ are given by

(−w − kτ
2

,−w + kτ − 2

2
)

• if πv is Iwahori-spherical then ρπ,`,ι is potentially semi-stable at v

(iii) let v be a finite place of F such that πv is Iwahori-spherical. Then for all rational primes `1, `2 and isomorphisms
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ι`1 : Q`1
∼ // C and ι`2 : Q`2

∼ // C one has

WDι`1

(
ρπ,`1,ι`1 |WFv

)ss ∼= WDι`2

(
ρπ,`2,ι`2 |WFv

)ss
and these representations are unramified

This hypothesis will be assumed throughout the current chapter.

Remark 3. Concerning part (iii) of the hypothesis, see [SAI2] for independence of ` results for `-adic Galois represen-

tations associated to Hilbert modular forms. We do not assume the results of [SAI2] since one aim of this work is to

obtain local-global compatibility results without studying the singularities of Shimura varieties. In [SAI3] and [OCH]

independence of ` results for Galois representations on the `-adic cohomology of quite general algebraic varieties are

obtained which however do not imply the full independence of ` assumption that we make in Hypothesis 4.1.1: The

case where, in the notation of Hypothesis 4.1.1 (iii), the characteristic of the residue field of Fv equals `1 does not

follow directly from the above mentioned references.

4.1.2 Semi-simplification

The next proposition is an example of how Hypothesis 4.1.1 can be used to deduce local-global compatibility results for

the local semi-simplifications of automorphic Galois representations at places where the local Langlands correspondence

predicts ramification.

Note that while we focus throughout this work on the case of Iwahori-spherical ramification, the particularly

restrictive assumption used in the next proposition is included only to be able to appeal directly to the families of

Hilbert modular forms used in [SKI]. The assumption on the weight is also included only to make the argument

shorter. See corollaries 6.3 and 9.9 where more general results for Hilbert modular forms are deduced as special cases

of results for automorphic forms of GLn over CM-fields.

Proposition 4.2. Let F be a totally real field and let π be a cuspidal automorphic representation of GL2(AF ) of

weight (2, · · · , 2; 2). Assume v is a finite place of F of residue characteristic p such that πw is Iwahori-spherical for

all places w|p of F . Then

WDι

(
ρπ,`,ι|WFv

)ss ∼= (recGL2
(πv ⊗ | det |− 1

2 )
)ss

Proof. Let v, p and ` be as in the statement of the proposition. By Hypothesis 4.1.1 (iii) one can assume that p = `.

After making a base change to a suitable solvable totally real base extension in which v splits completely one can

assume that [F : Q] is even. In the notation of Section 3.3 write πv ∼= St2(χ) for some unramified character χ of F×v .

For each place w|p of F choose a uniformizer $w and let Iww denote the Iwahori subgroup corresponding to the upper

triangular Borel subgroup of GL2(Fw). Let

Uw = char(Iww

[
$w

1

]
Iww) ∈ H(GL2(Fw), 1)

where char(−) denotes the characteristic function and H(GL2(Fw), 1) is the Iwahori-Hecke algebra as defined in

Chapter 3. Let Aw be the subalgebra of H(GL2(Fw), 1) generated by Uw. Let S be the union of the set of infinite

places of F , the set of places w|p of F and the set of finite places of F where π is ramified. For a place w 6∈ S let

Hw denote the spherical Hecke algebra at w. This is the algebra consisting of functions on GL2(Fw) which are locally

constant, have compact support and are GL2(OFw) bi-invariant. Let

H = ⊗′w 6∈SHw ⊗w|p Aw

and let

K(S) =
∏
w 6∈S

GL2(OFw)
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Let f ∈ πK
(S) ∏

w|p Iww 6= (0) be an eigenvector for H. For each w|p there exists an unramified character χw such that

πw ↪→ Ind(χw) and one has

Uw · f = χw(diag($w, 1)) · q1/2 · f

We now recall the existence of certain families of Hilbert modular forms as described in [SKI]. The only difference is

that there the local components of π at places dividing p are all unramified principal series representations.

Let K/Qp be a p-adic field contained in Qp and containing the image of all embeddings F ↪→ Qp. Let r ∈ |K×|p and

let Sp(Ar) be the closed rigid ball over K of radius r. Then Ar is a A1
∼= K〈T 〉-module where T is an indeterminate

and

K〈T 〉 := {
∑
n≥0

anT
n
∣∣∣an ∈ K and |an|K → 0 as n→ 0}

is a Tate algebra. Let p := p if p is odd and p := 4 otherwise. As explained in [SKI], there exists r ∈ |K×|p and a

reduced finite torsion-free Ar-algebra R such that

(i) there is a morphism

φ : H −→ R

such that for each κ ∈ HomK(R,Qp) such that κ(1 + T ) = (1 + p)nκ for some nκ ∈ p(p − 1)Z≥1 there is an

automorphic representation πκ of GL2(AF ) of weight (2, · · · , 2; 2) + nκ(1, · · · , 1; 1) and fκ ∈ π
K(S) ∏

w|p Iww
κ such

that

S · fκ = (κ ◦ φ)(S) · fκ

for all S ∈ H. Here HomK(R,Qp) denotes the set of continuous homomorphisms

(ii) there is a constant C such that if nκ > C and πκ are as above, then πκ,v is an unramified principal series

representation

(iii) there exists κ0 with κ0(1 + T ) = 1 such that κ0 ◦ φ gives the Hecke eigenvalues of f0

(iv) for v as in the statement of the proposition the slope vp((κ◦φ)(Uv)) for κ as in (i) is constant and will be denoted

by vp(φ(Uv))

(v) there exists a free R-module VR of rank 2 and a continuous Galois representation

ρR : GF −→ GL(VR)

such that for κ0 as above the semi-simplification ρss
R,κ0

of the representation on VR ⊗R,κ0
Qp is isomorphic to

ρπ,`,ι and for all κ ∈ HomK(R,Qp) as in (i) the semi-simplification ρss
R,κ of the representation on VR ⊗R,κ Qp is

isomorphic to ρπκ,`,ι

Fix k ∈ Z≥1 and let

Ik :=

{κ ∈ HomK(R,Qp)
∣∣ κ is as in (i) with nκ > max(C, k − 1, [Fv : Qp]vp(φ(Uv))− 1)}

Moreover, for κ ∈ Ik let Rκ denote the residue field of the maximal ideal of R corresponding to κ. Note that for κ ∈ Ik
one has

HTτ,v(ρπκ) = {0, nκ + 1}

Moreover, there is an injection R ↪→
∏
κ∈Ik
Rκ since R is reduced and {mκ}κ∈Ik is a Zariski dense subset of Sp(R).

Now let M be the dual of VR, let Y := φ(Uv)
−1 and let {Rκ}κ denote the collection of residue fields of R corresponding

to κ ∈ HomK(R,Qp) such that κ ∈ Ik for some k ≥ 1.

For κ ∈ Ik the representation πκ,v is an unramified principal series representation and hence it follows from

Hypothesis 4.1.1 (i) that

Dcris(ρRκ |GFv )ϕFv=κ◦φ(Uv) 6= (0)
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It follows now from Lemma 3.6 that there is an isomorphism

(B+
cris⊗̂Qp(M ⊗R Rκ))GFv ,ϕFv=κ◦φ(Uv) ⊗Fv,0 Fv

∼
��

(B+
dR/t

kB+
dR⊗̂Qp(M ⊗R Rκ))GFv

Hence all the assumptions of Theorem 3 are satisfied and it follows that

Dcris(ρπ,`,ι|GFv )ϕFv=χ($v)q1/2

6= (0)

Let α := χv(diag($v, 1)) and β := χv(diag(1, $v)). Let σ ∈ WFv be such that ν(σ) = [Fv,0 : Qp] and let Sσ denote

the multiset of eigenvalues of σ acting on the Weil-Deligne representation Dpst(ρπ,`,ι|GFv ). By using Lemma 3.5 it

follows from the above that Sσ = {αq1/2, y} for some y. To conclude the proof of the proposition we will now use the

local-global compatibility for the determinant of ρπ,`,ι.

Let χπ denote the central character of π and let

r`,ι(χπ| · |−1

A×F
) : Gal(F/F ) −→ Q×`

denote the `-adic character associated to χπ| · |−1

A×F
as defined for example in [CHT, Lem. 4.1.3]. It follows from the

Chebotarev density theorem and Hypothesis 4.1.1 that

det ρπ,`,ι ∼= r`,ι(χπ| · |−1

A×F
)

Since ρπ,`,ι is potentially semi-stable at v one has

∧2Dpst(ρπ,`,ι|GFv ) ∼= Dpst(∧2ρπ,`,ι|GFv )

Moreover, χπ,v is unramified and Dcris(∧2ρπ,`,ι|GFv )ϕFv=αβq 6= (0) and hence by Lemma 3.5 one has αβq = αq1/2y. It

follows that y = βq1/2 and

Trace WD(ρπ,`,ι)(σ) = Trace recGL2(πv ⊗ | det |− 1
2 )(σ)

for all σ ∈WFv with ν(σ) ≥ 0. The result follows now from [SAI, Lem. 1].

Remark 4. The methods of this proof can also be used to obtain local-global compatibility results for Galois repre-

sentations associated to Hilbert modular forms of partial weight one. Moreover, one can use base change methods to

use the previous proposition to obtain local-global compatibility results even if the local component of the automorphic

representation is not Iwahori-spherical.

4.2.1 Monodromy operators

We now illustrate how modularity lifting theorems can be used to calculate local monodromy operators. To avoid a

detailed analysis of what type of local-global compatibility results are used in the proofs of particular modularity lifting

theorems, and hence the possibility of circular arguments, we will treat such modularity lifting results as hypotheses

in this work. See Section 9.1 for some discussion of this. Note also that more general modularity lifting results than

the ones used in this work are known. We simply give an example of how modularity lifting theorems can be used to

deduce results for local monodromy operators of automorphic Galois representations.

Hypothesis 4.2.2. Let F be a totally real field and ρ : Gal(F/F ) −→ GL2(Q`) a continuous Galois representation

unramified outside of a finite set of places. Suppose that

• ` ≥ 7 and ` is unramified in F
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• ρ is crystalline at all v|`

• ρ is absolutely irreducible and ρ ∼= ρπ′,`,ι for some cuspidal cohomological automorphic representation π′ of

GL2(AF ) of weight κ = ((kτ )τ ;w) and some ι : Q`
∼ // C

• the Hodge-Tate weights of ρ at v|` with respect to any τ ∈ Hom(F,R) giving rise to v via ι are

(−w − kτ
2

,−w + kτ − 2

2
)

• ρ|GF (ζ`)
is absolutely irreducible where ζ` denotes a primitive `’th root of unity

Then there is a cuspidal cohomological automorphic representation π̃ of GL2(AF ) of weight κ such that

• ρ ∼= ρπ̃,`,ι

• π̃v is unramified for any finite place v - ` of F such that ρ|GFv and π′v are unramified

This hypothesis will be assumed for the rest of this chapter. It will be used to obtain information about local

properties of `-adic automorphic Galois representations. This works if ` is such that the `-adic Galois representation

is amenable to Galois deformation theory. Hence we make the following definition:

Definition 6. Let F be a totally real field and let π be a cuspidal cohomological automorphic representation of

GL2(AF ). Let Bπ denote the set of pairs (`, ι) consisting of a rational prime ` and an isomorphism ι : Q`
∼ // C such

that

• πv is spherical for all places v|` of F

• ρπ,`,ι|GF (ζ`)
is absolutely irreducible where ζ` denotes a primitive `’th root of unity

• ` ≥ 7 and ` is unramified in F

Remark 5. Note that for the calculation of local semi-simplifications of automorphic Galois representations we have

assumed a certain independence of ` hypothesis. However, we will not assume an independence of ` hypothesis for

local monodromy operators in this work. If such a hypothesis were assumed then the non-triviality results for local

monodromy operators could be extended beyond those `-adic Galois representations to which one can apply the

modularity lifting theorem methods. Note however that in some cases one can rather easily obtain independence

of ` results for monodromy operators. For example in the next proposition the assumption on the weight allows to

realize the Galois representation in the Galois representation of an abelian variety and one can use the good reduction

criterion of Serre and Tate.

As in Proposition 4.2, the restriction on the weight in the next proposition is not necessary and is included only to

be able to appeal directly to the potential level-lowering results of [SW]. Results for Hilbert modular forms of more

general weight will be obtained in Chapter 6.

Proposition 4.3. Let F be a totally real field and let π be a cuspidal automorphic representation of GL2(AF ) of

weight (2, · · · , 2; 2). Assume (`, ι) ∈ Bπ and let v - ` of F be a finite place such that πv is Iwahori-spherical and write

WDι(ρΠ,`,ι|WFv )F-ss = (r,N). Then N is non-trivial if and only if it is predicted to be non-trivial by the local Langlands

correspondence.

Proof. If the local Langlands correspondence predicts, in the above notation, that N is trivial then πv is a principal

series representation and by 4.1.1 (i) it follows that N is indeed trivial. Hence suppose now that the local Langlands

correspondence predicts that N is non-trivial. Then πv ∼= St2(χ) for some unramified character χ. Suppose for

contradiction that N is trivial. Then there exists a totally real solvable extension F ′/F such that ρπ,`,ι|GF ′ is unramified

at all places of F ′ above v and BCF ′(π) is cuspidal and ` ∈ BBCF ′ (π), where BCF ′(−) denotes the base change to an

automorphic representation of GL2(AF ′) as constructed in [AC]. By [SW] there exists a solvable totally real extension

L/F ′ such that BCL(π) is cuspidal and there is a cuspidal cohomological automorphic representation π̃ of GL2(AL)

of the same weight as BCL(π) such that
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• ρBCL(π),`,ι
∼= ρπ̃,`,ι

• there is a place w of L above v such that π̃w is an unramified principal series representation

• π̃ is an unramified principal series at all places above `

• (`, ι) ∈ Bπ̃

It then follows from Hypothesis 4.2.2 with ρ := ρπ,`,ι|GL and π′ := π̃ that there is a cuspidal cohomological automorphic

representation π2 of GL2(AL) of the same weight as BCL(π) such that ρBCL(π),`,ι
∼= ρπ2,`,ι and such that π2 is an

unramified principal series at all places of L above v. From the local-global compatibility assumption at unramified

principal series places it follows that for all but finitely many finite places u of L one has BCL(π)u ∼= π2,u. By strong

multiplicity one for cuspidal automorphic representations of GL2(AL), see for example [PS], it follows that in particular

for all places u of L above v one has BCL(π)u ∼= π2,u. Since for such places π2,u is an unramified principal series this is

a contradiction since recGL2
(BCL(π)u) has a non-trivial monodromy operator but recGL2

(π2,u) has trivial monodromy

operator.

4.4 Non-cohomological weight

Suppose F is a totally real field and f is a Hilbert modular form of partial weight one. Jarvis has shown in [JAR] the

existence of associated Galois representations but he was not able to show the non-triviality of monodromy operators

at Steinberg places. Generalizing our earlier methods from cohomological to non-cohomoligcal weights we are able to

prove the desired non-triviality under some assumptions. Note that, since we are proving new result, in this chapter

we allow ourselves to use the known fact of compatibility of local Langlands correspondence with base change.

4.4.1 Classical and p-adic Hilbert modular forms

We will recall some background on Hilbert modular forms, following the discussion in [HID3, Section 4.3.1].

Throughout this chapter fix a totally real number field F with ring of integers OF and let F×+ denote the set of

totally positive elements. Let d denote the different of F over Q and let I denote the set of embeddings F ↪→ R. We

denote by Z[I] the set of collections of integers indexed by I and let t = (1, · · · , 1) ∈ Z[I]. For k ∈ Z[I] and x ∈ F we

let xk :=
∏
σ∈I σ(x)kσ and for k1, k2 ∈ Z[I] we say k1 ≥ k2 if k1,σ ≥ k2,σ for all σ ∈ I. Let G = ResF/QGL2, let Z

denote the center of G and let G(R)+ denote the connected component of the identity of G(R).

Let TG be the diagonal torus of ResF/QGL2 and let T = ResOF /ZGL1. Identify Z[I]2 with Hom(TG,GL1) by taking

(κ1, κ2) ∈ Z[I]2 to the morphism [
a

d

]
7→ aκ1dκ2

for a, d ∈ F . Fix a square root
√
−1 of −1 in C and let H denote the corresponding complex upper half-plane and and

let i := (
√
−1, · · · ,

√
−1) ∈ HI . Let Ci denote the stabilizer of i in G(R)+. Let κ = (κ1, κ2) ∈ Hom(TG,GL1) for κ1

and κ2 in Z[I]. For g ∈ G(R) and z ∈ HI let

j(g, z) = (cσzσ + dσ)σ∈I ∈ CI and Jκ(g, z) := det(g)κ1−Ij(g, z)κ2−κ1+I

Throughout this chapter fix an embedding Q ↪→ C and for each rational prime p fix an embedding ip : Q ↪→ Qp. Let

W be a subring of Q which is a discrete valuation ring and contains the pre-image under ip of the valuation ring of

the maximal unramified extension of Qp in Qp. Let W = lim←−mW/pmW and let Wm := W/pmW . Throughout this

section fix a prime p and assume that it is unramified in F .

For an integral ideal N of OF let

Γ̂0(N) = {
[
a b

c d

]
∈ GL2(ÔF )

∣∣c ∈ N}
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Since it simplifies the form of Fourier expansions, in [HID3] one works with a slightly modified level structure: Let

d ∈ A×F be such that dOF = d and d(d) = 1. For an integral ideal N of OF let

S0(N) =

[
d

1

]−1

Γ̂0(N)

[
d

1

]
Let ε = (ε1, ε2, ε+) be a nebencharacter in the sense that there is a continuous character ε : TG(Ẑ) −→W× given by

ε(

[
a

d

]
) = ε1(a)ε2(d)

and ε+ : Z(Ẑ) −→ W× given by ε+(z) = ε1(z)ε2(z) and ε− : T (Ẑ) −→ W× by ε−(z) = ε−1
2 (z)ε1(z) and assume that

ε+ can be extended to a Hecke character ε+ : Z(A)/Z(Q) −→ C× such that

ε+(x∞) = x−(κ1+κ2)+I
∞

Define the character ε∞∆ : S0(N) −→ C× by

ε∞∆ (s) = ε2(det(s))ε−(aN)

where

s =

[
a b

c d

]
Definition 7. For an integral ideal N of OF let Sκ(N, ε,C) denote the space of functions

f : GL2(AF ) −→ C

such that the following holds:

• For all α ∈ G(Q), z ∈ Z(A), u ∈ S0(N)Ci and x ∈ GL2(AF ) one has

f(αxuz) = ε+(z)ε∞∆ (u)f(x)Jκ(u∞, i)
−1

• For each z ∈ HI choose u ∈ G(R) such that u(i) = z and for each g ∈ G(A(∞)) the function

fg : HI −→ C

given by fg(z) = f(gu∞)Jκ(u∞, i) is holomorphic on HI and exponentially decreasing as Im(z) −→∞.

Remark 6. Note that Sκ(N, ε,C) = {0} unless there is an integer [κ1 + κ2] such that κ1 + κ2 = [κ1 + κ2]t and hence

we will assume from now on that this holds.

Remark 7. The space Mκ(N, ε,C) of not necessarily cuspidal Hilbert modular forms is defined analogously but with

the exponential decrease assumption replaced by an assumption on so-called moderate growth.

Remark 8. For simplicity of notation we will also denote by Sκ(N, 1,C) the space of modular forms as defined above

with nebencharacter ε such that ε1 and ε2 are trivial. Similar conventions will be used later on in definitions of spaces

of p-adic modular forms.

We now recall from [HID3] how the above defined spaces of Hilbert modular forms can be described geometrically

via sheaves on Shimura varieties: Let

S0(N) = S0(N)Z(A(∞))
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and let ShS0(N) be the Hilbert modular Shimura variety of level S0(N). Fix κ and a nebencharacter ε. In [HID3,

Section 4.2.6] a sheaf ωκ,ε on the above Shimura variety is defined which by loc. cit. (p.194) satisfies

H0(ShS0
(N), ωκ,ε/C) ∼= Sκ(N, ε,C)

To define spaces of Hilbert modular forms defined over, for example, number fields one can use Fourier expansions:

As described in loc. cit. (p.196), every f ∈ Sκ(N, ε,C) has a Fourier expansion

f(

(
y x

0 1

)
) = |y|A

∑
ξ∈F×+

a∞(ξy, f)(ξy∞)−κ1eF (
√
−1ξy∞)eF (ξx)

where for x = (xi) ∈ Cd (d ≥ 1) one defines

eF (x) = exp(2π
√
−1
∑
i

xi)

Definition 8. For any Q-algebra R contained in C and containing the image of ε1, ε2 and κ, define Sκ(N, ε, R) to be

the space of f ∈ Sκ(N, ε,C) such that a∞(y, f) ∈ R for all y ∈ A×F . It is then known that

Sκ(N, ε, R) = H0(ShS0(N), ωκ,ε/R)

Definition 9. For a Qp-algebra R the p-adic q-expansion coefficients are defined as

ap(y, f) = y−κ1
p a∞(y, f)

and the formal q-expansion of f is the element in R[[qξ]]ξ∈F×+
given by

f(y) =
∑
ξ∈F×+

ap(ξy, f)qξ

We now define various Hecke operators acting on spaces of Hilbert modular forms. To do so, fix an integral ideal

N of OF and let

D = {
[
a

d

]
∈M2(OF,N)

∣∣a ∈ O×F,N, d ∈ OF,N}

Let ∆0(N) = ∆0(N)N ×∆0(N)(N) where

∆0(N)(N) = M2(ÔF ) ∩GL2(A(N∞)) and ∆0(N)(N) = (S0(N)DS0(N)) ∩GL2(FN)

For an invertible matrix y write yι = det(y)y−1. Write

S0(N)yιS0(N) =
⊔
u,t

utS0(N)

with u ∈ U(Ẑ), where U denotes the upper triangular unipotent subgroup of G, and t ∈ TG(A(∞)) such that det t =

det y. Then define the operator [S0(N)yιS0(N)] by

(f |[S0(N)yιS0(N)])(x) :=
∑
u,t

ε∞∆ ((ut)ι)f(xut)

and define the modified Hecke operator

[S0(N)yιS0(N)]p := det(yp)
−κ1 [S0(N)yιS0(N)]
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As described in [HID3, p.196] , the action of y ∈ ∆0(N) on Sκ(N, ε, R) via [S0(N)yιS0(N)] coincides withe the action

of the geometrically defined Hecke operator associated to y as in loc. cit. (Section 4.2.6).

Definition 10. For every finite place q of F fix a uniformizer $q and let T ($q) = [S0(N)yιS0(N)] for

y =

[
1

$q

]
If q|N then denote T ($q) also by U($q). Similarly, let S($q) be defined by choosing instead

y =

[
$q

$q

]
The operators Tp($q), Up($q) and Sp($q) are obtained by the above described modification, namely by multiplying

by det(yp)
−κ1 .

Note that it is shown in [HID2] that these operators are in fact elements in EndW (Sκ(N, ε,W )).

Definition 11. For a prime p|p the ordinary projector ep in EndW (Sκ(N, ε;W )) is defined to be limn→∞ U($p)n! if

p|N and limn→∞ T ($p)n! if p - N. Also, let ep :=
∏

p|p ep.

Definition 12. For z ∈ Z(A(p∞)) define the associated normalized diamond operator 〈z〉 = |z|−2
A [S0(N)zS0(N)]. Note

that with this normalization, f ∈ Sκ(N, ε,W ) satisfies

f |〈z〉 = ε+(z)f

We now describe p-adic Hilbert modular forms as well as Λ-adic modular forms. For each m ≥ 1 let

Sm = Sh(p)(PGL2, X)/S0(N)[
1

E
]/Wm

where E is a lift of the Hasse invariant, see [HID3, p.186] for precise definitions of the Shimura variety and level

structure. Following [HID3, Section 4.1.6, 4.1.7] let Tm,n be the piece of the Igusa tower over Sm as defined in loc.

cit.. Let V cusp
m,n denote the space of the global section of the structure sheaf of Tm,n that vanish at the cusps and let

V cusp
m,∞ = ∪nV cusp

m,n and define

Vcusp(N;W ) = lim←−
m

V cusp
m,∞

Vcusp(N;W ) = lim−→
m

V cusp
m,∞

Define the spaces Vcusp(N, ε;W ) and Vcusp(N, ε,W ) by imposing the central character and nebencharacter given by ε.

For later use in describing modularity lifting results we define the Hecke algebras hn.ord(N, ε,W [[T (Zp)]]) to be the

W [[T (Zp)]]-subalgebra of End(Vord
cusp(N, ε,W )) generated over W [[T (Zp)]] by Tp(y) and 〈y〉p as y ranges over integral

ideles, where Vord
cusp(N, ε,W )) denotes the image of the ordinary projector acting on Vcusp(N, ε,W )). Here the operator

〈y〉p is obtained by associating to y the corresponding element in Z(AQ) and then the associated diamond operator as

defined in [HID3, p.173] and the Hecke operator Tp(y) is defined analogously to Definition 10 by associating to y the

matrix [
1

y

]
Let Λ = W [[Γ]] where T (Zp) = Γ×∆(p) where Γ is the maximal p-profinite subgroup. We now describe Λ-adic modular

forms as p-adic modular forms defined over Λ. By taking the base change of the Igusa tower Tm,n one defines the space

Vcusp(N, ε; Λ) of p-adic modular forms over Λ in an analogous manner to Vcusp(N, ε;W ). The space of Λ-adic modular

forms can then be defined as the subspace of V (N, ε; Λ) where the Λ-module structure agrees with the Λ-module

structure coming from the diamond operators. See for example [HID2, Section 3.4.1] for a comparison in the case

of F = Q with other definitions of Λ-adic modular forms. For f ∈ V (N, ε; Λ) and κ ∈ Hom(TG,GL1) the weight κ
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specialization Fκ of F is the p-adic modular form over W obtained from f by specializing the T (Zp)-action via κ1.

Note that ε is fixed and through this the second weight κ2 intervenes.

4.4.2 Monodromy Operators

We first discuss a type of rigidity result for p-adic modular forms that will replace our appeal to strong multiplicity

one results that we used in Section 4.2.1 to deal with Hilbert modular forms of cohomological weight. In order to

conform with conventions used in other parts of this memoir, for the rest of this chapter we will denote the prime p of

the previous sections by `. We will assume throughout the remainder of this chapter that ` ≥ 3. Fix a nebencharacter

ε. Let B be a discrete valuation ring which is a subring of Q and an extension of Z(`) such that B× contains the values

of ε. Let W be the `-adic completion of B.

Definition 13. A form f ∈ Vcusp(N, 1;W ) will be called an eigenform with respect to N if it is an eigenform for

T ($v) for all v - N and an eigenform for U($v) for all v|N.

Let κ = (κ1, κ2) with κ2−κ1 + t ≥ t in the sense that (κ2−κ1 + t)σ ≥ 1 for all σ ∈ I. Let N be a square-free ideal

of OF and let f ∈ V ord
cusp(N, ε;W ) be an eigenform with respect to N with weight κ ∈ Hom(TG,GL1). For a Hecke

operator T let θf (T ) denote the corresponding eigenvalue. Then, see [JAR] for references, there exists a continuous

Galois representation

ρf,` : Gal(F/F ) −→ GL2(Q`)

such that in particular:

• ρf,` is unramified outside N`

• If v - N` is a prime of F , then

Trace ρf,`(Frv) = θf (T ($v))

•
det ρf,` = ε̃+χ

[κ1+κ2]
`

where ε̃+ denotes the Galois character associated to to ε+

• If π denotes the automorphic representations associated to f and if v - ` is a finite place of F such that

πv ↪→ Ind(χ| · |1/2, χ| · |−1/2)

for some unramified character χ then

(ρf,`|GFv )ss ∼ χ| · |−1/2 ⊕ χ| · |1/2

where the right hand side is interpreted as a Galois character via local class field theory

Let N be an ideal of F and let v - N be a finite prime. Recall that in Definition 10 we fixed a uniformizer $v of Fv.

Let ηv ∈ GL2(AF ) be the the element whose local component away from v is the identity and whose component at v

is given by

(ηv)v :=

(
1

$v

)
Consider the map Sκ(N, ε,W )2 −→ Sκ(vN, ε,W ) given by

(f, g) = f + g|ηv where (g|ηv)(x) := g(xηv)

Definition 14. Let Sv-old
κ (Nv, ε,W ) to be the image of the above defined map and Sv-new

κ (Nv, ε,W ) be the orthogonal

complement of Sv-old
κ (Nv, ε,W ) in Sκ(Nv, ε,W ) under the Petersson inner product.
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Definition 15. A Λ-adic form F ∈ V (N, ε,Λ) will be called v-new for a prime ideal v if Fκ is v-new for all but finitely

many classical weights κ with κ1,σ − κ2,σ ≥ 1 for all σ ∈ I. If it is not v-new it will be called v-old.

Let f ∈ Sκ(N, ε,W ) and assume v - N is a prime ideal of F . Assume that f is an eigenform for T ($w) for w - N
and U($w) for w|N. Suppose α and β are the roots of the Hecke polynomial

x2 − θf (T ($v))x+ (ε̃+χ
[κ1+κ2]
` )|GFv ($v)

of f at v. Then

fα := f − αf |ηv ∈ Sκ(N(v), ε,W )

is an eigenform for T ($w) for w - Nv and U($w) for w|N with same eigenvalue as f and an eigenform for U($v)

with eigenvalue β. The form fα will be called a v-stabilization of f . Similarly, one can create an eigenform for T ($w)

for w - Nv and U($w) for w|N with same eigenvalue as f and an eigenform for U($v) with eigenvalue 0. This form

will also be called a v-stabilization of f . More generally, suppose now that J = v1 · · · vr is a product of distinct prime

ideals in F and that it is coprime to N. A modular form in Sκ(NJ, ε,W ) will be called an J-stabilization of f if it

is obtained by taking a v1-stabilization of f , then taking a v2-stabilization of the resulting form and so on. Such a

J-stabilization of f will be denoted by fJ-stab. Similar constructions can be made for Λ-adic forms: For example, let

F ∈ V (N, ε,Λ) and let v - N be a finite place of F . Then, after possibly replacing Λ by a finite extension, there exists

F|ηv ∈ V (Nv, ε,Λ) such that

(F |ηv)κ = Fκ|ηv

for all κ ∈ Hom(TG,GL1). We can now prove:

Lemma 4.5. Let F be a totally real field and ` a rational prime and M,N square-free integral ideals in F . Let

f ∈ Vcusp(N, 1;W ) be an eigenform for N of some weight κ ∈ Hom(TG,GL1) such that κ = (κ1, κ2) with κ2−κ1+t ≥ t.
Let g ∈ Sκ(M, 1;W ) be a newform. Let v|M be a prime and suppose that ρf,` ∼= ρg,`. Then there exists ideals c1, c2
with c1 prime to v such that

gc1-stab = f c2-stab

If f and g are assumed ordinary, then there exists a Λ-adic form deforming gc1-stab which is v-old.

Proof. Let v be as in the statement of the lemma. By local-global compatibility for f , the U($v)-eigenvalue γ of f

is one of the eigenvalues of the unramified representation ρf,`|GFv and hence of ρg,`|GFv . It hence is, by local-global

compatibility for g, a root of the the Hecke polynomial of g at v. Let δ denote the second root of the Hecke polynomial

Hence and consider gδ and note that

U($v)gδ = γ · gδ

For all other primes w|MN we take stabilizations of f and gδ such that the eigenvalues are zero and hence agree. By

the assumptions of the proposition and the earlier arguments the resulting stabilizations gc1-stab and f c2-stab have the

same Hecke eigenvalues at all finite places. It follows that they have the same q-expansions and hence it follows from

the q-expansion principle, see for example [HID2, Section 2.3.3] that gc1-stab = f c2-stab as desired. Now assume f and

g are `-ordinary and let F be a Λ-adic form deforming f and let Fc2-stab be the form obtained as a stabilization from

F in the same way as f c2-stab is obtained from f . Then Fc2-stab deforms f c2-stab = gc1-stab and for sufficiently large

weights in Hom(TG,GL1) its specializations will be v-old since the specializations of F at such weights are classical

and v-old.

Consider:

Hypothesis 4.5.1. Let F be a totally real field and let ` be a rational prime. Let f ∈ Sord
κ (N, 1,W ) where N is a

square-free ideal of OF and assume that f is N-new and assume v|N and v - (`) is a prime ideal. Assume that there

exists a finite extension K/F such that for all totally real solvable extensions L/F which are linearly disjoint over F

with K the following holds: The base change fL of f to L is cuspidal and for each ordinary (`)-stabilization of every

c-stabilization of fL for c coprime to v, every Hida family passing through it is w-new for all places w|v of L.
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Remark. See [HID2, Corollary 3.57] for some relevant rigidity results.

Even though we will not pursue this matter further in this memoir one can modify the previous hypothesis to

obtain version of Theorem 4 also for non-ordinary forms. We hope to treat such questions in more detail elsewhere

but we state one such possible modified hypothesis in the following:

Hypothesis 4.5.2. Let F be a totally real field and let f ∈ Sκ(N, 1,W ) where N is an integral ideal of OF . Assume

that there exists a finite extension K/F such that for all totally real solvable extensions L/F which are linearly disjoint

over F with K the following holds: The base change fL of f to L is cuspidal and for every c-stabilization of fL for c

coprime to v whenever it equals the stabilization of an `-adic modular form then the `-adic modular form is classical.

We now follow closely the discussion in [HID2, Section 3.2] adapted to our current situation.

Hypothesis 4.5.3. Let F be a totally real field, ` a rational prime and let f0 ∈ Sord
κ (N, 1, B) be a newform and let

π denote the automorphic representation corresponding to f0. Assume:

• for v|` the local component πv is a principal series representation

• for all v|` the Galois representation satisfies

ρf0,`|GFv ∼

[
η−1

1,v(ε̃+χ
[κ1+κ2]
` )|GFv ∗

η1,v

]

where η1,v is a character F×v −→ B× such that if η′1,v is the corresponding complex character, via our fixed

embeddings of Q into C and Q`, then

πv ↪→ Ind(η′1,v, η
′
2,v)

for some character η′2,v. Let δv := η1,v mod mB and assume

δ
−1

v det(ρf0,`) 6= δv

• ρf0,` is absolutely irreducible

• if v - ` is a finite place such that ρf0,`|IFv after restricting to IF ′v for some finite extension F ′v/Fv is non-trivial

unipotent then the same holds for ρf0,`|IFv

We now describe modularity lifting results for the residual representation ρf0
. Let k be a finite field such that ρf0,`

is defined over k and assume from now on that the residue field of B is the finite field k and all Hecke eigenvalues of

f0 for Hecke operators T ($q) and U($q) are contained in B. Assume furthermore that if a prime v - ` divides N then

ρf0,`|IFv ∼
[
1 ∗

1

]
with ∗ non-trivial. We call this last property the condition (min). For every v|N write

ρf0,`|GFv ∼
[
εv ∗

δv

]
Let C denote the category of complete noetherian W -algebras with residue field k. For A ∈ C a representation

ρ : Gal(F/F ) −→ GL2(A) is called a deformation if the reduction modulo the maximal ideal of A is isomorphic to

ρf0,`. Two such deformations are called strictly equivalent if they are conjugate by an element in GL2(A) whose

reduction to GL2(k) is the identity. Consider the functor C −→ Set which takes an object A of C to the set of strict

equivalence classes of deformations ρ such that

• ρ is unramified away from `N
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• For v|` one has

ρ|GFv ∼
[
εv ∗

δv

]
where εv and δv are characters GFv −→ A× such that

δv mod mA ∼= δv

and δv|IFv factors through Gal(F unr
v (µ`∞)/F unr

v )

• For all v|N that do not divide ` one has

ρ|GFv ∼
[
εv ∗

δv

]
where εv and δv are characters GFv −→ A× such that

δv mod mA ∼= δv and δv|IFv = 1

This functor is representable by an object R = R(Nρf0,`)
ord
ρf0,`

in C and there exists a Galois representation

ρR : Gal(F/F ) −→ GL2(R(Nρf0,`)
ord
ρf0,`

)

such that in particular for v|` one has

ρR|GFv ∼
[
εv ∗

δv

]
where δv|IFv factors through Gal(F unr

v (µ`∞)/F unr
v ) and

δv mod mR = δv

where mR denotes the maximal ideal of R. Hence, by taking the product over v|`, one obtains a map W [[Γ]] −→
R(Nρf0,`)

ord
ρf0,`

.

Definition 16. Let F be a totally real field and let f ∈ Sκ(N, ε, B) be a Hecke eigenform. Define Bf to be the set of

rational primes such that

• f is as in Hypothesis 4.5.3 with respect to `

• ` ≥ 7

• ` is unramified in F

• ρf,`|GF (ζ`)
is absolutely irreducible where ζ` denotes a primitive `’th root of unity in F

Let N be an ideal of F . Then there is a maximal ideal m of the Hecke algebra hn.ord(N, ε,W [[T (Z`)]]) such that

there exists a Galois representation

ρh : Gal(F/F ) −→ GL2(hn.ord(N, ε,W [[T (Z`)]])m)

which satisfies the conditions of the above described deformation functor and hence there is a map

π : R(Nρf0,`)
ord
ρf0,`

−→ hn.ord(N, ε,W [[T (Z`)]])m

such that ρh is obtained from ρR via composition with this map. By work of Fujiwara, see also [HID2, Theorem 3.50]

for a similar result in parallel weight, one knows the following: Suppose f ∈ Sord
κ (N, ε, B) is a newform, ` ∈ Bf , and if

a prime v - ` divides N then condition (min) holds. Then the map π is a W [[Γ]]-algebra isomorphism. We can now

prove the main result.
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Theorem 4. Let F be a totally real field and let ` be a rational prime and let f0 ∈ Sord
κ (N, ε, B) be a newform for

κ = (κ1, κ2) with κ2 − κ1 + t ≥ t. Assume ` ∈ Bf0
and v|N is a prime not above `. Assuming Hypothesis 4.5.1,

the monodromy operator N of the Weil-Deligne representation associated to ρf0,`|WFv is non-trivial if and only if it is

predicted to be non-trivial by the local Langlands correspondence.

Proof. After a solvable base change one can assume that N is a square-free ideal and ε is such that ε1 and ε2 are trivial.

Hence we will now assume this. Let π be the automorphic representation associated to f0. If the local Langlands

correspondence predicts, in the above notation, that N is trivial then πv is a principal series representation and by

Hypothesis 4.1.1 (i) it follows that N is indeed trivial. Hence suppose now that the local Langlands correspondence

predicts that N is non-trivial. Then πv ∼= St2(χ) for some unramified character χ. Suppose for contradiction that N

is trivial. For example by [JAR, Theorem 4.4] there exists E ∈Mκ′(c, 1,Z`) of sufficiently large classical weight κ′ and

with c coprime to Nd(`) and such that

E ≡ 1 mod `

in the sense that there is an integer ring O in a finite extension of Q` such that the Fourier coefficients of E and 1 differ

by elements in valuation ring of O. The product fEr for r sufficiently large is then an ordinary form of cohomological

weight κ̃ = (κ̃1, κ̃2) with κ̃2 − κ̃1 ≥ t and 0 6= ep(fE
r) ∈ Sκ̃(Nc, 1,W ). One can deduce from classical results of

Deligne-Serre that there exists an ordinary eigenform d ∈ Sord
κ̃ (Nc, 1,W ) such that

ρd,`
∼= ρf,`

Let T be the set of finite places of F such that if v ∈ T then v|N and the Weil-Deligne representation associated

to ρf0,`|GFv has trivial monodromy operator. Let π2 denote the automorphic representation associated to d. By the

potential level-lowering results of Skinner-Wiles in [SW] there exists a solvable totally real extension L/F such that

BCL(π2) is cuspidal and there is a cuspidal automorphic representation π̃ of GL2(AL) of the same weight as BCL(π2)

such that if g̃ denotes the newform associated to π̃ and if f denotes the newform associated to BCL(π), then

• ρf,` ∼= ρg̃,`

• g̃ is of a level which is not divisible by finite places w of L above T

• g̃ is ordinary at all places above `

For suitably chosen L one has ` ∈ Bg̃ and we assume this from now on. Furthermore, condition (min) holds for g̃.

Hence there is an isomorphism of W -algebras

R(Nρg̃,`)
ord
ρg̃,`
∼= hn.ord(M, 1,W [[T (Z`)]])m

where m is a maximal ideal corresponding to the residual representation ρg̃,` and M is an ideal of OL which is prime

to places above T . Note that f is w-new for all places w|v of L. Since M can be chosen such that ρf,` is unramified

at all finite places not dividing M(`) and since ρf,` is ordinary at ` one obtains

ξ ∈ HomW -alg(R(Nρg̃,`)
ord
ρg̃,`

,W ) ∼= HomW -alg(hn.ord(M, 1,W [[T (Z`)]])m,W )

such that ρπ,`|Gal(F/L) is the composition of ρR with ξ. Since

HomW (hn.ord(M, 1,W [[T (Z`)]]),W ) ∼= V ord
cusp(M, 1;W )

there exists g ∈ V ord
cusp(M, 1;W ) which is an eigenform and has a weight and such that ρg,` ∼= ρf,`. By Proposition 4.5

there exists ideals c1, c2 with c1 prime to places w above v such that

gc1-stab = f c2-stab

and there exists a Λ-adic form deforming gc1-stab which is w-old for some places w|v and this contradicts Hypothesis

4.5.1.
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5 Local-global compatibility results via crystalline periods

As a first step towards proving local-global compatibility results for automorphic representations of GLn and GSp2n

we generalize in this chapter the results of Section 4.1.2. This means that we are using unitary group eigenvari-

eties, as constructed by Chenevier, and Kisin’s result on variation of crystalline periods to obtain certain local-global

compatibility results for local semi-simplifications. The key result is Lemma 5.5 which concerns local properties of

Galois representations associated to automorphic representations of totally definite unitary groups. This is a case that

lends itself very well to the construction of eigenvarieties. Via functoriality this has then implications for local-global

compatibility for automorphic Galois representations of general linear groups and symplectic groups. In the following

chapters we make these implications more explicit.

5.1 Galois representations

We will now state precisely which properties of automorphic Galois representations will be assumed throughout this

chapter. Let F be a CM-field and let F+ denote its maximal totally real subfield and let c denote the non-trivial

element in Gal(F/F+). An automorphic representation Π of GLn(AF ) is called

• conjugate self-dual if Π∨ ∼= Πc

• regular algebraic if it has the same infinitesimal character as a finite-dimensional irreducible algebraic represen-

tation of ResF/Q(GLn)

Let Zn,+ be the set of decreasing n-tuples of integers. For any

k = (k1, · · · , kn) ∈ Zn,+

let Wk denote the algebraic representation of GLn of highest weight k, corresponding to the charactert1 . . .

tn

 7→ n∏
i=1

tkii

of the diagonal torus of GLn. A finite-dimensional irreducible algebraic representation of ResF/Q(GLn) then corre-

sponds to a = (aτ )τ∈Hom(F,C) ∈ (Zn,+)Hom(F,C) and we will say Π is of weight a if it has the same infinitesimal character

as the finite-dimensional irreducible algebraic representation of ResF/Q(GLn) corresponding to a.

Let recGLn(−) denote a local Langlands correspondence for GLn such that in particular the following holds.

Suppose K is a p-adic field and χ =
∏n
i=1 χi is a character of the diagonal torus of GLn(K) such that the principal

series representation Ind(χ) is irreducible. Then

recGLn(Ind(χ)) ∼=
n⊕
i=1

χ̃i

where χ̃i for 1 ≤ i ≤ n is as defined in the beginning of Chapter 3.

The following hypothesis will be assumed for the rest of this chapter. It will be combined with the deformation

theory of automorphic forms to deduce more general local-global compatibility results.

Hypothesis 5.1.1. Let Π be a cuspidal regular algebraic conjugate self-dual automorphic representation of GLn(AF )

of weight a ∈ (Zn,+)Hom(F,C). For a rational prime ` and ι : Q`
∼ // C there is a continuous semi-simple `-adic Galois

representation

ρΠ,`,ι : Gal(F/F ) // GLn(Q`)

such that
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(i) for all finite places v - ` of F such that Πv is a principal series representation there is an isomorphism

WDι(ρΠ,`,ι|WFv )F-ss ∼= recGLn(Πv ⊗ | det |
1−n

2 )

(ii) for v|`

• if Πv is unramified then ρΠ,`,ι is crystalline at v and

WDι(ρΠ,`,ι|GFv )F-ss ∼= recGLn(Πv ⊗ | det |
1−n

2 )

• ρΠ,`,ι is Hodge-Tate at each v|` and if τ ∈ Hom(F,C) lies above v via ι then the corresponding set of

Hodge-Tate weights equals

HTτ (ρΠ,`,ι|GFv ) = {−(aτ,i + n− i)|1 ≤ i ≤ n}

• if Πv is Iwahori-spherical then ρΠ,`,ι|GFv is potentially semi-stable

(iii) for v a finite place such that Πv is Iwahori-spherical and for any rational primes `1, `2 and isomorphisms

ι`1 : Q`1
∼ // C and ι`2 : Q`2

∼ // C

WDι`1

(
ρΠ,`1,ι`1

|
WFv

)ss ∼= WDι`2

(
ρΠ,`2,ι`2

|
WFv

)ss
and these representations are unramified.

(iv)

ρ∨Π,`,ι
∼= ρcΠ,`,ι ⊗ χn−1

`

where χ` denotes the `-adic cyclotomic character

Remark. In part (iii) we have assumed for simplicity that the semi-simple parts of the Weil-Deligne representations

are unramified. This assumption can be avoided but then the statements of main local-global compatibility results

have to be somewhat changed. If the Galois representations are realized for example in the cohomology of a Shimura

variety then this part of the assumption can be obtained by constructing good integral models for the Shimura-variety

with suitable Iwahori level-structure. See for example [TY].

In order to deduce from Hypothesis 5.1.1 local-global compatibility results at places where the local Langlands

correspondence predicts ramification we work in this section with Galois representations associated to automorphic

forms on totally definite unitary groups. By using functoriality results of [LAB] the results of this section will then

later be used to to obtain results for automorphic representations of general linear groups. The advantage of working

with totally definite unitary groups is that for such groups families of automorphic forms have been constructed in

[CHE]. This allows us to apply the crystalline periods methods described in Chapter 3 in a similar way as in the proof

of Proposition 4.2.

Note that contrary to the case of Hilbert modular forms, in the more general setting that we treat in this section

there can be multiple accessible refinements of the relevant local component of the automorphic representation and

each of these refinements can lead to different information about the local properties of the automorphic Galois

representation. In this section we simply determine what information a given accessible refinement yields and only in

later sections will we then combine the information coming from all the different accessible refinements to obtain more

precise local-global compatibility results.

Let us first describe the Galois representations associated to automorphic representations on totally definite unitary

groups.

Let F+ be a totally real field, let E an imaginary quadratic extension of Q and let F := F+E be a CM-field. Let

c denote the non-trivial element of Gal(F/F+). Let n ≥ 2 be an integer and assume that F/F+ is unramified at all

finite places and that n[F+ : Q]/2 is even. Let U∗n be the quasi-split unitary group over F+ as defined in [LAB, Sect.
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2.1]. As discussed in [CH, Lem. 2.1] there is an inner form G of U∗n that is quasi-split at all places of F+ which are

inert in F and such that
∏
v|∞G(F+

v ) is compact.

Let π be an automorphic representation of G(AF+). The weight of π is defined to be the representation ξ of∏
v|∞G(F+

v ) on ⊗v|∞πv. As explained for example in [CHL, Sect. 2], the representation ξ corresponds to

a(ξ) ∈ (Zn,+){τ :F↪→C}

such that

a(ξ)τ,i = −a(ξ)τ◦c,n+1−i

for each 1 ≤ i ≤ n. For π as above, a base change to an automorphic representation of GLn(AF ) is constructed in

[LAB] and this allows to associate to π a Galois representation. To describe this Galois representation note that if

v ∈ SplF/F+ factors as v = wwc in F then one obtains isomorphisms iw and iwc between G⊗F+ F+
v and GLn,Fw and

GLn,Fwc . The following hypothesis is a consequence of Hypothesis 5.1.1 by results of [GUE].

Hypothesis 5.1.2. Let π be an automorphic representation of G(AF+) of weight ξ. For a rational prime ` and

ι : Q`
∼ // C there is a continuous semi-simple Galois representation

ρπ,`,ι : Gal(F/F ) −→ GLn(Q`)

such that

(i) for all finite places v - ` of F+ which split as v = wwc in F and for which πv is a principal series representation

one has

WDι(ρπ,`,ι|WFw )F-ss ∼= recGLn((πv ◦ i−1
w )⊗ | det |

1−n
2 )

(ii) if v|` splits as wwc in F then

• if πv is spherical then ρπ,`,ι is crystalline at w and

WDι(ρπ,`,ι|GFw )F-ss ∼= recGLn((πv ◦ i−1
w )⊗ | det |

1−n
2 )

• ρπ,`,ι is Hodge-Tate at w and if τ ∈ Hom(F,C) lies above w via ι then the corresponding set of Hodge-Tate

weights equals

HTτ (ρπ,`,ι|GFw ) = {−(a(ξ)τ,i + n− i)|1 ≤ i ≤ n}

• if πv is Iwahori-spherical then ρπ,`,ι|GFw is potentially semi-stable at w

(iii) for v a finite place of F+ which splits as v = wwc in F and such that πv ◦ i−1
w is Iwahori-spherical and for any

rational primes `1, `2 and isomorphisms ι`1 : Q`1
∼ // C and ι`2 : Q`2

∼ // C

WDι`1

(
ρπ,`1,ι`1 |WFw

)ss ∼= WDι`2

(
ρπ,`2,ι`2 |WFw

)ss
and these representations are unramified

(iv)

ρ∨π,`,ι
∼= ρcπ,`,ι ⊗ χn−1

`

where χ` denotes the `-adic cyclotomic character

(v) if the base change Π of π to GLn(AF ) is cuspidal then

ρπ,`,ι ∼= ρΠ,`,ι

Moreover, if ρπ,`,ι is irreducible then the base change of π to GLn(AF ) is cuspidal
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5.2 Eigenvariety preliminaries

In this section fix G, F and F+ as in Section 5.1. As a preparation for the proof of Lemma 5.5 we will in this section

briefly recall some facts about unitary group eigenvarieties as constructed in [CHE].

Let p be a rational prime and fix an isomorphism ι : Qp
∼ // C . Fix a decomposition

{places u|p of F+} = Sp t S′p

with #Sp = 1 and assume Sp = {v} with v ∈ SplF/F+ . In the discussion until Lemma 5.5 fix a place w of F above

v and let iw be the corresponding isomorphism G(F+
v ) ∼= GLn(Fw). In the following we will identify these groups.

Via this identification we let Tv ⊆ G(F+
v ) be the diagonal torus and we let T 0

v be the maximal compact subgroup of

Tv consisting of elements with entries in OFw . Furthermore, we let Bv denote the upper triangular Borel subgroup of

G(F+
v ). Let Grig

m denote the analytification, as defined in [BGR, Sect. 9.3.4], of the algebraic variety Gm. View Tv
via restriction of scalars as the Qp-valued points of a torus defined over Qp and define the rigid spaces over Qp given

by TSp := Hom(Tv,Grig
m ) and WSp := Hom(T 0

v ,Grig
m ) where in both cases the the homomorphisms are required to be

p-adically continuous.

For u ∈ Sp tS′p let Σ(u) be the subset of Hom(F+,Qp) consisting of homomorphisms lying above u and let Σ∞(u)

be the subset of Hom(F+,C) corresponding to Σ(u) via ι.

Let Σ′∞ denote the union of the sets Σ∞(u) for u ∈ S′p and fix an irreducible representation W∞ of
∏
τ∈Σ′∞

G(F+
τ ).

Let S be a finite set of finite places of F+ disjoint from Sp. Fix a compact open subgroup

K =
∏

Ku ≤ G(A(∞)
F+ )

where u ranges over the finite places of F+ and Ku is a subgroup of G(F+
u ) which

• is a hyperspecial maximal compact subgroup at all places u /∈ (Sp t S)

• equals G(OF+
u

) for almost all places u

• is the Iwahori subgroup corresponding to Bv at v ∈ Sp

Let

H(Sp) = ⊗′u6∈(SptS)Hu

where Hu for u 6∈ (Sp t S) denotes the spherical Hecke algebra consisting of functions on G(F+
u ) which are locally

constant, have compact support and are Ku bi-invariant. Let π be an automorphic representation of G(AF+) such

that πK 6= (0) and such that the representation of
∏
τ∈Σ′∞

G(F+
τ ) on ⊗τ∈Σ′∞

πτ is isomorphic to W∞. To such an

automorphic representation one can associate pairs

(ψπ, νπ) ∈ Hom(H(Sp),Qp)× TSp(Qp)

in the following way:

Firstly, π gives rise to an algebra homomorphism

ψπ : H(Sp) // Qp

coming from the Hecke action. Secondly, since πK 6= (0) it follows that πv is Iwahori-spherical for v ∈ Sp. Hence

πv ⊗ | det | 1−n2 has an accessible refinement as defined in [CHE] and recalled in Section 3.3. Define

νπ := χπ,∞,v · χ′π,v · δ
−1/2
Bv

· | det |
n−1

2 ∈ TSp(Qp)

where

• χ′π,v is an accessible refinement of πv ⊗ | det | 1−n2
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•
χπ,∞,v =

∏
u∈Σ∞(v)

χπu,u

where χπu,u : Tv → Q×p is defined as follows. The representation of G(F+
u ) on πu gives rise, via the embedding

F ↪→ Qp which lies above u via ι and which gives rise to the fixed place w of F above v, to an algebraic repre-

sentation of GLn. Via iw this gives rise to an algebraic representation of G(F+
v ) and χπu,u is the corresponding

highest weight character

Remark 9. Note that a given automorphic representation π as above yields multiple pairs (ψπ, νπ) if πv has multiple

accessible refinements.

Let Z ′ denote the collection of all elements (ψπ, νπ) ∈ Hom(H(Sp),Qp) × TSp(Qp) obtained from automorphic repre-

sentations π of G(AF+) as above. In [CHE, Thm. 1.6] an associated eigenvariety is constructed. This is a quadruple

(X,ψ, ν, Z ′) which has the following properties:

• X is a reduced rigid space defined over a finite extension of Qp which contains the image of all embeddings

F+ ↪→ Qp

• ψ : H(Sp) −→ O(X) is a ring homomorphism

• ν : X −→ TSp is a finite analytic map

• Z ′ ⊆ X(Qp) is a Zariski dense subset such that for all z ∈ Z ′ there is an automorphic representation πz such

that (ψz, ν(z)) = (ψπz , νπz ) for some choice of νπz and (ψ, ν) induces a bijection between Z ′ and Z ′. Here ψz
denotes the composition of ψ with the map to the residue field of z

It is important for the application to local-global compatibility questions that the automorphic Galois representations

associated to the automorphic representations πz for z ∈ Z ′ are interpolated on the eigenvariety in the following way.

By [CHE, Cor. 3.9] there is a continuous n-dimensional pseudo-character

T : Gal(F/F ) −→ O(X)

such that for each z ∈ Z ′ with associated automorphic representation πz one has

Tz = Trace (ρπz,p,ι)

where Tz is the composition of T with the map O(X)→ OX,z/mOX,z to the residue field of z.

Let us make some definitions for later use:

Definition 17. Fix a uniformizer $ ∈ F+
v and let q denote the size of the residue field of F+

v . For each 1 ≤ i ≤ n let

ui ∈ GLn(Qp) be the diagonal matrix

ui =



1
. . .

$
. . .

1


with $ in the i’th column and all other entries being 1’s. Define for each 1 ≤ i ≤ n

Fi := ν(ui) ∈ O(X)×

For each z ∈ Z ′ let χπz := χ′πz,v ⊗ | det |n−1
2 and note that

Fi(z) = νπz (ui) = ι−1χπz,i($)q
n+1

2 −i
∏

τ∈Σ(v)

τ($)kv,τ,i
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where (kv,τ,i)τ,i is the element in (Zn,+)τ∈Σ(v) corresponding to χπz,∞,v.

Definition 18. As before, for z ∈ Z ′ let πz be the corresponding automorphic representation of G(AF+). Define Z to

be the subset of Z ′ consisting of those z ∈ Z ′ such that πz,v is an unramified principal series representation for v ∈ Sp.

We want to use Z and X to obtain local-global compatibility results for Galois representations associated to

automorphic representations πz with z ∈ Z ′ but z 6∈ Z. In order to do so we recall in Lemma 5.3 a quantitative version

of the fact that automorphic representations πz for z ∈ Z ′ can be approximated in a certain sense by automorphic

representations πz for z ∈ Z. Let us first recall from [BC] some notation for rigid spaces:

Definition 19. A subset U of a rigid space Y is said to accumulate at a point x ∈ Y if there is a basis of affinoid

neighborhoods of x such that U is Zariski dense in each. More generally, U is defined to accumulate at a subset U ′ of

Y if U accumulates at every u′ ∈ U ′.

The following lemma will eventually allow us to deduce from Hypothesis 5.1.1 local-global compatibility results

for automorphic Galois representations at places where ramification is expected. The proof of the lemma essentially

follows from the arguments in [CHE2, Prop. 6.4.7] but since only the case of F+ = Q is written there we will now

recall the proof:

Lemma 5.3. Z accumulates at Z ′.

Proof. Let v ∈ Sp be as defined earlier. For C ∈ Z≥0 let X∗(Tv)
reg,C be the subset of X∗(Tv) corresponding to

(kv,τ,i)τ,i ∈ (Zn,+)τ∈Σ(v) such that

kv,τ,i − kv,τ,j > C for all τ ∈ Σ(v) and all 1 ≤ i < j ≤ n

Let X∗(Tv)
reg := X∗(Tv)

reg,0. For any Galois extension L/Qp such that L contains F+
v view X∗(Tv) ⊂ WSp(L). By

the same proof as in [CHE, Lem. 2.7], but with X∗(Tv)
reg,C replacing X∗(Tv)

reg in the argument, it follows that

X∗(Tv)
reg,C accumulates at X∗(Tv). The relation between WSp and the eigenvariety X is now used to also show

that Z accumulates at Z ′: Let z ∈ Z ′ and let U ′ be an admissible open neighborhood of z in X. Let U ⊆ U ′ be

an affinoid neighborhood of z. To show that Z accumulates at Z ′ it suffices to show that Z ∩ U is Zariski dense

in U for U sufficiently small. Let κ denote the composition of ν with the natural map TSp → WSp and let V be a

sufficiently small affinoid neighborhood of κ(z). By [CHE, Lem. 2.7], and the accumulation of X∗(Tv)
reg,C at X∗(Tv),

for any C ∈ Z≥0 one has that X∗(Tv)
reg,C ∩ V is Zariski dense in V . Let q denote the size of the residue field of F+

v

and in the following use additive notation for the product on X∗(Tv). By using [CHE2, Lem. 6.2.8], to prove that

Z accumulates at Z ′ it suffices to show that for C sufficiently large any point x ∈ U with κ(x) ∈ X∗(Tv)reg,C and

κ(x) − κ(z) ∈ (q − 1)pNX∗(Tv) for some sufficiently large N ∈ Z satisfies the following: The point x corresponds to

an automorphic representation πx and the local component πx,v is an unramified principal series representation for

v ∈ Sp. The former follows for U sufficiently small from the classicality criterion of [CHE, Thm. 1.6]. For the latter

note that πx,v is Iwahori-spherical and hence πx,v ↪→ Ind(χ) for some unramified character χ =
∏n
i=1 χi. Suppose that

πx,v is not an unramified principal series representation. Then there is i < j such that

χi($)/χj($) = q±1

Then
Fi(x)

Fj(x)
= q±1+i−j

∏
τ∈Σ(v)

τ($)kv,τ,i−kv,τ,j

where (kv,τ,i)τ,i is the element in (Zn,+)τ∈Σ(v) corresponding to χπx,∞,v. As explained in [CHE2, Prop. 6.4.7], since

Fi and Fj are in O(X)× there is a constant D such that |Fi(x)/Fj(x)|p > D > 0 for all x ∈ U . Hence for C

sufficiently large one obtains a contradiction if πx,v is not an unramified principal series representation. It follows that

Z accumulates at Z ′.
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5.4 The key lemma

We will now study crystalline periods of exterior powers of automorphic Galois representations in a somewhat similar

way to [BC2, Prop. 6.1]. This will be used to obtain information about local properties of automorphic Galois rep-

resentations at places of Iwahori-spherical ramification of the automorphic representation. In the following statement

the morphism iw is as defined in the discussion preceding Hypothesis 5.1.2.

Lemma 5.5. Let G, F and F+ be as above and let π be an automorphic representation of G(AF+). Let v be a finite

place of F+ and let q denote the size of the residue field of F+
v . Suppose v splits as v = wwc in F and suppose πv ◦ i−1

w

is Iwahori-spherical. Let $ be a uniformizer of Fw. For any lift σ ∈ WFw of the geometric Frobenius let Sσ denote

the multiset of eigenvalues of σ acting on WDι(ρπ,`,ι|WFw
). Then for any accessible refinement

χv =

n∏
j=1

χv,j

of πv ◦ i−1
w and each 1 ≤ i ≤ n there is a multiset

{αj1 , · · · , αji} ⊆ Sσ

such that
i∏

k=1

αjk = q
i(n−1)

2

i∏
k=1

χv,k($)

Moreover, one always has q
n−1

2 χv,1($) ∈ Sσ and q
n−1

2 χv,n($) ∈ Sσ.

Proof. Let v be a finite place of F+ as in the statement of the lemma and let p denote its residue characteristic. Fix

throughout this proof a finite place w of F lying above v and let Σ̃(v) denote the subset of embeddings in Hom(F,Q`)
which lie above Σ(v) and which correspond to w. Fix a uniformizer $ of Fw. By Hypothesis 5.1.2 (iii) in order to

prove the lemma one can assume that p = `. This allows the use of the eigenvarieties described in the beginning of

Section 5.2. In the notation of the beginning of that section let us make the following definitions:

• Let Sp := {v}

• Let S be a finite set of finite places of F+ which is disjoint from Sp and contains all places at which π is ramified

except the place v

• Let K ≤ G(A(∞)
F+ ) be a compact open subgroup of the form described in the beginning of Section 5.2 and such

that πK 6= (0)

• Let W∞ denote the representation of
∏
τ∈Σ′∞

G(F+
τ ) on ⊗τ∈Σ′∞

πτ where Σ′∞ is as defined in the beginning of

Section 5.2

Let (X,ψ, ν, Z ′) be the associated eigenvariety and let Z be the subset of Z ′ as in Definition 18. The automorphic

representation π and the accessible refinement χv of the statement of the lemma yield a point

x0 = (ψπ, νπ) ∈ X(Qp)

We will now apply the crystalline periods results described in Chapter 3. To be able to do so one must first describe

twists of the Galois representations corresponding to points on the eigenvariety X by a suitable character and we will

do this now.

Let z ∈ Z ′ and as before let (kv,τ,i)τ,i be the element in (Zn,+)Σ(v) corresponding to χπz,∞,v. The representation

ρz is Hodge-Tate at w and for each τ ∈ Σ̃(v) and 1 ≤ i ≤ n one has

mτ,i(z) := HT(1)
τ (∧iρz|GFw ) =

i(i+ 1− 2n)

2
−

i∑
j=1

kv,τ,j
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where HT(1)
τ (−) is as defined in Section 3.4. Since ν : X → TSp is an analytic map and since by [CHE, Thm. 1.6] Z ′

accumulates at X, there is a neighborhood X ′ of x0 and mτ,i ∈ O(X ′) such that the specializations of mτ,i at points

z ∈ Z ′ which are also in X ′ are given by the above formula. For ease of notation, in the the rest of this proof we will

denote the intersection of Z ′ and X ′ again by Z ′ and we will denote X ′ by X. For each τ ∈ Σ̃(v) fix a continuous

character χτ : F×\A×F −→ C× such that

• χτ,w is unramified

• χτ |(F×∞)◦((xσ)σ∈Hom(F,C)) =
∏
σ∈Hom(F,C) x

aσ
σ with aσ given by aι(τ) = 1 and aι(τ)◦c = −1 and zero otherwise

See for example [CHT, Sect. 4] for the existence of a character with the weight as defined above. Define

χ(`)
τ (x) :=

∏
σ

(ι−1σ)(x`)
aσ ι−1(

∏
σ

x−aσσ χτ (x))

By global class field theory the character χ
(`)
τ corresponds to a continuous character

r`,ι(χτ ) : Gal(F/F ) −→ Q×`

Since mτ,i ∈ O(X) and since Z ′ accumulates at X one can define a continuous map

µi : Gal(F/F ) −→ O(X)

such that for all z ∈ Z ′ one has

µi(g)(z) =
∏

τ∈Σ̃(v)

r`,ι(χτ )(g)−mτ,i(z)

for all g ∈ Gal(F/F ). For x ∈ X let µi,x denote the composition of µ with the map to the residue field of x. Note

that for example by [CHT, Lem. 4.1.3] the representation r`,ι(χτ )|GFw has Hodge-Tate weight 1 with respect to τ .

Furthermore, since w|v ∈ SplF/F+ it follows that Σ∞(w) ∩ c ◦ Σ∞(w) = ∅ where c denotes the non-trivial element of

Gal(F/F+). It follows that for each z ∈ Z ′ and τ ∈ Σ̃(v) one has

HTτ (µi,z|GFw ) = {−mτ,i(z)}

Now let Gi ∈ O(X)× be such that for all z ∈ Z ′ one has

Gi(z) =
∏

τ∈Σ̃(v)

χτ,v($)−mτ,i(z)τ($)mτ,i(z)

Let U be an admissible open affinoid neighborhood of x0 in X such that for each 1 ≤ i ≤ n the inclusion U → X is

Gi

∏i
j=1 Fj-small as defined in [KIS, Sect. 5.2]. For each such i let

Hi := (qi(i−1)/2
∏

τ∈Σ̃(v)

(τ($)−
i(i+1−2n)

2 )Gi

i∏
j=1

Fj)|U ∈ O(U)×

Using [BC, Lem. 7.8.11] as in [CHE, Sect. 3.15] gives the following: There exists a reduced rigid space U ′ and a finite

map h : U ′ → U such that the following holds:

• There is a free O(U ′)-module M of rank n with a continuous Galois representation

ρM : Gal(F/F ) −→ GL(M)

For a point x in U ′ we will denote by Ex its residue field and by ρM,x the Galois representation on M⊗O(U ′) Ex
obtained from ρM
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• There is a Zariski dense subset Z̃ ⊆ U ′ such that h(Z̃) ⊆ Z and for all z′ ∈ Z̃ one has

ρM,z′ ⊗Ez′ Ez′ ∼= ρπ(h(z′)),`,ι

• There is x′0 ∈ U ′ such that h(x′0) = x0 and ρss
M,x′0

∼= ρπ(x0),`,ι

Let µ′i : Gal(F/F )→ O(U ′) be the pullback to U ′ of the restriction of µi to U and let O(U ′)(µ′i) denote the free rank

one O(U ′)-module with the Gal(F/F )-action given by µ′i. Define

(∧iρM)(µi) := (∧iρM)⊗O(U ′) O(U ′)(µ′i)

Then for all z ∈ Z ′ and τ ∈ Σ̃(v) one has

• HT(1)
τ ((∧iρM)(µi)z|GFw ) = 0

• HT(2)
τ ((∧iρM)(µi)z|GFw ) > 0

Hence the crystalline periods results of Chapter 3 might be applied to the Galois representation (∧iρM)(µi). To do so,

fix k ∈ Z≥1 and let

Ik :=

{z ∈ Z ∩ U
∣∣ minτ∈Σ̃(v) HT(2)

τ ((∧iρM)(µi)z|GFw ) > max(k, [F+
v : Qp]vp(Hi(x0)))}

By the arguments used to show that Z accumulates at Z ′ it also follows that Ik is Zariski dense in U . For each z ∈ Z ′
and each 1 ≤ i ≤ n one has

ι−1[qi(n−1)/2
i∏

j=1

χπ(z),j($)] = qi(i−1)/2
i∏

j=1

Fj(z)
∏

τ∈Σ(v)

τ($)−
∑i
j=1 kv,τ,j

By Hypothesis 5.1.2 for each z ∈ Z the representation ρz|GFw is crystalline and hence

∧iDcris(ρz|GFw ) ∼= Dcris(∧iρz|GFw )

Therefore, for any λ ∈ {qi(n−1)/2
∏i
s=1 χπ(z),js($)

∣∣1 ≤ j1 < · · · < ji ≤ n} one has

Dcris(∧iρz|GFw )ϕFw=λ 6= (0)

For all z ∈ Z the character µi,z is crystalline at w and

Dcris(µi,z|GFw )ϕFw=Gi(z)
∏
τ∈Σ(v) τ($)−mτ,i(z) 6= (0)

It follows that for all z ∈ Z one has

Dcris((∧iρM)(µi)z|GFw )ϕFw=Hi(z) 6= (0)

It now follows from Lemma 3.6 that for R := O(U ′), the R-module dual of (∧iM)(µi), Ri the collection of residue

fields of R corresponding to points which map under h to points in Ik for some k ∈ Z≥1, and Y := H−1
i all assumptions

of Theorem 3 are satisfied. It follows that

Dcris((∧iM)(µi)x0
|GFw )ϕFw=Hi(x0) 6= (0)

Hence

Dcris((∧iρx0)(µi,x0)|GFw )ϕFw=Hi(x0) 6= (0)

and therefore

Dcris((∧iρx0 |GFw )ϕFw=qi(n−1)/2 ∏i
j=1 χv,j($) 6= (0)
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where χv is the refinement of πv ◦ i−1
w as in the statement of the lemma. The first part of the lemma now follows from

Lemma 3.5.

To prove the second part of the lemma let σ and Sσ be as in the statement of the lemma. By applying the first

part of the lemma with i = 1 one obtains q
n−1

2 χv,1($) ∈ Sσ. The first part of the lemma with i = n− 1 implies that

there is a subset {x1, · · · , xn−1} ⊂ Sσ such that

x1 · · ·xn−1 = q
(n−1)2

2

n−1∏
j=1

χv,j($)

The first part of the lemma with i = n implies that if xn is such that {x1, · · · , xn} = Sσ, then

x1 · · ·xn = q
n(n−1)

2

n∏
j=1

χv,j($)

and hence q
n−1

2 χv,n($) = xn ∈ Sσ.

Remark 10. Note that one might obtain stronger results than in the previous corollary by using variants of the

crystalline period results of [KIS, Prop. 5.14] where more than one weight is fixed.

The above results were obtained for automorphic representations of rather specific unitary groups. Nonetheless, by

using base change for GLn as constructed in [AC] as well as base change and descent between unitary groups and GLn
as constructed in [LAB], one can deduce rather general results for automorphic representations of GLn over CM-fields:

Lemma 5.6. Let F be a CM-field and let Π be a regular algebraic cuspidal conjugate self-dual automorphic represen-

tation of GLn(AF ). Let v be a finite place of F , let $ be a uniformizer of Fv and let q denote the size of the residue

field of Fv. Assume that Πv is Iwahori-spherical. For any lift σ ∈ WFv of the geometric Frobenius let Sσ denote the

multiset of eigenvalues of the action on WDι(ρΠ,`,ι|WFv
). Then for any accessible refinement

χv =

n∏
j=1

χv,j

of Πv and each 1 ≤ i ≤ n there is a multiset

{αj1 , · · · , αji} ⊆ Sσ

such that
i∏

k=1

αjk = q
i(n−1)

2

i∏
k=1

χv,k($)

Moreover, one always has q
n−1

2 χv,1($) ∈ Sσ and q
n−1

2 χv,n($) ∈ Sσ.

Proof. Choose a CM-field L containing F , with maximal totally real subfield denoted by L+, such that

(i) L/F is a solvable extension and L = EL+ for some imaginary quadratic field E

(ii) n[L+ : Q]/2 is even

(iii) v splits completely in L and any place w|v of L lies above SplL/L+

(iv) any place of L above ` lies above SplL/L+

(v) L/L+ is unramified at all finite places

(vi) BCL(Π) is cuspidal
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Here BCL(−) denotes the base change as constructed in [AC]. The existence of such a base change is already used in

[CHT]. Note that condition (i) can be achieved by taking the composite of F with an imaginary quadratic field. To

arrange certain places to lie above SplL/L+ is achieved by taking if necessary the composite of L with a suitable totally

real field, see for example [HT] (p.228). Now let L be a CM-field satisfying the above conditions. Then there exists a

totally definite unitary group G over L+ as in the beginning of Section 5.1 and by [LAB] there exists an automorphic

representation π of G(AL+) whose base change to GLn(AL) is isomorphic to BCL(Π). In particular, at all places u of

F+ which split as u1u2 in F one has

πu ◦ i−1
u1
∼= BCL(Π)u1

Since BCL(Π) is cuspidal one has

ρπ,`,ι ∼= ρBCL(Π),`,ι

and since v splits in L the lemma follows from Lemma 5.5.

Due to results announced very recently by Liu in [LIU] and Kedlaya-Pottharst-Xiao in [KPX] on the existence

of global triangulations, one can now often prove stronger results than the ones discussed above. The point is that

Kisin’s original results on variation of crystalline periods have very recently been strengthened to show very general

results on the existence of triangulations for analytic families of Galois representations. We will now state such a recent

result proved by Liu in [LIU] where for simplicity we assume that we study representations of Gal(Qp/Qp) instead

of representations of the absolute Galois group of a finite extension of K. First, we recall some definitions, see for

example [BEN] and [BC] for more details.

Consider the cyclotomic character χ : Gal(Qp/Qp) −→ Z×p and let

Γ := Gal(Qp/Qp)/Ker(χ)

Let RQp be the Robba ring over Qp as defined for example in [BC, Section 2.2.2]. Let A be a finite extension of Qp
and let RA = RQp ⊗A. One has an action of ϕ and Γ on RA by

ϕf(z) = f(zp) and (γf)(z) = f(zχ(γ))

A (ϕ,Γ)-module is a finitely generated RA-module M which is free as an RQp -module and which has RA-semi linear

actions of ϕ and Γ which commute and are continuous in a sense defined for example in [BC, Section 2.2.2] and such

that RQpϕ(M) = M .

It is known that there is an equivalence of categories between p-adic representation V and so called (ϕ,Γ)-modules

of slope 0. The (ϕ,Γ)-module associated to V will be denoted by D†rig(V ). For a (ϕ,Γ)-module M one can associate

certain finite-dimensional K0-vector spaces Dcris(M) and Dst(M). A (ϕ,Γ)-module is called semi-stable if

dimK0
Dst(M) = rankR(K)(M)

and it is called crystalline if

dimK0
Dcris(M) = rankR(K)(M)

These definitions are equivalent to define M semi-stable or crystalline if M ∼= D†rig(V ) and V is semi-stable or

crystalline.

Definition 20. A (ϕ,Γ) module M of rank n over RA is called trianguline if there is a filtration

(0) ⊂ F0M ⊂ F1M ⊂ · · · ⊂ FnM = M

where each FiM is a saturated (ϕ,Γ) sub-module of M over RA and

griM := FiM/Fi−1M

is free of rank one for all 1 ≤ i ≤ n. A p-adic representation V is called trianguline if and only if D†rig(V ) is trianguline.
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Specialize now to the case K = Qp for simplicity. Assume that M is a semi-stable (ϕ,Γ)-module and suppose A is

chosen such that all eigenvalues of ϕ : Dst(M) −→ Dst(M) are contained in A. A refinement of Dst(M) is defined in

[BEN] to be a filtration

0 = F0Dst(M) ⊂ F1Dst(M) ⊂ · · ·FnDst(M) = Dst(M)

where each FiDst(M) is an A-subspace of Dst(M) which is ϕ-stable and N -stable and such that

griDst(M) := FiDst(M)/Fi−1Dst(M)

is of dimension one for all 1 ≤ i ≤ n. Similarly one defines the refinement of a crystalline representation.

Let δ : Q×p −→ A× be a continuous character. In [BC, Sect. 2.3] the (ϕ,Γ)-module RA(δ) is defined to be the free

rank one RA-module with RA-semilinear action of ϕ and Γ defined as follows:

ϕ(1) = δ(p) and γ(1) = δ(γ) for all γ ∈ Γ

By [BEN, Proposition 1.3.2] there is a bijection between triangulations of M and refinements of Dst(M). Order the

ϕ-eigenvalues as α1, · · · , αn corresponding to the filtration and similarly order the multiset of Hodge-Tate weights as

k1, · · · , kn. It is shown in [BEN] that

griM
∼= RA(δi)

where δi : Q×p −→ A× is the character given by

δi(p) = αip
−ki and δi(x) = x−ki for x ∈ Z×p

The parameter of a triangulation is defined to be the map

Q×p −→ (A×)n

whose components are the characters δi.

We now describe Liu’s result. Let X be an analytic space and suppose we are given a p-adic family of refined

representations, as defined in a more general way in [BC, Section 4.2] . For the following slightly less general case see

[LIU, Definition 5.2.3]. There is given a continuous Galois representation

G −→ GL(V )

where V is a free O(X)-module of finite rank n. Suppose for each 1 ≤ i ≤ n there is Fi ∈ O(X)× and κi ∈ O(X) and

suppose there is a Zariski dense subset Z of X such that:

• for every x ∈ X the multiset of Hodge-Tate weights of Vx is given by {κ1(x), · · · , κn(x)}

• for all z ∈ Z the representation Vz is crystalline

• for all z ∈ Z one has κ1(z) < · · · < κn(z)

• for all z ∈ Z the eigenvalues of crystalline Frobenius ϕ acting on Dcris(Vz) are distinct and given by {pκ1(z)F1(z), · · · , pκn(z)Fn(z)}

• let C be any non-negative integer and define the subset ZC of Z to be

{z ∈ Z
∣∣|κI(z)− κJ(z)| > C for all I, J ⊂ {1, · · · , n},#I = #J > 0, I 6= J}

where κI =
∑
i∈I κi. Then ZC accumulates at all z ∈ Z

• for each 1 ≤ i ≤ n there is a continuous character χi : Z×p O(X)× whose derivative at 1 is κi and whose evaluation

at any z ∈ Z is the map which raises to the κi(z)-th power.
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Fix now a p-adic family of refined representations as defined above. For each 1 ≤ i ≤ n let

∆i : Q×p −→ O(X)×

be given by

∆i(p) =

i∏
j=1

Fj and ∆i|Γ =

i∏
j=1

χj

It is then shown in [LIU] that on every affinoid subdomain of a Zariski dense subset Xs of X there is a triangulation

with parameter whose components are given by

(∆i+1/∆i)1,··· ,n−1

Note that more is shown about the set Xs in [LIU]. We recall this now briefly. Let V be a crystalline representation of

Gp. If the Hodge-Tate weights of V are distinct and given by k1 < · · · < kn then a refinement of V is called non-critical

if for all 1 ≤ i ≤ n one has

Dcris(V ) ∼= FiDcris(V )⊕ Filki+1(Dcris(V ))

Let ϕi be the eigenvalue of ϕ on Fi/Fi−1. Then the refinement is called regular if for all 1 ≤ i ≤ n ϕ1 · · ·ϕi is an

eigenvalue of ϕ acting on Dcris(∧iV ) of multiplicity one. For z ∈ Z associate the refinement

(pκ1(z)F1(z), · · · , pκn(z)Fn(z))

The point z ∈ Z is called regular if the associated refinement is regular and it is called non-critical if the associated

refinement is non-critical. One now defines what it means for a point x ∈ X to be a saturated point. It is shown that

regular non-critical points are saturated and since regular non-critical points are Zariski dense it follows that Xs is

Zariski dense.

Suppose now that M is a specialization at a point x of Xs which is semi-stable. By the earlier discussion it follows

that the eigenvalues α1, · · · , αn of ϕ acting on Dst(M) are given by

Fi(p)(x)pki(x)

for 1 ≤ i ≤ n. In our application this matches the prediction from the local Langlands correspondence. For most of

this memoir we focus however on the simpler study of the variation of one crystalline period due to Kisin and this is

sufficient for many purposes relating to, for example, Hilbert modular forms and modular forms on GSp4.

6 Local semi-simplifications: The case of general linear groups

In this chapter we give some examples of how the results of the previous chapter can be used to obtain local-global

compatibility results for local semi-simplifications of Galois representations associated to automorphic representations

of general linear groups over CM-fields and totally real fields. The calculations of this chapter can be thought of

as making explicit, in terms of the classification of Iwahori-spherical representations of GLn over p-adic fields, the

consequences of the variation of one crystalline period in families of automorphic Galois representations of general

linear groups.

6.1 Results in dimension at most 4

In this section we focus on the case of low-dimensional representations since it is in this situation that we obtain

the most complete local-global compatibility results. In Section 6.4 we then describe how knowledge of monodromy

operators can be used in conjunction with the results of the previous chapter to obtain local-global comptiblity for the

local semi-simplification of automorphic Galois representations of arbitrary dimension.
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Theorem 5. Let F be a CM-field and let Π be a regular algebraic cuspidal conjugate self-dual automorphic represen-

tation of GLn(AF ) for n ≤ 4. Let v be a finite place of F such that Πv is Iwahori-spherical. Then

WDι(ρΠ,`,ι|WFv )ss ∼= recGLn(Πv ⊗ | det |
1−n

2 )ss

unless n = 4 and there is an unramified character χ : F×v → C× such that one of the following holds:

(i) Πv
∼= St2(χ) � χ| · |±1/2 � χ| · |±1/2 (same sign)

(ii) Πv
∼= St2(χ) � St2(χ)

(iii) Πv
∼= St3(χ) � χ| · |±1

(iv) Πv
∼= St4(χ) and WDι(ρΠ,`,ι|WFv )F-ss has trivial monodromy operator

Proof. If Πv is unramified there is nothing to show and hence one can assume that one of the following holds:

• n = 2 and Πv
∼= St2(χ) for some unramified character χ of F×v

• n = 3 and one of the following holds:

– Πv
∼= St2(χ1) � χ2 for some unramified characters χ1 and χ2 of F×v

– Πv
∼= St3(χ) for some unramified character χ of F×v

• n = 4 and one of the following holds:

– Πv
∼= St4(χ) for some unramified character χ of F×v

– Πv
∼= St3(χ1) � χ2 for some unramified characters χ1 and χ2 of F×v

– Πv
∼= St2(χ1) � St2(χ2) for some unramified characters χ1 and χ2 of F×v

– Πv
∼= St2(χ1) � χ2 � χ3 for some unramified characters χ1, χ2 and χ3 of F×v

Let Frv ∈ WFv be any lift of the geometric Frobenius, let $ be a uniformizer of Fv and let q denote the size of the

residue field of Fv. Let

S′ = {x1, · · · , xn}

denote the multiset of eigenvalues of Frv acting on WDι(ρΠ,`,ι|WFv )F-ss and let

S = {x1q
1−n

2 , · · · , xnq
1−n

2 }

Let µ =
∏n
i=1 µi be an accessible refinement of Πv. By [SAI, Lem. 1] in order to prove the corollary it is enough to

show that

S = {µ1($), · · · , µn($)}

We will now prove the corollary by working case by case.

• Suppose Πv
∼= St2(χ). Applying Lemma 5.6 to the accessible refinement

Πv ↪→ Ind(χ| · |1/2, χ| · |−1/2)

yields S = {χ($)q−1/2, χ($)q1/2}. This is as predicted by the local Langlands correspondence.

• Suppose Πv
∼= St2(χ1) � χ2. Applying Lemma 5.6 with i = 1 to the accessible refinement

Πv ↪→ Ind(χ1| · |1/2 × χ1| · |−1/2 × χ2)
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shows that χ1($)q−1/2 ∈ S and applying the lemma to the accessible refinement

Πv ↪→ Ind(χ2 × χ1| · |1/2 × χ1| · |−1/2)

shows that χ1($)q1/2 ∈ S. It follows that S = {χ1($)q−1/2, χ1($)q1/2, x} for some x. Applying Lemma 5.6

with i = 3 to the previous refinement shows that x = χ2($) and hence S is as predicted by the local Langlands

correspondence.

• Suppose Πv
∼= St3(χ). Applying Lemma 5.6 to the accessible refinement

Πv ↪→ Ind(χ| · |, χ, χ| · |−1)

shows that S = {χ($)q−1, χ($)q, x} for some x. Applying Lemma 5.6 with i = 3 to the same refinement shows

that x = χ($) and hence S is as predicted by the local Langlands correspondence.

• Suppose Πv
∼= St4(χ). Let α := χ($). Applying Lemma 5.6 to the accessible refinement

Πv ↪→ Ind(χ| · |3/2, χ| · |1/2, χ| · |−1/2, χ| · |−3/2)

yields S = {αq−3/2, αq3/2, x, y} for some x, y and applying the lemma with i = 2 to the same refinement shows

that there is a subset {a, b} ⊂ S such that ab = α2q−2.

– If

{a, b} = {x, y}

then applying Lemma 5.6 with i = 4 to the same refinement yields a contradiction.

– If

{a, b} = {x, αq−3/2}

then x ·αq−3/2 = α2q−2 and hence x = αq−1/2. Applying Lemma 5.6 with i = 4 to the previous refinement

yields y = αq1/2 and hence S is as predicted by the local Langlands correspondence.

– If

{a, b} = {x, αq3/2}

then x · αq3/2 = α2q−2 and hence x = αq−7/2. Applying Lemma 5.6 with i = 4 to the previous refinement

yields y = αq7/2. Hence

S = {αq−7/2, αq−3/2, αq3/2, αq7/2}

and there are no c, d ∈ S such that c/d = q±1. Write

WDι(ρΠ,`,ι|WFv )F-ss ∼= (r,N)

Since

r(Frv) ·N · r(Frv)
−1 = q−1N

it follows that the monodromy operator N has to be trivial.

• Suppose Πv
∼= St3(χ1) � χ2. Let α := χ1($) and β := χ2($). Applying Lemma 5.6 with i = 1 to the accessible

refinement

Πv ↪→ Ind(χ1| · |, χ1, χ1| · |−1, χ2)

and applying the lemma to the accessible refinement

Πv ↪→ Ind(χ2, χ1| · |, χ1, χ1| · |−1)

yields S = {αq−1, αq, x, y} for some x, y. Suppose first that χ2 6= χ1| · |±1. Applying Lemma 5.6 with i = 1 to
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the previous refinement yields S = {αq−1, αq, β, z} for some z. Applying Lemma 5.6 with i = 4 to the same

refinement shows that z = α and hence S is as predicted by the local Langlands correspondence. If χ2 = χ1| · |−1

then

{αq−2, αq−1, αq, αq3}

is not as predicted by the local Langlands correspondence but satisfies all the relations coming from Lemma 5.6.

If χ2 = χ1| · |+1 then

{αq−3, αq−1, αq, αq2}

is not as predicted by the local Langlands correspondence but satisfies all the relations coming from the Lemma

5.6.

• Suppose Πv
∼= St2(χ1) � St2(χ2). Let α := χ1($) and β := χ2($).

– Assume first χ1 6= χ2. Applying Lemma 5.6 to the accessible refinement

Πv ↪→ Ind(χ1| · |1/2, χ1| · |−1/2, χ2| · |1/2, χ2| · |−1/2)

and applying the lemma to the accessible refinement

Πv ↪→ Ind(χ2| · |1/2, χ2| · |−1/2, χ1| · |1/2, χ1| · |−1/2)

yields S = {αq−1/2, αq1/2, x, y} for some x, y. Applying Lemma 5.6 with i = 1 to the previous refinement

shows that βq−1/2 ∈ S. If βq−1/2 6= αq±1/2 then applying Lemma 5.6 with i = 4 to the previous refinement

shows that S is as predicted by the local Langlands correspondence. Otherwise, since α 6= β, one has

βq−1/2 = αq1/2. However, this is impossible since the representation Πv is generic.

– Assume now χ1 = χ2. Then

{αq−3/2, αq−1/2, αq1/2, αq3/2}

is not as predicted by the local Langlands correspondence but satisfies all the relations coming from Lemma

5.6.

• Suppose Πv
∼= St2(χ1) � χ2 � χ3. Let α := χ1($) and β := χ2($) and γ := χ3($). Applying Lemma 5.6 to the

accessible refinement

Πv ↪→ Ind(χ1| · |1/2, χ1| · |−1/2, χ2, χ3)

and applying the lemma to the accessible refinement

Πv ↪→ Ind(χ2, χ3, χ1| · |1/2, χ1| · |−1/2)

yields S = {αq−1/2, αq1/2, x, y} for some x, y.

– Assume first that χ2 6= χ1| · |±1/2. Applying Lemma 5.6 with i = 1 to the previous refinement shows that

S = {αq−1/2, αq1/2, β, y} for some y and applying the lemma with i = 4 to the same refinement shows that

y = γ and hence S is as predicted by the local Langlands correspondence.

– Assume now that χ2 = χ1| · |±1/2.

– Assume first χ2 6= χ3. Then γ /∈ {αq−1/2, αq1/2} since this would imply, since β 6= γ, that γ/β ∈ {q, q−1}
which is impossible since the representation Πv is generic. Hence, applying Lemma 5.6 with i = 1 to the

accessible refinement

Πv ↪→ Ind(χ3, χ2, χ1| · |1/2, χ1| · |−1/2)

yields S = {αq−1/2, αq1/2, γ, z} for some z and applying the lemma with i = 4 to the same refinement shows

that z = β and hence S is as predicted by the local Langlands correspondence.
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– Assume now χ2 = χ3 = χ1| · |±1/2. In this case

{αq−1/2, α, αq1/2, αq∓1}

is not as predicted by the local Langlands correspondence but satisfies all the relations coming from Lemma

5.6.

We will now deduce analogues of the previous results for automorphic representations of general linear groups over

totally real fields.

Let F be a totally real field and let Π be a regular algebraic cuspidal essentially self-dual automorphic representation

of GLn(AF ) as defined in [CHT, p. 134]. In particular, there exists a character

χ : F×\A×F → C×

such that

• Π∨ ∼= Π⊗ χ

• χv(−1) is independent of v|∞

The existence of the relevant automorphic Galois representations follows then from the CM-case as shown in [CHT,

Prop. 3.3.1] by letting CM-fields with maximal totally real subfield F+ vary. It follows from this construction, by using

CM-extensions of the totally real field in which suitable finite places split completely, that the previous local-global

compatibility results directly imply the corresponding results for totally real fields:

Corollary 6.2. Let F be a totally real field and let π be a regular algebraic cuspidal essentially self-dual automorphic

representation of GLn(AF ) for n ≤ 4. Let v be a finite place of F such that πv is Iwahori-spherical. Then

WDι(ρπ,`,ι|WFv )ss ∼= recGLn(πv ⊗ | det |
1−n

2 )ss

unless n = 4 and there is an unramified character χ : F×v → C× such that one of the following holds:

• πv ∼= St2(χ) � χ| · |±1/2 � χ| · |±1/2 (same sign)

• πv ∼= St2(χ) � St2(χ)

• πv ∼= St3(χ) � χ| · |±1

• πv ∼= St4(χ) and WDι(ρπ,`,ι|WFv )F-ss has trivial monodromy operator

In particular, one obtains the following for Galois representations associated to Hilbert modular forms:

Corollary 6.3. Let F be a totally real field and let π be a cuspidal automorphic representation of GL2(AF ) of

cohomological weight. Let v be a finite place of F such that πv is Iwahori-spherical. Then

WDι(ρπ,`,ι|WFv )ss ∼= recGL2
(πv ⊗ |det|− 1

2 )ss

Proof. The result follows from Corollary 6.2 since if χπ denotes the central character of π then π∨ ∼= π ⊗ χ−1
π and

χ−1
π,v(−1) is independent of v|∞.
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6.4 Results in arbitrary dimension

We now discuss some implications of the crystalline periods approach to local-global compatibility for Galois repre-

sentations of arbitrary dimension. After dealing with some specific types of ramification in Section 6.4.1, we prove in

Section 6.4.2 that if the local component of the automorphic representation in question is “in general position” then

knowledge of the monodromy operators can be combined with the crystalline periods result to obtain semi-simple

local-global compatibility results. Note that in Chapter 10 we prove a result - in a symplectic context, but similar

results should hold by very similar proofs for GLn - of how certain generalized potential level-lowering results might

be used to obtain strong lower bounds on the rank of monodromy. Hence, via the results of the current section, this

gives an approach to showing the full semi-simple local-global compatibility.

6.4.1 Various higher dimensional examples

For some representations of arbitrary large dimension one can still obtain local-global compatibility by the methods

of the previous sections:

Suppose π is a local component of an automorphic representation of GLn over a CM-field or totally real field F as

discussed in the previous section. Say it is the local component of Π at a finite place v of F . As before, let Frv ∈WFv

be any lift of the geometric Frobenius, let $ be a uniformizer of Fv and let q denote the size of the residue field of Fv.

Let

S′ = {x1, · · · , xn}

denote the multiset of eigenvalues of Frv acting on WDι(ρΠ,`,ι|WFv )F-ss and let

S = {x1q
1−n

2 , · · · , xnq
1−n

2 }

Now suppose for example that

π ∼= St3(χ) � St2(µ1) � · · ·� St2(µa) � St1(λ1) � · · ·� St1(λb)

Then

S = {αq−1, αq, x, µ1, · · · , µr}

and hence x = α and one is done. However, the more general case where

π ∼= St3(χ1) � · · ·� St3(χr) � St2(µ1) � · · ·� St2(µa) � St1(λ1) � · · ·� St1(λb)

is already more complicated: The crystalline period method can not distinguish the correct set from the set

S = {α1q
−1, α2

1/ασ(1), αq, · · · , µ1, · · · , µr}

where σ is any permutation in the symmetric group Sr.

Note that, depending on the type of ramification the representation Πv has, the amount of possible sets S can

increase quickly as n gets larger. For example, suppose that Πv
∼= St5(χ) for some character χ and let α = χ($).

Then

S = {αq−2, αq2, x, y, z}

for some numbers x, y, z such that xyz = α3. Via the crystalline periods method it follows that there are two distinct

elements a, b ∈ S such that ab = α2q−3 and two distinct elements c, d ∈ S such that cd = α2q3. By analyzing the

different possibilities one can see that exactly the following 9 multisets cannot be ruled out to be S via the crystalline

period method:

•
{αq−8, αq−2, αq2, αq3, αq5}
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•
{αq−5, αq−3, αq−2, αq2, αq8}

•
{αq−5, αq−2, α, αq2, αq5}

•
{αq−5, αq−2, αq, αq2, αq4}

•
{αq−4, αq−2, αq−1, αq2, αq5}

•
{αq−4, αq−2, αq, αq2, αq3}

•
{αq−3, αq−2, αq−1, αq2, αq4}

•
{αq−3, αq−2, α, αq2, αq3}

•
{αq−2, αq−1, α, αq, αq2}

Here the last multiset is the one predicted by the local Langlands correspondence.

6.4.2 Using the monodromy operator

We now combine the crystalline period method with assumptions on the rank of the local monodromy operator. We

restrict to local components of the automorphic representation in question which satisfy a certain assumption which

we now define:

Definition 21. Let K be a finite extension of Qp for some prime p and let q denote the size of the residue field. Let

π be an Iwahori-spherical irreducible admissible representation of GLn(K) for some n ≥ 1. Write it as

π ∼= �ri=1Stni(χi)

We say that the representation π is in general position if

χi($)/χj($) 6∈ qZ

for i 6= j.

Note that the segments of π as above are unlinked as defined in [ZEL, Section 4.1] and hence a representation

which is in general position is generic by [ZEL, Section 9.7].

Definition 22. Let K be a finite extension of Qp for some prime p. For n ∈ Z≥1 let Sp(n) denote the Weil-Deligne

representation (r,N) with underlying vector space Cn, with a basis say {e1, · · · , en} and r the unramified representation

such that for any σ ∈WK one has

r(σ)ei = |σ|n−iei for all i

and

N(ei+1) = ei for all 1 ≤ i ≤ n− 1 and N(e1) = 0
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Let ρ be an irreducible finite dimensional continuous complex representation of the Weil group WK . Define Spn(ρ) to

be the Weil-Deligne representation

Spn(ρ) := ρ⊗ Sp(n)

A Weil-Deligne representation (r,N) is called admissible if r is a semi-simple representation. Note (r,N) is admissible

if and only if the image under r of some lift of Frobenius is semi-simple. It is known that any admissible Weil-Deligne

representation (r,N) is isomorphic to one of the form

r⊕
i=1

Spni(ρi)

and this description is unique up to permutations.

At places where the local component of the automorphic representation is in general position, the variation of one

crystalline period together with matching of the rank of monodromy with the prediction from the local Langlands cor-

respondence implies the local-global compatibility for the semi-simple part of the relevant Weil-Deligne representation:

Proposition 6.5. Let F be a CM-field and let Π be a regular algebraic cuspidal conjugate self-dual automorphic

representation of GLn(AF ). Let v be a finite place of F such that Πv is Iwahori-spherical and in general position.

Write WDι(ρΠ,`,ι|WFv )F-ss ∼= (r,N) and recGLn(Πv ⊗ | det | 1−n2 ) ∼= (rrec, Nrec). Under Hypothesis 5.1.1 and assuming

that rank N = rank Nrec it follows that

(r,N) ∼= (rrec, Nrec)

Proof. Since Πv is Iwahori-spherical it is of the form

Πv
∼= �ri=1Stni(χi)

for integers ni and for characters χi of F×v . Write

(r,N) ∼=
s⊕
j=1

Spmj (ρj)

for integers mi and irreducible representations ρi of WFv . Note that by Hypothesis 5.1.1 the representation r is

unramified and hence the representations ρi are unramified characters. One has

n− s =
∑
j

(mj − 1) = rank N = rank Nrec =
∑
i

(ni − 1) = n− r

and hence r = s. Let Frv be any lift of Frobenius and let $ be a uniformizer of Fv. By Hypothesis 5.1.1 and Lemma

5.6 it follows that for each 1 ≤ i ≤ r the numbers

χi($)q(1−ni)/2q(n−1)/2 and χi($)q(1+ni)/2q(n−1)/2

are eigenvalues of r(Frv). Suppose that for some i these two numbers occur as eigenvalues of Spjk(ρjk) with k ∈ {1, 2}
and 1 ≤ jk ≤ s and j1 6= j2. Since Πv is in general position it follows that

r ≥ s+ 1

which is a contradiction. Hence, after possibly reordering the labeling of the j’s, one can assume that for all 1 ≤ i ≤ r
the numbers χi($)q(1−ni)/2q(n−1)/2 and χi($)q(1+ni)/2q(n−1)/2 are eigenvalues of Frv corresponding to Spmi(ρi) and

hence mi ≥ ni. Since r = s it follows that in fact

mi = ni
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for all 1 ≤ i ≤ r. It also follows that ρi = χ̃i · | · |(1−n)/2 for all such i and since

recGLn(�ri=1Stni(χi))
∼=

r⊕
i=1

Spni(χ̃i)

it follows that

(r,N) ∼= (rrec, Nrec)

as desired.

Note that it makes sense in the above result to restrict to the case where local component πv is in general position

since otherwise one can not obtain very complete results: Assume the set-up of Proposition 6.5 and assume for example

that

πv ∼= St2(χ) � St2(χ)

Let $ be a uniformizer of Fv and α = χ($v). It can then be seen that the crystalline periods method cannot rule out

that, in the notation of the proof of Proposition 6.5, one has

S = {αq−3/2, αq−1/2, αq1/2, αq3/2}

In other words, one can not rule out the the semi-simple Galois action looks as if the local component were St4(χ). In

this case, even if one knows that N ∼ Nrec one can not conclude the desired semi-simplified local-global compatibility

result.

7 Local semi-simplifications: The case of symplectic groups

In this chapter we use the results of Chapter 5 to prove local-global compatibility results for Galois representations

associated to automorphic representations of symplectic groups over totally real fields. Note that the existence of

Galois representations attached to certain automorphic representations of GSp4 over totally real fields as well as the

corresponding local-global compatibility were deduced in [SOR] from the corresponding results for GL4 in [HT] and

[TY] by using transfer from GSp4 to GL4. Instead of appealing to the results of the latter two references we will in this

section use the results of the previous chapter to deduce local-global compatibility results. The main result is Theorem

6 which, in the special case of type (IIa) representations, is of relevance for Conjecture 3.1.7 of [SU]. As described in

the introduction, this conjecture would in particular allow in the work of Skinner-Urban in [SU] to avoid the appeal

to the difficult work of Kato on Euler systems. In fact, one only needs the upper bound on the rank of monodromy

operators for type (IIa) representations and the next theorem proves this desired upper bound in the case of globally

generic representations. Essentially the same proof, but using symplectic group eigenvarieties instead of unitary group

eigenvarieties, should give the desired upper bound as predicted by the conjecture. See for example [JOR2] where our

methods have been used for such purposes in combination with γ-factor arguments.

Let

J :=


1

1

−1

−1


and let GSp4 denote the algebraic group over Q corresponding to those X ∈ GL4(Q) such that

TX · J ·X = c(X) · J

for some scalar c(X). Now let F be a totally real field and π a cuspidal automorphic representation of GSp4(AF ) of

weight

((bτ,1, bτ,2)τ ;w) ∈ (Z2)Hom(F,R) × Z
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with bτ,1 ≥ bτ,2 ≥ 0 and bτ,1 + bτ,2 ≡ w mod 2 for all τ ∈ Hom(F,R). This means that if v|∞ is the place of F

corresponding to τ ∈ Hom(F,R) then πv is an essentially discrete series representation of GSp4(Fv) with the same

infinitesimal character and central character as the finite-dimensional irreducible algebraic representation of GSp4 of

highest weight given by

t = diag(t1, t2, t3, t4) 7→ t
bτ,1
1 t

bτ,2
2 c(t)(−w−bτ,1−bτ,2)/2

An automorphic representation π of GSp4(AF ) as above will be called cuspidal regular algebraic. Suppose π is in

addition also globally generic as defined for example in [SOR, Sect. 2.3]:

Let ψ be a non-trivial character of F\AF and define a character on the unipotent radical N of the upper-triangular

Borel of GSp4 by 
1 u ∗ ∗

1 z ∗
1 −u

1

 −→ ψ(u+ z)

Then π is called globally generic if there exists f ∈ π such that∫
N(F )\N(AF )

f(n)ψ−1(n)dn 6= 0

For such a globally generic automorphic representation it follows from the discussion in [SOR] that Hypothesis 5.1.1

implies that for a rational prime ` and isomorphism ι between Q` and C there is a continuous semi-simple `-adic Galois

representation

ρπ,`,ι : Gal(F/F ) // GL4(Q`)

such that for all finite places v - ` of F such that πv is unramified one has

WDι(ρπ,`,ι|WFv )F-ss ∼= recGSp4
(πv ⊗ |c|−

3
2 )

where recGSp4
(−) denotes the local Langlands correspondence for GSp4 as constructed in [GT]. We will use deformation

theory to extend this to places where π is not spherical. To state the local-global compatibility results that we will

prove, we first recall some notation about Iwahori-spherical representations of GSp4(K) where K is a p-adic field.

Let B denote the Borel subgroup of GSp4(K) consisting of upper-triangular matrices and let T denote the diagonal

maximal torus. For smooth characters χ1, χ2, χ of K× let IndGB(χ1, χ2;χ) denote the normalized induction of the

extension to B of the character

t = diag(t1, t2, t3, t4) 7→ χ1(t1)χ2(t2)χ(c(t))

This induced representation will also be denoted by χ1 × χ2 o χ. Let πv be a generic Iwahori-spherical representation

of GSp4(K). In particular there is an injection

πv ↪→ χ1 × χ2 o χ

for some characters χ1, χ2 and χ of K×. The generic Iwahori-spherical representations of GSp4(K) are divided into

six classes in [SCH], namely type (Ia) to type (VIa), and these types can be described in the following manner:

• type (Ia)

Here πv is isomorphic to an irreducible principal series representation χ1 × χ2 o χ for some unramified characters χ1,

χ2 and χ

• type (IIa)

Here πv is the generic constituent of χ1| · |1/2 × χ1| · |−1/2 o χ2 with χ2
1 6∈ {| · |±1, | · |±3}

• type (IIIa)
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Here πv is the generic constituent of χ1 × | · |o χ2| · |−1/2 with χ1 6∈ {1, | · |±2}.

• type (IVa)

Here πv is the generic constituent of | · |2 × | · |o | · |−3/2χ.

• type (Va)

Here πv is the generic constituent of ξ0| · | × ξ0 oχ| · |−1/2 where ξ0 is the unramified character of K× such that ξ2
0 = 1

and ξ0 6= 1

• type (VIa)

Here πv is the generic constituent of | · | × 1 o | · |−1/2χ.

Let πv be a generic Iwahori-spherical representations of GSp4(K). We now describe explicitly some aspects of the

local Langlands correspondence for such a representation. Since πv is generic it follows, in the notation of [GT, Thm.

5.2], that πv is of type (B). Hence it follows from the construction of recGSp4
(−) in [GT, Sect. 7] as well as from [GT,

Prop. 3.4] that

recGSp4
(πv)

ss ∼= χ̃⊕ χ̃χ̃1 ⊕ χ̃χ̃2 ⊕ χ̃χ̃1χ̃2

The local global compatibility results that we will prove in Theorem 6 for the representation ρπ,`,ι are obtained by

using functoriality transfer of π to an automorphic representation of GL4(AF ). We will only deal with the case of

Iwahori-spherical ramification and in this case it will follow from the above description of recGSp4
(−) that the only

local components of automorphic representations of GL4(AF ) that will intervene in the calculations are subquotients

of representations of the form

Ind(χ, χχ1, χχ2, χχ1χ2)

for some characters χ1, χ2 and χ as above.

Theorem 6. Let F be a totally real field and let π be a cuspidal globally generic regular algebraic automorphic

representation of GSp4(AF ). Let v be a finite place of F such that πv is Iwahori-spherical but not of type (VIa). Then

WDι(ρπ,`,ι|WFv )ss ∼= recGSp4
(πv ⊗ |c|−

3
2 )ss

unless πv is of type (IVa) and WDι(ρπ,`,ι|WFv )F-ss has trivial monodromy operator.

Proof. By [GT] the transfer of π to an automorphic representation of GL4(AF ) is either cuspidal or an isobaric sum

π1 �π2 with π1 and π2 cuspidal automorphic representations of GL2(AF ). In the latter case the Galois representation

ρπ,`,ι is constructed from ρπ1,`,ι and ρπ2,`,ι and the theorem follows from Corollary 6.3. Hence assume now that the

transfer of π to an automorphic representation of GSp4(AF ) is cuspidal. Let v be as in the statement of the theorem.

Since πv is Iwahori-spherical there is an injection

πv ↪→ χ1 × χ2 o χ

for some unramified characters χ1, χ2 and χ of F×v . In order to prove that

WDι(ρπ,`,ι|WFv )ss ∼= recGSp4
(πv ⊗ |c|−

3
2 )ss

it is enough, by [SOR] and the discussion preceding the theorem, to show the following: Suppose Π is a cuspidal

regular algebraic essentially self-dual automorphic representation GL4(AF ) such that Πv is the generic constituent of

Ind(χχ1χ2, χχ1, χχ2, χ)

where χ1, χ2 and χ are as above. Then

WDι(ρΠ,`,ι|WFv )ss ∼= recGL4(Πv ⊗ | det |− 3
2 )ss
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To show this we will use Theorem 5 and a case by case study of the possible types of πv.

• type (Ia)

Here πv is isomorphic to an irreducible principal series representation χ1 × χ2 o χ for some unramified characters

χ1, χ2 and χ. By [ST, Lem. 3.2] it follows that χ1 6= | · |±1, χ2 6= | · |±1, and χ1 6= | · |±1χ±1
2 where in the last expression

all sign combinations are allowed. It follows that Ind(χ, χχ1, χχ2, χχ1χ2) is also irreducible and therefore

Πv
∼= Ind(χ, χχ1, χχ2, χχ1χ2)

Hence one is done.

• type (IIa)

Here πv is the generic constituent of χ1| · |1/2 × χ1| · |−1/2 o χ2 with χ2
1 6∈ {| · |±1, | · |±3}. It follows that

Πv
∼= St2(χ1χ2) � χ2

1χ2 � χ2

Hence one is done unless χ2
1χ2 = χ2 = χ1χ2| · |±1/2. But this implies χ2

1 = | · |±1 which is a contradiction.

• type (IIIa)

Here πv is the generic constituent of χ1 × | · |o χ2| · |−1/2 with χ1 6∈ {1, | · |±2}. It follows that

Πv
∼= St2(χ1χ2) � St2(χ2)

Hence one is done unless χ1 = 1 but this is a contradiction.

• type (IVa)

Here πv is the generic constituent of | · |2 × | · |o | · |−3/2χ. It follows that

Πv
∼= St4(χ)

Hence one is done if WDι(ρπ,`,ι|WFv )F-ss has non-trivial monodromy operator.

• type (Va)

Here πv is the generic constituent of ξ0| · | × ξ0 o χ| · |−1/2 where ξ0 is the unramified character of K× such that

ξ2
0 = 1 and ξ0 6= 1. It follows that

Πv
∼= St2(ξ0χ) � St2(χ)

Hence one is done since ξ0 6= 1.

• type (VIa)

Here πv is the generic constituent of | · | × 1 o | · |−1/2χ. It follows that

Πv
∼= St2(χ) � St2(χ)

Here the desired result does not follow.

Remark. The local-global compatibility results for local semi-simplifications of automorphic Galois representations

obtained in the corollaries 5, 6.2 and 6 can be strengthened if non-triviality results for local monodromy operators are

known. In Chapter 9 we will obtain such results.
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In the previous chapters we described an approach to obtain local-global compatibility results for semi-simple

information via the variation of crystalline periods of Galois representations. Similar ideas have been used before

in [SU] with the following difference. In that work one studies extension of automorphic Galois representations by

putting them into a family whose generic member is irreducible. The variation results on crystalline periods then show

something about the so obtained extension classes. Strictly speaking, this lies outside the framework of local-global

compatibility since in the case of reducible Galois representations local-global compatibility does not predict something

about the extension classes. However, via the deformation theoretic approach these two questions are seen to be very

closely related. The unifying philosophy is the following: In many cases, local-global compatibility is simply part of

the information that can be obtained at p by deforming p-adic Galois representations. In the work of Skinner-Urban

the same is done, and crystallinity properties of pieces of reducible automorphic Galois representations are obtained.

Let f ∈ Sk(Γ0(N)) be a newform of even weight k which is at least 2, with associated automorphic representation

π. Let Vf be the p-adic representation associated to f . The Selmer group is defined as

H1
f (Q, Vf (k/2)) := Ker(H1(Q, Vf (k/2)) −→

∏
v

H1(Qv, Vf (k/2))

H1
f (Qv, Vf (k/2))

)

where for v 6= p one has

H1
f (Qv, Vf (k/2)) = Ker(H1(Qv, Vf (k/2)) −→ H1(Iv, Vf (k/2)))

where Iv denotes the inertia subgroup of Gal(Qv/Qv), and for v = p one defines

H1
f (Qv, Vf (k/2)) = Ker(H1(Qv, Vf (k/2)) −→ H1(Qv, Vf (k/2)⊗ Bcris))

If ε(1/2, π) = −1, then one knows that there exists a certain special cuspidal automorphic representation SK(π) of

PGSp4(AQ). The existence of this special symplectic automorphic representation is then exploited, via deformation

theory, to prove in [SU, Theorem 4.1.4] for suitable primes p that

dim H1
f (Q, Vf (k/2)) ≥ 1

We will now discuss some aspects of local-global compatibility and deformation theory used in the proof. The general

principle is to put the Saito-Kurokawa form SK(π) into a p-adic family of automorphic representations with generic

member having irreducible Galois representation. A crucial input in the whole strategy is Theorem 4.2.7 of [SU]

which says that a certain irreducible component of an eigenvariety is not so called globally endoscopic. To prove this

theorem one shows that global endoscopy would imply the existence of a non-trivial extension ∗ of ε−1 by the trivial

representation, where ε is the p-adic cyclotomic character of Gal(Q/Q). If ∗ can be shown to be everywhere unramified

this yields be a contradiction. To control the ramification at p one uses Kisin’s result on analytic variation of crystalline

periods! With this result on failure of global endoscopy, by a deformation theoretic argument one produces a non-zero

class

c ∈ H1
f (Qp, Vf (2k − 3− r))

where r = 1− k or r = 2− k which is a candidate to be in the desired Selmer group. The key is now to show that in

fact c yields a non-trivial class in the Selmer group. This uses in particular that the Galois representation is ordinary

at p if f is ordinary at p. This has been proven by Kisin via crystalline periods. Now one want to show that r = 2− k
as opposed to 1− k. It is a deep result of Kato’s that

dim H1
f (Q, Vf (s)) = 0

for s 6= k/2. A fortiori, it follows that r = 2 − k. However, to deduce the last result, really much less is needed.

As follows from the discussion in [SU, Section 4.3.4], an upper bound on the monodromy at places of para-spherical

ramification suffices and this in turn can be proven - at p - via crystalline periods. More precisely, if r = 1 − k one
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obtains a non-split extension

0→ L→ K → L(ε−1)→ 0

where L is some finite extension of Qp. If one can show that this extension is everywhere unramified one obtains a

contradiction. The ramification control at p is obtained via a crystalline periods argument and the desired control

of the ramification at a place q|N follows from [SU, Conjecture 3.1.7]. As mentioned in the remark preceding the

theorem, the required upper bound on the rank of monodromy can be proven via crystalline period method developed

in this memoir. Note that in this case the independence of ` hypothesis can be assumed to be known due to the

corresponding independence of ` theorem for compatible systems of Galois representations associated to suitable

automorphic representations of GL4.

8 Congruences

As described in the introduction, our approach to local monodromy operators of automorphic Galois representations is

to combine automorphic congruences with modularity lifting theorems. In the current chapter we discuss an instance

of such congruences, namely potential level-lowering results. We prove strengthened versions of the potential level-

lowering result of [CHT, Lem. 4.4.1] and [SOR] where we control the residual Hecke action at the place where the level

is lowered. One motivation for this is that it allows us to prove in this chapter residual local-global compatibility results

in the context of general linear groups, unitary groups, and symplectic groups. This should be useful when proving

modularity lifting results since to do so one usually has to use a certain amount of local-global compatibility results.

Hence the study of congruences might turn out to be useful for carrying out the previously described principle for the

calculation of monodromy operators of automorphic forms on more general reductive algebraic groups than currently

approachable cases. The level-lowering proof of the residual local-global compatibility seems significantly simpler than

attempting to show this via a study of singularities of Shimura varieties, for example on symplectic groups.

8.1 Potential level-lowering and residual local-global compatibility

We first describe some notation for automorphic forms on unitary groups. Let G, F and F+ be as in Section 5.1: F+

is a totally real field, E an imaginary quadratic extension of Q and F := F+E is such that F/F+ is unramified at

all finite places and that n[F+ : Q]/2 is even, n ≥ 2 is an integer and G is an inner form of the quasi-split unitary

group U∗n discussed earlier, that is quasi-split at all places of F+ which are inert in F and such that
∏
v|∞G(F+

v ) is

compact. If v ∈ SplF/F+ splits as wwc in F then iw is the isomorphism discussed in Section 5.1.

Let c be the non-trivial element of Gal(F/F+). Let ` > n be a rational prime and fix throughout this section an

isomorphism ι between Q` and C. Fix a subfield K of Q` such that K/Q` is a finite extension and K contains the

image of all embeddings F ↪→ Q`. Let O denote the valuation ring of K and let k denote its residue field. Let S`
denote the set of places of F+ above ` and assume that S` ⊂ SplF/F+ . Choose a subset S̃` of the set of places of F

above ` such that

{places of F above `} = S̃` t S̃c`
where Sc` is the collection of elements x ◦ c for x ∈ S̃`. Let

• G(F+
` ) :=

∏
v∈S` G(F+

v ) and identify G(F+
v ) with GLn(Fw) where w ∈ S̃` divides v

• G(OF+
`

) :=
∏
v∈S` G(OF+

v
)

• U =
∏
v Uv be a compact open subgroup of G(A(∞)

F+ ) where v ranges over the finite places of F+ and Uv is a

subgroup of G(F+
v ) and assume that the projection of U to G(F+

` ) is contained in G(OF+
`

)

Fix a ∈ (Zn,+)Hom(F,Q`) such that

aτ,i = −aτ◦c,n+1−i
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for all τ ∈ Hom(F,Q`) and all 1 ≤ i ≤ n. Let Ĩ` denote the set of embeddings F ↪→ Q` which correspond to places in

S̃`. There exists a finite free O-module Ma and a representation

κ : G(OF+
`

) −→ GL(Ma)

such that

Ma ⊗O K ∼= ⊗τ∈Ĩ`(Waτ ⊗Q K)

where Waτ is as defined in Section 5.1. For any O-module A define

Sκ(U,A) =

{f : G(F+)\G(A(∞)
F+ ) −→ Ma ⊗O A|f(xu) = u−1

` · f(x) for all x ∈ G(A(∞)
F+ ), u ∈ U}

where u` is the projection of u ∈ U to G(F+
` ). Define an action of G(A(∞)

F ) on Sκ(U,A) by

(g · f)(x) = g` · f(xg)

for g ∈ G(A(∞)
F ) and f ∈ Sκ(U,A). For f ∈ Sκ(U,O) we will denote by f the corresponding element of Sκ(U, k). For

f1, f2 ∈ Sκ(U,O) we will write f1 ≡ f2 if their reductions in Sκ(U, k) agree. This will also sometimes be denoted as

f1 ≡ f2.

Let A denote the complex vector space of automorphic forms on G(AF+). Let ξ denote the representation of

G(F+
∞) :=

∏
v|∞

G(F+
v )

corresponding to a ∈ (Zn,+)Hom(F,Q`) as described in Section 5.1. As described for example in [CHT, p. 101], to each

f ∈ Sκ(U,O) corresponds, via ι, an element in

HomG(F+
∞)(ξ

∨,A)

Hence to each such f one can associate in an G(A(∞,`)
F+ )-equivariant way a vector Ψ(f) of an automorphic representation

of G(AF+).

8.1.1 Lowering the level

In the proof of Proposition 8.2 certain subspaces of Sκ(U,O) will be used which we now define:

Fix a finite place v ∈ SplF/F+ such that v - `. Via the choice of w|v of F identify G(F+
v ) with GLn(Fw). Via this

identification let Tv be the diagonal torus of G(F+
v ), let I denote the Iwahori subgroup of G(F+

v ) corresponding to the

upper triangular Borel subgroup and let I1 be the subgroup of I as defined in the beginning of Section 3.3. Assume

that the compact open subgroup U of G(A(∞)
F+ ) as above satisfies Uv = I1. For any character θ : I/I1 → O× let

Sθκ(U,O) := {f ∈ Sκ(U,O)
∣∣ g · f = θ(g)f for all g ∈ I}

Let mO denote the maximal ideal of O and let θ := θ mod mO. Define

Sθκ(U, k) := {f ∈ Sκ(U, k)
∣∣ g · f = θ(g)f for all g ∈ I}

For the statement of the next result fix also the following notation. A character χ : Tv → C× will be called `-integral

if

|ι−1χ(x)|` ≤ 1
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for all x ∈ Tv. Moreover, for `-integral characters χ1 and χ2 as above we write

χ1 ≡ χ2 mod `

if |ι−1χ1(x)− ι−1χ2(x)|` < 1 for all x ∈ Tv.

Proposition 8.2. Let G, F , F+ and ι be as above. Let π be an automorphic representation of G(AF+) of weight ν,

` > n a rational prime such all places of F+ above ` split in F and such that that πv is spherical at all places above `.

Assume v0 is a finite place of F+ which splits as wwc in F and is such that

• N(v0) ≡ 1 mod `.

• πv0 ◦ i−1
w is Iwahori-spherical, say

(πv0
◦ i−1

w ) ↪→ Ind(χ1)

for some unramified character χ1

For any finite place v 6= v0 take a compact open subgroup U ′v ≤ G(F+
v ) such that

• πU
′
v

v 6= (0)

• U ′v = G(OF+
v

) for almost all places

Then there is a place w0 and an automorphic representation π̃ of G(AF+) of weight ν such that

• There is an isomorphism

ρπ̃,`,ι
∼= ρπ,`,ι

• There is an at most tamely ramified character χ such that

(π̃v0
◦ i−1

w ) ∼= Ind(χ)

and

χ ≡ χ1 mod `

• For all finite places v /∈ {v0, w0} of F+ one has π̃
U ′v
v 6= (0)

Proof. Let us first make some definitions. Fix a place w0 ∈ SplF/F+ such that πw0 is spherical and such that w0 6= v0

and w0 - `. Let S be the subset of the set of places of F+ which is given by the union of the following sets:

• the set finite places of F+ which do not split in F

• the set of finite places of F+ in SplF/F+\{v0} at which π is not spherical

• {w0}

• the set of all places of F+ above `

• the set of finite places v of F+ such that U ′v is not G(OF+
v

), where U ′v is as in the statement of the lemma

• the set of infinite places

For each v /∈ S fix an isomorphism G(F+
v ) ∼= GLn(F+

v ) and note that in the rest of this proof we will identify these

groups. We will assume that for v = v0 the isomorphism is given by iw. Let I be the Iwahori-subgroup of G(F+
v0

)

corresponding to the upper triangular Borel B and let I1 and T be as before. Let

U =
∏
v

Uv ≤ G(A(∞)
F+ )

be a compact open subgroup such that
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• Uv0 = I1

• Uw0
≤ G(OF+

w0
) has no non-trivial element of finite order

• for all finite places v /∈ {v0, w0} one has Uv = U ′v

Note that

πU 6= (0)

Now let

H1 = ⊗′v 6∈SH1,v

be the Hecke algebra which, in the notation of Section 3.3, at v0 equals H+
1 and for v 6= v0 equals the spherical

Hecke algebra consisting of functions on G(F+
v ) which are locally constant, have compact support and are G(OF+

v
)

bi-invariant. Let ν∨ denote the dual representation of ν. As discussed in Section 5.1, the representation ν∨ corresponds

to some

a ∈ (Zn,+)Hom(F,C)

In the notation of the discussion preceding the lemma, choose any set S̃` and let κ : G(OF+
`

) −→ GL(Ma) be the

corresponding representation.

Let f ′1 ∈ πU
(v0)I be an eigenform for the H1-action, this exists due to the commutativity of the action, such that

there exists a finite extension K/Q` with valuation ring O, maximal ideal mO and residue field k` such that

f1 := Ψ−1(f ′1) ∈ Sκ(U,O)

and such that f1 ∈ Sκ(U, k`) is non-zero. After possibly taking a finite extension we will now assume that K contains

a primitive `-th root of unity ζ`. Let OF+
v0

denote the valuation ring of F+
v0

and let kv0 denote the residue field. Let x

be a generator of k×v0
and define a character

ξ : T (OF+
v0

)→ 1 + mO

by the composition of the reduction map with the character of T (kv0) defined by

diag(1, · · · , 1, x, 1 · · · , 1) 7→ ζi`

where x is at the i’th entry. Note that since ` > n the character ξ is regular. Via the isomorphism of I/I1 with T (kv0
)

one also obtains from the above definitions a character ρ of I/I1. Since Uw0
has no non-trivial element of finite order

it follows from [CHT, Lem. 2.3.1] that Sκ(U,O) is a free O[I/I1]-module and hence there exists fξ ∈ Sρκ(U,O) such

that

fξ ≡ f1

The representation of G(AF+) generated by Ψ(fξ) decomposes as a direct sum π1⊕· · ·⊕πr for some automorphic rep-

resentations πi of G(AF+). We will show in the rest of this proof that at least one of these automorphic representations

can be taken as the π̃ in the statement of the lemma.

First note that one can write

Ψ(fξ) =

r∑
i=1

gi

for some gi ∈ πi. Since fξ ∈ Sρκ(U,O) it follows that for all v /∈ S ∪ {v0} each gi is fixed by the action of G(OF+
v

) and

furthermore it follows that each gi transforms under I by ξ. In particular one has

πρi,v0
6= (0)

for each 1 ≤ i ≤ r. Here and also later in the proof we identify ρ with the C-valued character corresponding to it via

ι. It follows from [ROC] that for each i the representation πi,v0
is a subquotient of Ind(χ2) for some character χ2,
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depending on i, such that

(ι−1χ2)|T (O
F

+
v0

) = ξ

Since ξ is regular it follows from [ROD, p. 419] that Ind(χ2) is in fact irreducible and hence

πi,v0
∼= Ind(χ2)

We already know that πρi,v0
6= (0) and we will now show that in fact

dimC π
ρ
i,v0

= 1

Note that we will use in the following the description of principal series representations given in section 3.3. Let

g ∈ πρi,v0
and let h ∈ T (OF+

v0
). Let W denote the Weyl group of G(F+

v0
) and let w ∈W . Then one has

ξ(h)g(w) = g(wh) = g((whw−1)w) = χ2(whw−1)g(w) = ξ(whw−1)g(w)

By the regularity of ξ it follows that g(w) = 0 unless w = 1. By the Iwasawa decomposition

G(F+
v0

) = BWI

it follows that the space πρi,v0
is one-dimensional. A generator is for example the function G(F+

v0
)→ C which is given

by

bh 7→ χ2(b)ξ(h)

for b ∈ B and h ∈ I and which is zero on BwI for any non-trivial w ∈W .

Now let H2 = ⊗′v 6∈SH2,v denote the Hecke algebra such that H2,v is the spherical Hecke algebra for all v 6= v0 and,

in the notation of Section 3.3, Hv0
∼= H+

ρ . It follows from the above discussion that each gi is an eigenvector for the

H+
ρ -action. By using the one-dimensionality of spherical vectors in unramified representations it follows that in fact

each gi is an eigenform for the H2-action. Let g′i := Ψ−1(gi) and note that after possibly taking a finite extension of

K one can assume that g′i ∈ Sκ(U,O) for all i.

For each R ∈ Hv for v 6∈ S let α(R) be given by R ·f1 = α(R)f1 and for each i let αi(R) be given by R ·g′i = αi(R)g′i.

We will now show that there exists g′i such that

αi(R) ≡ α(R) mod mO

for every R as above. Suppose for contradiction that for each j there exists a finite place vj and R ∈ Hvj such that

αj(R) 6≡ α(R). First note that since fξ ≡ f1 one has

r∑
i=1

α(R) · g′i ≡ α(R) · fξ ≡ R · fξ ≡
r∑
i=1

αi(R) · g′i mod mO

For example for j = 1 one deduces that

fξ ≡
∑

2≤i≤r

αi(R)− α1(R)

α(R)− α1(R)
· g′i mod mO

By applying to the above description of fξ the corresponding calculation for j = 2 and continuing in this way yields

that fξ ≡ 0 which is a contradiction. Hence there exists g′i such that αi(R) ≡ α(R) mod mO for every R as above.

Choose one such g′i and let π̃ denote the corresponding automorphic representation of G(AF+). We will now show

that π̃ satisfies all the properties stated in the lemma.
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First note that by construction at every place v /∈ {v0, w0} one has

π̃
U ′v
v 6= (0)

Moreover, note that for all v 6∈ S ∪{v0} for any R ∈ Hv the eigenvalues of R acting on fξ and f1 have the same image

in k`. We have hence shown that there exists a valuation ring O′ in a finite extension of Q` such that for almost all

finite places v in SplF/F+ one has π̃v ∼= Ind(µ1) and πv ∼= Ind(µ2) for some characters µ1 and µ2, depending on v, such

that ι−1µ1 and ι−1µ2 take values in O′ and their reductions in the residue field of O′ agree. It hence follows that

ρπ̃,`,ι
∼= ρπ,`,ι

Let us now show the remaining property of π̃ stated in the lemma. As explained earlier, one knows that

π̃v0
∼= Ind(χ2)

for some character χ2 of T (F+
v0

) with

(ι−1χ2)|T (O
F

+
v0

) = ξ

We will now show that there is w in the Weyl group such that χw2 ≡ χ1 mod `. Let t ∈ T (F+
v0

) and write

ItI =
⊔
b∈S

bI

for some finite set S of elements in G(F+
v0

). One can choose b ∈ S to be of the form b = i · t for some i ∈ I. Write

i = i1i
′ with i1 ∈ I1 and i′ ∈ T (kv0

). Since t ∈ T (F+
v0

) it follows that one can choose b ∈ I1 · t and since

φξt (t) = 1

it follows that φξt (b) = 1. We will now assume that all the elements b ∈ S are chosen to be of this form. Fix a Haar

measure on G(F+
v0

) such that I has volume 1. Then

(φξtfξ)(x) =

∫
G(F+

v0
)

φξt (y)fξ(xy)dy

=
∑
b∈S

fξ(xb)

Similarly, for the characteristic function char(ItI) = φ1
t ∈ H+

1 one has

(φ1
tf1)(x) =

∑
b∈S

f1(xb)

For any t ∈ T (F+
v0

) let λξ(t) and λ1(t) denote the eigenvalue of φξt and φ1
t acting on fξ and f1, respectively. Then it

follows from the above that λξ(t) and λ1(t) have the same image in the residue field k` since fξ ≡ f1.

Fix a uniformizer of Fv0
and let T (Fv0

)+ be the corresponding subset of T (Fv0
) as defined in Chapter 3. Recall

the T (Fv0)+-equivariance, as described in Chapter 3, of the isomorphism

πIv0
−→ J(πv0

)T (OFv ) ⊗ δ−1
B

as well as of the isomorphism

π̃ρv0
−→ J(π̃v0)ξ ⊗ δ−1

B
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By [ZEL, Thm. 1.2] there are maps of C[T (OF+
v0

)]-modules

J(πv0
)ss ↪→

⊕
w∈W

χw1 · δ
1/2
B

as well as

J(π̃v0
)ss ↪→

⊕
w∈W

χw2 · δ
1/2
B

where W denotes the Weyl group of G(Fv0
). Since Ψ(f1) and Ψ(fξ) are eigenvectors for the C[T (OF+

v0
)]-action their

images in

J(πv0
)⊗ δ−1

B and J(π̃v0
)⊗ δ−1

B

respectively span lines of the form

χw1
1 · δ

−1/2
B and χw2

2 · δ
−1/2
B

for some elements w1, w2 ∈W . Since we have already shown that λξ(t) and λ1(t) have the same image in the residue

field k` it follows that χw1
1 ≡ χ

w2
2 mod ` and hence χ1 ≡ χw2 mod ` for some w in the Weyl group. Hence π̃ satisfies

all the properties of the lemma if one takes χ := χw2 .

One can deduce from Proposition 8.2 residual local-global compatibility results for automorphic Galois represen-

tations. Such results can be useful in proving modularity lifting theorems where the only assumed properties of

automorphic Galois representations are as in Hypothesis 5.1.1. See the beginning of Section 9.1 for a brief discussion

of this.

Corollary 8.3. Let G, F , F+ and ι be as above and let π be an automorphic representation of G(AF+). Let ` > n be

a rational prime and let v be a finite place of F+ which splits as wwc in F such that N(v) ≡ 1 mod ` and πv ◦ i−1
w is

Iwahori-spherical. Then (ρπ,`,ι)|ssGFw is as predicted by the local Langlands correspondence.

Proof. Let v and w be as in the statement of the corollary and identify throughout this proof G(F+
v ) with GLn(Fw)

via iw. By Lemma 8.2 there exists an automorphic representation π′ of G(AF+) and characters µi : F×w → C× and

ρi : F×w → C× for 1 ≤ i ≤ n such that the following holds: Firstly, one has

ρπ,`,ι
∼= ρπ′,`,ι

Secondly, one has

πv ↪→ Ind(µ1, · · · , µn)

as well as

π′v
∼= Ind(ρ1, · · · , ρn)

and there is a finite extension K/Q` such that the characters ι−1µi and ι−1ρi take values in OK and

ι−1µi ≡ ι−1ρi mod mOK

for all 1 ≤ i ≤ n. Here OK denotes the valuation ring of K and mO denotes the maximal ideal of O. By Hypothesis

5.1.2 one has

ρssπ′,`,ι|GFw ∼= (ι−1(ρ̃1
˜| · |

1−n
2 ⊕ · · · ⊕ ρ̃n ˜| · |

1−n
2 ))⊗OK Q`

and since

ρssπ,`,ι|GFw ∼= ρssπ′,`,ι|GFw
the lemma follows.

Results like Proposition 8.2 also allow to deduce level-lowering results for automorphic representations of GLn over

CM-fields. This method is due to Clozel-Harris-Taylor, see [CHT] (Lemma 4.4.1). We state it in a form convenient

for our later use:
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Corollary 8.4. Let F be a CM-field and Π a cuspidal regular algebraic conjugate self-dual automorphic representation

of GLn(AF ) and ` > n a rational prime such that ρΠ,`,ι is irreducible. Let v - ` be a finite place of F such that πv is

Iwahori-spherical. Then there is a solvable CM-extension F ′/F such that the base change of Π to F ′ remains cuspidal

and there is a cuspidal regular algebraic conjugate self-dual automorphic representation Π̃ of GLn(AF ′) such that

ρBCF ′ (Π),`,ι
∼= ρΠ̃,`,ι

and Π̃w is an unramified principal series representation for some w|v. The extension F ′ can be chosen to be linearly

disjoint over F from any given finite extension of F .

Proof. By making a base change to a suitable solvable imaginary CM-extension of F which is linearly disjoint over F

with F
ker ρΠ,`,ι and such that the base change of Π remains cuspidal one can assume that

• N(v) ≡ 1 mod `

• v lies above a place v0 of SplF/F+

• all places of F above ` lie above places in SplF/F+

• F/F+ is unramified at all finite places

• n[F+ : Q]/2 is even

In particular, there exists a unitary group G over F+ as described in Section 5.1. It follows from [LAB] that there

is an automorphic representation π of G(AF+) whose base change to GLn(AF ) is Π. Then π, G and v0 satisfy the

conditions in Lemma 8.2. Hence there is an automorphic representation π′ of G(AF+) such that ρπ′,`,ι
∼= ρπ,`,ι and

such that π′v0
is a principal series representation. By [LAB] one can base change π′ to an automorphic representation

Π′ of GLn(AF ) and Π′ is cuspidal since ρΠ,`,ι
∼= ρπ,`,ι is irreducible. Now take a solvable CM-extension such that

the base change of Π′ and Π remain cuspidal and such that at all places w|v the base change of Π′ is an unramified

principal series representation. This representation satisfies all the requirements of the lemma.

By essentially the same proofs as above, one can prove corresponding level-lowering and residual local-global

compatibility result for symplectic groups. This in particular generalizes the symplectic potential level-lowering results

of Sorensen in [SOR2]. We simply state the results:

Proposition 8.5. Let F be a totally real field and let G be an inner form of GSp2n,F (for some n ≥ 1) such that

G∞ is compact mod center (and ι be as above). Let π be an automorphic representation of G(AF ) with infinity type

ξ. Suppose ` > 2n is a rational prime. Assume v0 is a finite place of F such that

• N(v0) ≡ 1 mod `

• πv0 is Iwahori-spherical, say πv0 ↪→ Ind(χ1) for some unramified character χ1

For any finite place v 6= v0 take a compact open subgroup U ′v ≤ G(F+
v ) such that

• πU
′
v

v 6= (0)

• U ′v = G(OF+
v

) for almost all places

Then there is a place w0 and an automorphic representation π̃ of G(AF+) of weight ξ such that

• ρπ̃,`,ι ∼= ρπ,`,ι

• π̃v0
∼= Ind(χ) for an at most tamely ramified character χ such that

χ ≡ χ1 mod `
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• for all finite places v /∈ {v0, w0} of F+ one has π̃
U ′v
v 6= (0).

Corollary 8.6. Let G, F , ι, π, ` > 2n and v0 be as above. Then (ρπ,`,ι)|ssGFv0 is as predicted by the local Langlands

correspondence.

By using functoriality one can deduce analogous results for symplectic groups as in Theorem C of [SOR2]. We

refer to loc. cit. for detailed definitions of some of the notions we are now using. Let F be a totally real field. As in

loc. cit. we will assume the following:

Hypothesis 8.6.1. Let π be a cuspidal automorphic representation of GSp4(AF ) such that there is an integer w such

that π ⊗ | det |w/2 is algebraic. Then for each rational prime ` there exists a 4-dimensional Galois representation ρπ,`
associated to π and if π is non-CAP then πv is tempered for almost all finite places v of F .

If π is as above and non-endoscopic and non-CAP and assuming the previous hypothesis and that ρπ,` is absolutely

irreducible one can deduce the analogues of Proposition 8.5 and Corollary 8.6 for automorphic representations of

GSp4(AF ) by using Theorem B of [SOR2]. We omit the detailed formulation.

9 Local monodromy operators: The case of general linear groups

In this chapter we prove non-triviality results for local-monodromy operators associated to automorphic representation

of GLn and unitary groups and hence generalize the results of Section 4.2.1 to this more general situation. We also

discuss implications of the non-triviality of monodromy to local-global compatibly questions concerning the semi-simple

part of local Weil-Deligne representations associated to automorphic Galois representations and prove an analogue of

the conjecture of Skinner-Urban that was discussed in Chapter 2.

The main result of this chapter is Theorem 7 which is a generalization of Proposition 4.3 and in which modularity

lifting theorems are used to obtain non-triviality results for local monodromy operators of automorphic Galois rep-

resentations. In the next chapter we then carry out an analogous analysis for monodromy operators of automorphic

representations of symplectic groups.

9.1 Monodromy operators

As explained before, the aim of this chapter is to use the deformation theory of automorphic forms to obtain local-global

compatibility results for automorphic Galois representations. In particular, we want to use modularity lifting theorems

to calculate local monodromy operators of automorphic Galois representations. In proving such modularity lifting

theorems it is important to construct certain maps from Galois deformation rings to Hecke algebras or related objects.

These maps are constructed by using some local-global compatibility results for automorphic Galois representations. In

order to avoid potential instances of circular reasoning, we try to develop the approach to local monodromy operators

via modularity lifting theorems in such a way that the local-global compatibility assumptions of Hypothesis 5.1.1 are

sufficient for the proofs of the modularity lifting theorems that we use. Hence we will now briefly discuss some of the

local properties of automorphic Galois representations that are used in the proofs of relevant modularity lifting results

of [CHT], [TAY] and [GUE].

• Firstly:

Consider the crystalline deformation condition as defined in [CHT, Sect. 2.4.1]. The necessary local-global compati-

bility result is that ρπ,`,ι is crystalline at all v|` if πv is spherical for all v|`. This is assumed in Hypothesis 5.1.1.

• Secondly:

Consider the Taylor-Wiles deformation condition as defined in [CHT, Sect. 1.4.6]. Apart from the local-global

compatibility at places for principal series representations one has to show in the proof of [CHT, Prop. 3.4.4 (8)] a

certain residual local-global compatibility at places where the local component is a representation of GLn of the form

χ1 � · · ·� χn−2 � St2(χn−1)
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for some unramified characters χi for 1 ≤ i ≤ n− 1. This residual local-global compatibility follows from Hypothesis

5.1.1 and Corollary 8.3.

• Thirdly:

Consider the deformation condition as defined in [TAY, Sect. 2]. The necessary local-global compatibility results

concern local-global compatibility for principal series representations as well as unipotent inertia action at places of

Iwahori-spherical ramification. Both of these results follow from Hypothesis 5.1.1.

In the following, in order to avoid a complete discussion of whether or not Hypothesis 5.1.1 does indeed imply all

the necessary local-global compatibility results that are necessary to prove the modularity lifting theorems, we will

simply treat modularity lifting theorems as hypotheses. Note also that for ease of exposition we base our hypotheses

on the results of [CHT] which are not the most general known modularity lifting theorems that are known. It should

be clear, however, how to modify our proofs in order to incorporate stronger modularity lifting results.

Hypothesis 9.1.1. Let F be a CM-field and let

ρ : Gal(F/F ) −→ GLn(Q`)

be a continuous Galois representation which is unramified outside a finite set of places. Assume there is ι : Q`
∼ // C

such that

• ` > n and ` is unramified in F

• ρc ∼= ρ∨(1− n)

• for every place v|` of F the representation ρ|GFv is crystalline

• there exists a ∈ (Zn,+)Hom(F,C) such that for all τ ∈ Hom(F,C)

– either

`− n− 1 ≥ aτ,1 ≥ aτ,2 ≥ · · · ≥ aτ,n ≥ 0

or the inequalities hold with τ replaced by τ ◦ c
– for all 1 ≤ i ≤ n one has aτ◦c,i = −aτ,n+1−i

– if ι−1τ ∈ Hom(F,Q`) gives rise to v|` then

HTτ (ρ|GFv ) = {−(aτ,j + n− i)
∣∣1 ≤ i ≤ n}

• FKer(adρ)
does not contain F (ζ`) where ζ` is a primitive `’th root of unity

• the group ρ(Gal(F/F (ζ`))) is big as defined in [CHT, Def. 2.5.1]

• ρ is absolutely irreducible and ρ ∼= ρΠ1,`,ι for some regular algebraic cuspidal conjugate self-dual automorphic

representation Π1 of GLn(AF ) of weight a

Then there is a regular algebraic cuspidal conjugate self-dual automorphic representation Π′ of GLn(AF ) of weight a

such that

• ρ ∼= ρΠ′,`,ι

• Π′v is spherical for all finite places v - ` such that ρ|GFv is unramified and Π1,v is spherical

As in Chapter 4 we will now apply the modularity lifting hypothesis to the residual representations of the automor-

phic Galois representations for which we try to prove local-global compatibility results. Hence, guided by the previous

hypothesis, we make the following definition:
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Definition 23. Let F be a CM-field. For a regular algebraic cuspidal conjugate self-dual automorphic representation

Π of GLn(AF ) of weight a ∈ (Zn,+)Hom(F,C) define BΠ to be the set of pairs (`, ι) consisting of a rational prime ` and

an isomorphism ι : Q`
∼ // C such that

• ` > n and ` is unramified in F

• for all τ ∈ Hom(F,C) either `− n− 1 ≥ aτ,1 ≥ aτ,2 ≥ · · · ≥ aτ,n ≥ 0 or the inequalities hold with τ replaced by

τ ◦ c

• for every place v|` of F the representation ρΠ,`,ι|GFv is crystalline

• FKer(adρΠ,`,ι) does not contain F (ζ`) where ζ` is a primitive `’th root of unity

• the group ρΠ,`,ι(Gal(F/F (ζ`))) is big as defined in [CHT, Def. 2.5.1]

We will later also prove results for automorphic representations of GLn over totally real fields and hence we make

the following definition:

Definition 24. Let F be a totally real field. For a regular algebraic cuspidal essentially self-dual automorphic

representation Π of GLn(AF ) of weight

a ∈ (Zn,+)Hom(F,R)

define BΠ to be the set of pairs (`, ι) consisting of a rational prime ` and an isomorphism ι : Q`
∼ // C such that

• ` > n and ` is unramified in F

• for all τ ∈ Hom(F,R) one has `− n− 1 + aτ,n ≥ aτ,1

• for every place v|` of F the representation ρΠ,`,ι|GFv is crystalline

• FKer(adρΠ,`,ι) does not contain F (ζ`) where ζ` is a primitive `’th root of unity

• the group ρΠ,`,ι(Gal(F/F (ζ`))) is big as defined in [CHT, Def. 2.5.1]

We now prove the main theorem:

Theorem 7. Let F be a CM-field and let Π be a regular algebraic cuspidal conjugate self-dual automorphic repre-

sentation of GLn(AF ). Let (`, ι) ∈ BΠ and let v - ` be a finite place of F such that Πv is Iwahori-spherical. Then

the monodromy operator of the Weil-Deligne representation associated to ρΠ,`,ι|WFv is non-trivial if and only if it is

predicted to be non-trivial by the local Langlands correspondence.

Proof. Let N be the monodromy operator of the Weil-Deligne representation associated to ρΠ,`,ι|WFv . If the local

Langlands correspondence predicts, in the above notation, that N is trivial then Πv is a principal series representation

and by 5.1.1 (i) it follows that N is indeed trivial. Hence suppose now that the local Langlands correspondence

predicts that N is non-trivial and assume for contradiction that N is trivial. Let F ′/F be a solvable extension such

that F ′ is a CM-field and such that BCF ′(Π) is cuspidal and such that ρΠ,`,ι|GF ′ is unramified at all places of F ′

above v. Note that F ′ can be chosen linearly disjoint over F to any given finite extension of F . Since ` > n it follows

from Corollary 8.4 that there is a solvable CM-extension L/F ′ and a regular algebraic cuspidal conjugate self-dual

automorphic representation Π1 of GLn(AL) of the same weight as BCL(Π) such that

• ρBCL(Π),`,ι
∼= ρΠ1,`,ι

• Π1,w is an unramified principal series for some place w above v

• Π1 is spherical at all places above `

• (`, ι) ∈ BΠ1
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By Hypothesis 9.1.1 there exists a regular algebraic cuspidal conjugate self-dual automorphic representation Π2 of

GLn(AL) of the same weight as BCL(Π) such that ρBCL(Π),`,ι
∼= ρΠ2,`,ι and such that Π2,w is spherical for some place

w|v of L. Since Π2 and BCL(Π) have the same `-adic Galois representation and since the local-global compatibility is

known by Hypothesis 5.1.1 for all but finitely many places it follows that Π2,u
∼= BCL(Π)u for all but finitely many

places u of L. Hence by the strong multiplicity one theorem for cuspidal automorphic representations of GLn(AL), see

for example [PS], it follows that Π2,w
∼= BCL(Π)w which is a contradiction: The representation Π2,w is spherical but

BCL(Π)w is not since recGLn(BCL(Π)w) has non-trivial monodromy operator.

We will now deduce an analogous result for automorphic representations of general linear groups over totally real

fields. As discussed before Corollary 6.2, it follows from the construction of Galois representations associated to regular

algebraic cuspidal essentially self-dual automorphic representations of GLn(AF ) where F is a totally real field, that

Proposition 7 implies the following:

Corollary 9.2. Let F be a totally real field and let Π be a regular algebraic cuspidal essentially self-dual automorphic

representation of GLn(AF ). Let (`, ι) ∈ BΠ and let v - ` be a finite place of F such that Πv is Iwahori-spherical. Then

the monodromy operator of the Weil-Deligne representation associated to ρΠ,`,ι|WFv is non-trivial if and only if it is

predicted to be non-trivial by the local Langlands correspondence.

By the same argument used in the proof of Corollary 6.3 one can deduce the following result for Galois represen-

tations associated to Hilbert modular forms:

Corollary 9.3. Let F be a totally real field and let π be a cuspidal automorphic representation of GL2(AF ) of

cohomological weight. Let (`, ι) ∈ Bπ and let v - ` be a finite place of F such that πv is Iwahori-spherical. Then

the monodromy operator of the Weil-Deligne representation associated to ρπ,`,ι|WFv is non-trivial if and only if it is

predicted to be non-trivial by the local Langlands correspondence.

We will now deduce an analogous result for automorphic representations of symplectic groups over totally real

fields.

Definition 25. Let π be a globally generic regular algebraic cuspidal automorphic representation of GSp4(AF ) for

some totally real field F . Let Π be the transfer of π to an automorphic representation of GL4(AF ) and if Π is cuspidal

define

Bπ := BΠ

Note that whenever we use the set Bπ we assume implicitly that the transfer Π of π is cuspidal.

Corollary 9.4. Let F be a totally real field and let π be cuspidal globally generic regular algebraic automorphic

representation of GSp4(AF ). Let (`, ι) ∈ Bπ and let v - ` be a finite place of F such that πv is Iwahori-spherical. Then

the monodromy operator of the Weil-Deligne representation associated to ρπ,`,ι|WFv is non-trivial if and only if it is

predicted to be non-trivial by the local Langlands correspondence.

9.5 Applications

In this section we will strengthen the local-global compatibility results of Chapter 6 and Section 9.1 by using the

interaction between the horizontal and vertical deformation theory of automorphic forms. As a consequence, in

Corollary 9.10, we prove a version for globally generic automorphic representations of GSp4 of Conjecture 3.1.7 in

[SU]. Using similar methods as in the proof of this corollary, but using eigenvarieties for symplectic groups instead of

unitary groups, leads to results concerning this conjecture even for non-globally generic representations.

Let us first use the results of Section 9.1 to strengthen the local-global compatibility results for local semi-

simplifications of automorphic Galois representations that were obtained in Chapter 6.

Corollary 9.6. Let F be a CM-field (totally real field) and let Π be a regular algebraic cuspidal conjugate (essentially)

self-dual automorphic representation of GLn(AF ) for n ≤ 4. Let (`, ι) ∈ BΠ and let v - ` be a finite place of F such

that Πv is Iwahori-spherical. Then

WDι(ρΠ,`,ι|WFv )ss ∼= recGLn(Πv ⊗ | det |
1−n

2 )ss
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unless n = 4 and there is an unramified character χ : F×v → C× such that one of the following holds:

• Πv
∼= St2(χ) � χ| · |±1/2 � χ| · |±1/2 (same sign)

• Πv
∼= St2(χ) � St2(χ)

• Πv
∼= St3(χ) � χ| · |±1

Proof. Assume first F is a CM-field. By Theorem 5 it suffices to show that if Πv
∼= St4(χ) for some unramified

character χ then WDι(ρΠ,`,ι|WFv )F-ss has non-trivial monodromy operator. This follows from Proposition 7. Now

assume that F is a totally real field. Similarly to the proof in the CM-case the result follows from corollaries 6.2 and

9.2.

For automorphic representations of symplectic groups over totally real fields one obtains:

Corollary 9.7. Let F be a totally real field and let π be cuspidal globally generic regular algebraic automorphic

representation of GSp4(AF ). Let (`, ι) ∈ Bπ and let v - ` be a finite place of F such that πv is Iwahori-spherical. If πv
is not of type (VIa) then

WDι(ρπ,`,ι|WFv )ss ∼= recGSp4
(πv ⊗ |c|−

3
2 )ss

Proof. Write WDι(ρπ,`,ι|WFv )F-ss ∼= (r,N). To prove the corollary it suffices by Corollary 6 to show that if πv is of

type (IVa) then N is non-trivial. This follows from Corollary 9.2.

All of the above corollaries are examples of how the horizontal deformation theory of automorphic forms can

strengthen the results for local semi-simplifications of automorphic Galois representations obtained by using the vertical

deformation theory. In the reverse direction we will now give examples of how to use the vertical deformation theory

to strengthen results obtained by using the horizontal deformation theory.

Corollary 9.8. Let F be a CM-field (totally real field) and let Π be a regular algebraic cuspidal conjugate (essentially)

self-dual automorphic representation of GLn(AF ) for n ≤ 4. Let (`, ι) ∈ BΠ and let v - ` be a finite place of F such

that

• Πv is Iwahori-spherical

• recGLn(Πv ⊗ | det | 1−n2 ) has a monodromy operator of rank at most 1

Then

WDι(ρΠ,`,ι|WFv )F-ss ∼= recGLn(Πv ⊗ | det |
1−n

2 )

unless the following two conditions hold:

• n = 4

• there is an unramified character χ : F×v → C× such that

Πv
∼= St2(χ) � χ| · |±1/2 � χ| · |±1/2

(same sign)

Proof. Suppose that recGLn(Πv ⊗ |det | 1−n2 ) has a monodromy operator of rank at most 1. By corollary 9.6 it follows

that

WDι(ρΠ,`,ι|WFv )ss ∼= recGLn(Πv ⊗ | det |
1−n

2 )ss

unless n = 4 and there is an unramified character χ : F×v → C× such that

Πv
∼= St2(χ) � χ| · |±1/2 � χ| · |±1/2

Moreover, by Proposition 7 the representation WDι(ρΠ,`,ι|WFv )F-ss has a non-trivial monodromy operator if and only

if it is predicted by the local Langlands correspondence and this proves the corollary.
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For Hilbert modular forms one obtains the following:

Corollary 9.9. Let F be a totally real field and let π be a cuspidal automorphic representation of GL2(AF ) of

cohomological weight. Let (`, ι) ∈ Bπ and let v - ` be a finite place of F such that πv is Iwahori-spherical. Then

WDι(ρπ,`,ι|WFv )F-ss ∼= recGL2
(πv ⊗ |det|− 1

2 )

Proof. This follows from Corollary 6.3 and Corollary 9.3.

We will now deduce a result for automorphic representations of symplectic groups over totally real fields.

The next corollary deals with type (Ia) and type (IIa) representations since those types of Iwahori-spherical repre-

sentations are the only type of the six families of generic representations (Ia) to (VIa) whose local monodromy operator

under the local Langlands correspondence has rank at most one: By [ROS, Table A.7] a type (Ia) representation has

trivial monodromy operator and a type (IIa) representation has monodromy operator
0

0 1

0

0


and a type (IIIa) representation has monodromy operator

0 1

0

0 −1

0


and type (Va) and type (VIa) representations have monodromy operator

0 1

0 1

0

0


and a type (Iva) representation has monodromy operator

0 1

0 1

0 −1

0


Corollary 9.10. Let F be a totally real field and let π be cuspidal globally generic regular algebraic automorphic

representation of GSp4(AF ). Let (`, ι) ∈ Bπ and let v - ` be a finite place of F such that πv is Iwahori-spherical and

of type (Ia) or (IIa). Then

WDι(ρπ,`,ι|WFv )F-ss ∼= recGSp4
(πv ⊗ |c|−

3
2 )

Proof. In case that πv is of type (Ia) the result follows from Hypothesis 5.1.1 (i). Hence assume now that πv is of type

(IIa). By arguing as in the proof of Corollary 6, in order to prove the corollary it suffices to check that the corresponding

result holds for regular algebraic cuspidal essentially self-dual automorphic representations Π of GL4(AF ) whose local

component at v satisfies

Πv
∼= St2(χ1χ2) � χ2

1χ2 � χ2
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for some unramified characters χ1 and χ2 of F×v such that χ2
1 6∈ {| · |±1, | · |±3}. Since

χ1χ2| · |±1/2 6= χ2
1χ2

this follows from Corollary 9.8.

10 Local monodromy operators: The case of symplectic groups

In this chapter we develop a variant of the modularity lifting theorem approach to monodromy operators which is

more general than the previously described results in Chapter 9. This variant describes how to obtain general lower

bounds on the rank of monodromy and it also applies to automorphic representations of reductive groups where strong

multiplicity one results might not be known or might not hold. Note that we develop this approach in the current

chapter in the setting of GSp4, but the method allows to treat higher rank symplectic groups, amongst other cases, as

well.

The traditional approach to studying the monodromy operator is based on the study of singularities of algebraic

varieties. As mentioned before, the approach we take is very different. The idea is to combine a priori congruences

of automorphic representations, such as potential level-lowering results, and combine them with modularity lifting

theorems. An obstacle for this strategy for general groups is that strong multiplicity one results might not be available.

However, strong multiplicity one is a much stronger result than what is needed and we will in this chapter give an

alternative approach to the required rigidity via γ-factors obtained from the doubling method. The latter theory

has been developed for general classical groups but for simplicity we focus on automorphic representations of GSp4

over totally real fields. The main result is Theorem 8 where we show under some strong hypotheses that the rank of

monodromy is at least as predicted by the local Langlands correspondence. The hypotheses are strong since, for a

result of the above generality, they assume level-lowering principles beyond what has been proved in the potential level-

lowering section of the previous chapter and we do not know how to obtain such general congruence results without

assuming local-global compatibility in the first place. Similar results could presumably be shown, for example, in the

GLn-case but as mentioned before we restrict to GSp4 for simplicity. One should note that a much more intricate

use of the γ-factors from the doubling methods was used by Jorza in [JOR] to obtain multiplicity one results for

automorphic representations of GSp4 and as a consequence monodromy results are deduce from the known GL4-cases.

Interestingly enough, the eigenvariety arguments that we developed in earlier sections were used there to remove a

certain quadratic twist in the results.

10.1 γ-factor arguments

The fine local information of the γ-factors from the doubling method has been proved by Lapid and Rallis in [LR] and

we now recall this briefly in the special case of symplectic groups.

Let F be a totally real field. Fix a non-trivial character ψ = ⊗vψv of F\AF . For a cuspidal automorphic

representation π of Sp4(AF ) one obtains via the doubling-method a γ-factor γ(s, π, ψ). One defines the L-factor

L(s, πv, ψv) as the numerator of γ(s, π, ψ) if π is tempered and other wise via the Langlands classification. The

relation between the L-factors, ε-factors and γ-factors, as defined in [LR], is given as

γ(s, π × ω, ψ) = ε(s, π × ω)
L(1− s, π̃ × ω−1, ψ)

L(s, π × ω, ψ)

where π̃ is the contragredient representation of π. By [GT2] (Main theorem, property (i)) the γ-factors obtained by the

doubling method agree with the γ-factors of the local Langlands correspondence for Sp4 as constructed by Gan-Takeda

in [GT2]. Since the γ-factors as above are defined for representations for Sp4, but we are interested in representations

of GSp4, let us recall the relation between the local Langlands correspondences of these two groups. Consider

std : GSp4 −→ PGSp4
∼= SO5
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where the last isomorphism is as described for example in [ROS, A.7]. Let πv be an irreducible smooth admissible

representation of GSp4(Fv). Let π′v be some irreducible component of the restriction of πv to Sp4(Fv). Then by [GT2]

(Section 1) one has

std ◦ recGSp4
(πv) = recSp4

(π′v)

The key properties of the γ-factors for our intended application are:

• Functional equation:

Suppose π ∼= ⊗′vπv is an automorphic representation of Sp4(AF ). Let S be a finite set of finite places of F and define

L(S)(s, π, ψ) :=
∏
v 6∈S

L(s, πv, ψv)

where the product is over finite places of F not in S. Then

L(S)(s, π, ψ) =
∏
v∈S

γ(s, πv, ψv)L
(S)(1− s, π∨v , ψv)

This is [LR, Theorem 4, property 10]. Hence, if π and π̃ are two automorphic representations of Sp4(AF ) such that

πv ∼= π̃v for all v 6∈ S where S contains all the archimedean places and all places where π or π̃ are ramified then∏
v∈S

γ(s, πv × ωv, ψv) =
∏
v∈S

γ(s, π̃v × ωv, ψv)

where ω =
∏
ωv is a Hecke character of F×\A×F .

• Stability:

The stability of local γ-factors arising from the doubling method has been proved by Rallis-Soudry in [RS]. It implies

in our current situation that given πv there exists a character χ of F×v such that

γ(s, πv ⊗ χ, ψv) = 1

10.1.1 Local Langlands correspondence for GSp4

For later use we describe how the construction of the local Langlands correspondence for GSp4 for p-adic fields by

Gan-Takeda is compatible with the explicit constructions of [ROS] for Iwahori spherical representations. As explained

in [GT, Section 7], via the explicit description of certain theta-correspondences in [GT3] it can be seen that the two

constructions agree. Since in [GT] this matching is mentioned explicitly only for nondiscrete series representations we

recall here the matching also for essentially discrete Iwahori spherical representations. As described in [ROS, Table

A.1] these are exactly the type (IVa) and (Va) representations.

The local Langlands correspondence of [GT] is constructed via the theta-correspondence. Let GSO3,3 denote the

algebraic group over Q given by the orthogonal simulate group of a 6-dimensional quadratic form of signature (3, 3)

and note that, say for a p-adic field K, there is an isomorphism

GSO3,3(K) ∼= (GL4(K)×GL1(K))/{(z, z−2)
∣∣z ∈ K×}

where we view K× embedded into the diagonal torus of GL4(K). Via this description, one writes representations of

GSO3,3(K) as Π�µ where Π is a representation of GL4(K) and µ a representation of GL1(K). As described in [GT],

the L-group of GSO3,3 is

{(g, z) ∈ GL4(C)×GL1(C)
∣∣ det g = z2}

The L-group of GSp4 should be GSp4(C). Consider the map inc from the L-group of GSp4 to the L-group of GSO(V )

given by

g → (g, c(g))
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where c(g) is the similitude factor. In [GT, Theorem 5.2] an irreducible admissible representation π of GSp4(K)

for a p-adic field K is defined to be of type (B) if π participates in the theta-correspondence with GSO3,3(K). By

[GT, Theorem 5.6] an irreducible admissible representation of GSp4(K) is of type (B) if and only if it is not a non-

generic essentially tempered representation of GSp4(K). For an irreducible admissible representation of type (B) the

Langlands parameter is constructed in the following manner. The theta lift of π to GSO3,3(K) will be non-zero, say

of the form Π � µ. Let φΠ and φµ be the Langlands parameters of Π and µ under a local Langlands correspondence

for GL4 and GL1. Then the parameter of π is defined to be

φΠ × φµ : WK × SL2(C) −→ GL4(C)×GL1(C)

By [GT, Section 7] this map factors through the image of GSp4(C) under the inclusion map inc and hence one

obtains a symplectic Langlands parameter. Note that, as explained for example in [KUD, Section 4], Weil-Deligne

representations over C can also be described via the continuous complex semi-simple representations of WK ×SL2(C).

Let K be a p-adic field. If follows from the discussion in [GT3, Section 5.2] that the Iwahori-spherical discrete series

representations of GSp4(K) are of the following form. As mentioned in [GT3, Section 5.2.1], all of these representations

are in fact generic. Let P denote a Siegel parabolic of GSp4(K). The Levi-subgroup is isomorphic to GL2(K)×GL1(K)

via an isomorphism which takes (A, u) ∈ GL2(K)×GL1(K) to(
A 0

0 uA′

)
∈ GSp4(K)

where

A′ :=

(
0 1

1 0

)
(A−1)T

(
0 1

1 0

)
Via this isomorphism, if τ is a representation of GL2(K) and µ of GL1(K) then we can form the normalized induction

IP (τ, χ). We now describe the type (IVa) and type (Va) representations:

• Let µ be a character of K×. The representation

IP (st| · |3/2, µ| · |−3/2)

has by [GT3, Lemma 5.2(b)(iii)] a unique irreducible sub-representation which will be denoted by StPGsp4
⊗ µ.

By [ROS, A.3] this is a type (IVa) representation.

• Let µ be a character of K× and ξ0 is a non-trivial quadratic character of K×. Then the normalized induction

IP (St2(ξ0| · |1/2), µ| · |−1/2)

has by [GT3, Lemma 5.2(b)(ii)] a unique irreducible sub-representation which will be denoted by St(stξ0 , µ). By

[ROS, A.3] this is a type (Va) representation.

Let θ denote the theta-correspondence from GSp4(K) to GSO3,3(K) and let P2,2 denote the standard parabolic

subgroup of GL4(K) corresponding to the partition 4 = 2 + 2. By [GT3, Theorem 8.3(iv)] one has

θ(St(stξ0 , µ)) = IP2,2
(stξ0 ⊗ µ, st⊗ µ) � µ2

In [ROS, Table A.7] the Langlands parameter associated to a type (IVa) representation is given by (ρ,N) where for

w ∈WK one has

ρ(w) =


µ(w)|w|1/2

µ(w)|w|1/2ξ0(w)

µ(w)|w|−1/2ξ0(w)

µ(w)|w|−1/2


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and

N =


0 1

0 1

0

0


Hence the degree 4 Langlands parameters of [GT] and [ROS] agree and hence, in particular, the degree 5 L-factors

agree. By [GT3, Theorem 8.3(v)] one has

θ(StPGSp4
⊗ µ) = (StPGL4

⊗ χ) � χ2

In [ROS, Table A.7] the Langlands parameter associated to a type (Va) representations is given by (ρ,N) where for

w ∈WK one has

ρ(w) =


µ(w)|w|3/2

µ(w)|w|1/2
µ(w)|w|−1/2

µ(w)|w|−3/2


and

N =


0 1

0 1

0 −1

0


Hence the degree 4 Langlands parameters of [GT] and [ROS] agree and hence the degree 5 L-factors agree.

10.1.2 Rigidity

Let K be a p-adic field and let N(K) be the unipotent radical of the upper-triangular Borel subgroup of GSp4(K).

For a non-trivial complex character ψ of K define the character, denoted by ψ′, of N(K) given by
1 x ∗ ∗

1 y ∗
1 −x

1

 −→ ψ(x+ y)

Recall that an irreducible admissible representation π of GSp4(K) is called generic if

HomN(K)(π, ψ
′) 6= (0)

We can now prove the crucial rigidity lemma:

Lemma 10.2. Let F be a totally real field. Suppose π1 and π2 are cuspidal automorphic representations of GSp4(AF )

such that πw ∼= π̃w for almost all finite places w of F . Let v be any finite place of F . Then it is not possible that πv
is generic Iwahori-spherical and unramified and π̃v is generic Iwahori-spherical and ramified.

Proof. Suppose that π1 and π2 are automorphic representations of GSp4(AF ) such that πw ∼= π̃w for almost all finite

places w of F . For i = 1, 2 the representation πi can be realized in space of functions on GSp4(AF ). Restricting all

of these functions to Sp4(AF ) one obtains a representation of Sp4(AF ). Let π′i be an irreducible component of this

representations. It is a cuspidal automorphic representation of Sp4(AF ). Let w be a finite place of F . Since

std ◦ recGSp4
(πw) = recSp4

(π′w)

it follows that

rec(π′1,w) ∼= rec(π′2,w)
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for all finite places w of F outside a finite set S of finite places. Hence it follows from the functional equation that∏
w∈S

γ(s, πw, ψw) =
∏
w∈S

γ(s, π′w, ψw)

Fix a finite place v of F . By stability of γ-factors it follows that

γ(s, π′1,v, ψv) = γ(s, π′2,v, ψv)

Since, as mentioned before, the γ-factors from the doubling method agree with the γ-factors of the local Langlands

correspondence for Sp4 and since this local Langlands correspondence preserves γ-factors, it follows that

γ(s, recSp4
(π′1,v), ψv) = γ(s, recSp4

(π′2,v), ψv)

By the relate between the local Langlands correspondences for Sp4 and GSp4 it should follow that

γ(s, std ◦ recGSp4
(π1,v), ψv) = γ(s, std ◦ recGSp4

(π2,v), ψv)

The degree five L-factors of generic Iwahori-spherical representations of GSp4 are listen in table A.10 of [ROS] and by

the discussion preceding the lemma, these L-factors agree with the one defined in [GT].

• type (Ia):

L(s, χ1)L(s, χ−1
1 )L(s, 1F×)L(s, χ2)L(s, χ−1

2 )

• type (IIa):

L(s, χ| · |1/2)L(s, χ−1| · |1/2)L(s, 1F×)

• type (IIIa):

L(s, χ)L(s, χ−1)L(s, | · |)

• type (IVa):

L(s, | · |2)

• type (Va):

L(s, ξ| · |)L(s, ξ)L(s, 1F×)

• type (VIa):

L(s, | · |)L(s, 1F×)L(s, 1F×)

One sees that the only generic Iwahori-spherical representation of GSp4(Fv) whose L-factor has degree 5 is the un-

ramified irreducible principal series representation. But this contradicts

γ(s, std ◦ recGSp4
(π1,v), ψv) γ(s, std ◦ recGSp4

(π2,v), ψv)

ε(s, π1,v, ψv)
L(1−s,π̃1,v,ψv)
L(s,π1,v,ψv) ε(s, π2,v, ψv)

L(1−s,π̃2,v,ψv)
L(s,π2,v,ψv)

Hence the γ-factor distinguishes between ramified and unramified generic Iwahori-spherical representations.

In fact this argument can be strengthened: The following is a special case of Proposition 6.2 of [JOR]. It will be

used when we prove stronger lower bounds on the rank of monodromy than the mere non-triviality.

Lemma 10.3 (Jorza). Let F be a totally real field. Suppose now that π1 and π2 are cuspidal automorphic represen-

tations of GSp4(AF ) such that πw ∼= π̃w for almost all finite places w of F . Let v be any finite place of F . Then

75



it is not possible that πv is generic Iwahori-spherical with rec(πv) having monodromy of rank r1 and π̃v is generic

Iwahori-spherical with rec(π̃v) having monodromy of rank r2 with r1 6= r2.

10.4 Monodromy Operators

With the rigidity results of the previous section in hand it is now relatively straightforward to adapt the methods of

the proof of Theorem 7 to the symplectic case. It should become clear how to, in principle, generalize the arguments

to automorphic representations on other groups as well. We also illustrate how one might prove stronger lower bounds

on the rank of monodromy than the mere non-triviality. The following is a generally expected hypothesis, see for

example the discussion in [SOR], and we will assume it for the remainder of this chapter:

Hypothesis 10.4.1. Let F be a totally real field and let π be a cuspidal regular algebraic automorphic representation

of GSp4(AF ). Then for a rational prime ` and isomorphism ι between Q` and C there is a continuous semi-simple

`-adic Galois representation

ρπ,`,ι : Gal(F/F ) // GSp4(Q`)

such that for all finite places v - ` of F such that πv is a principal series representation one has

WDι(ρπ,`,ι|WFv )F-ss ∼= recGSp4
(πv ⊗ |c|−

3
2 )

where c denotes the symplectic similitude character. Moreover, if π is non-endoscopic and non-CAP then πv is tempered

for all finite places v.

Let Fv be a finite extension of Qp where p is some prime. Let O denote the integer ring in Fv and p the maximal

ideal. We now define, following [ROS, Sect. 2.1], some subgroups of GSp4(Fv): The Klingen parahoric JQ is defined

to be the subgroup of GSp4(Fv) consisting of matrices A with determinant in O× and

A ∈


O O O O
p O O O
p O O O
p p p O


Fix a uniformizer $ of Fv. The para-modular group K̃ is defined to be the subgroup of GSp4(Fv) given by

K̃ = 〈JQ, ηJQη−1〉

where

η =


0 0 1 0

0 0 0 −1

$ 0 0 0

0 −$ 0 0


Definition 26. If V is a Weil-Deligne representation we denote by NV the corresponding monodromy operator.

Definition 27. Fix an integer 0 ≤ i ≤ 3. Let Fv be a finite extension of Qp for some prime p. We say that a pair

(K,φ) is associated to i over Fv if K is a compact open subgroup K ≤ GSp4(Fv) and a φ is a finite dimensional smooth

representation K such that for any irreducible admissible generic Iwahori-spherical representation πv of GSp4(Fv) one

has

πK,φv 6= (0) =⇒ rank NrecGSp4
(πv) ≤ i

Here πK,φv denotes the subspace of πv on which K acts through φ.

Remark. Note that there are groups satisfying the properties outlined in definition 27: Fix an integer 0 ≤ i ≤ 3 and

let Fv be a finite extension of Qp for some prime p. Then there exists a pair (K,φ) which is associated to i over Fv:
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As can be seen for example from the tables in [SOR], one has the following implications:

πGSp4(O),1
v 6= (0) =⇒ rank NrecGSp4 (πv) ≤ 0

Let K̃ be the para-modular group. Then

πK,1v 6= (0) =⇒ rank NrecGSp4
(πv) ≤ 1

Let JP be a Klingen parahoric subgroup. Then

πJP ,1v 6= (0) =⇒ rank NrecGSp4
(πv) ≤ 2

Let I be an Iwahori subgroup. Then

πI,1v 6= (0) =⇒ rank NrecGSp4 (πv) ≤ 3

To prove lower bounds on the rank of monodromy operators we will assume strong cyclic base change for GSp4:

Hypothesis 10.4.2. Let K/F be a cyclic extension of totally real number fields and let π be an automorphic

representation of GSp4(AF ). Then there exists an automorphic representation BCK/F (π) of GSp4(AK) such that for

all places v of F and places w|v the representation recGSp4
(BCK/F (π)w) of the Weil-Deligne representation of WKw is

obtained by restriction from the Weil-Deligne representation recGSp4
(πv) of WFv .

The following hypothesis about the existence of congruences between automorphic representations is stronger than

the known potential level-lowering results. It will be assumed when proving lower bounds on the rank of monodromy

operators which go beyond the non-triviality of monodromy treated in earlier chapter.

Hypothesis 10.4.3. Let F be a totally real field and let π be an automorphic representation of GSp4(AF ). Fix a

rational prime ` and finite place v - ` of F such that πv is generic. Assume ρπ,`,ι is absolutely irreducible. Then there

exists a solvable totally real extension F ′/F , a place w|v of F ′ and a cuspidal cohomological automorphic representation

π′ of GSp4(AF ′) of the same weight as BCF ′(π) such that

• ρπ′,`,ι ∼= ρπ,`,ι|Gal(F/F ′)

• π′w is generic

•
(π′w)K,φ 6= (0)

where (K,φ) is associated over F ′w to the rank of NWD(ρπ,`,ι|GFv )

We phrase our requirements on a modularity lifting theorem for GSp4 as a hypothesis. See for example [GET] for

some known results. Certainly one can assume weaker modularity lifting results, for example with stronger conditions

on the image of the residual Galois representation. The proof of Theorem 8under such a suitably modified hypothesis

will essentially be the same.

Hypothesis 10.4.4. Let

ρ : Gal(F/F ) −→ GSp4(Q`)

be a continuous representation unramified outside a finite set of finite places and such that there exists a cuspidal

regular algebraic automorphic representation π of GSp4(AF ) such that

• there is an isomorphism

ρπ,`,ι
∼= ρ

and these representations are absolutely irreducible
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• πv is generic and πK,φv 6= (0) where (K,φ) is associated to

i := rank NWD(ρ|GFv )

over Fv and is as in Hypothesis 10.4.3

Then there exists a cuspidal regular algebraic automorphic representation π̃ of GSp4(AF ) of the same weight as π and

such that

• there is an isomorphism ρ ∼= ρπ̃,`,ι

• π̃v is generic and π̃K,φv 6= (0)

We can now prove the main theorem on lower bounds for the rank of monodromy operators of Galois representations

associated to symplectic automorphic representations:

Theorem 8. Let F be a totally real field and let π be an automorphic representation of GSp4(AF ) which is cuspidal

regular algebraic. Let ` be a rational prime and v - ` a finite place of F such that πv is generic. Let N` be the

monodromy operator of the Weil-Deligne representation associated to ρπ,`,ι|WFv
and let Nrec denote the monodromy

operator of rec(πv). Assuming Hypotheses 10.4.2, 10.4.3, and 10.4.4 with ρ = ρπ,`,ι it follows that

rank N` ≥ rank Nrec

Proof. Suppose for contradiction that rank N` < rank Nrec. After making a suitable solvable base change one can

assume that πv is Iwahori-spherical. By Hypothesis 10.4.3 there exists a solvable totally real extension F ′/F and a

cuspidal cohomological automorphic representation π′ of GSp4(AF ′) such that ρπ′,`,ι
∼= ρπ,`,ι|Gal(F/F ′) and

(π′v)
K,φ 6= (0)

where (K,φ) is associated to the rank of NWD(ρπ,`,ι|WFv ) over F ′w. By Hypothesis 10.4.4 it follows that

ρπ,`,ι|Gal(F/F ′)
∼= ρπ̃,`,ι

for some cuspidal automorphic representation π̃ of GSp4(AF ) such that

π̃K,φv 6= (0)

It therefore follows that recGSp4
(BCF ′/F (π)w) ∼= recGSp4

(π̃w) for almost all finite places w of F ′ and

rank Nrec(π̃v) ≤ rank NWD(ρπ,`,ι|WFv ) < rank Nrec

Since for all finite places w of F ′ which lie above v the rank of the monodromy operator of recGSp4
(BCF ′/F (πv)w)

equals the rank of Nrec one obtains from Lemma 10.3 a contradiction.

Since potential level-lowering results are known, one can deduce a less conditional result for the mere non-triviality

of monodromy operators.

Corollary 10.5. Let F be a totally real field and let π be a cuspidal regular algebraic automorphic representation of

GSp4(AF ). Let ` > 3 be a rational prime and assume that ρπ,`,ι is absolutely irreducible. Let v be a finite place of

F such that v - ` and such that πv is generic. Let N` be the monodromy operator of the Weil-Deligne representation

associated to ρπ,`,ι|WFv
and let Nrec denote the monodromy operator of recGSp4

(πv). Assuming Hypothesis 10.4.2 and

10.4.4 it follows that N` 6= 0 whenever Nrec 6= 0.

Proof. Assume Nrec 6= 0 and assume for contradiction that N` = 0. Hypothesis 10.4.3 in this case is then implied by

the potential level-lowering for symplectic groups which have been proven by Sorensen assuming strong cyclic base
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change, see [SOR2, Section 1], assuming that ` > 3 and that ρπ,`,ι is absolutely irreducible. Note that in contrast to

[SOR2] we added the temperedness assumption for all finite places for non-endoscopic and non-CAP representations

in Hypothesis 10.4.1 since otherwise the arguments of [SOR2] need more justification. The corollary now follows from

Theorem 8.
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