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Abstract

Motivated by amplitude calculations in string theory we establish basic properties of homotopy invariant iterated
integrals on affine curves.

To Dmitry Fuchs, with warmest wishes for his 80th birthday

1 Introduction

In the present paper we consider iterated integrals on a compact two-dimensional smooth manifold with a finite and
non-zero number of deleted points. Such a manifold can be considered as an algebraic curve with deleted points or
as an affine one-dimensional complex manifold. It is a Stein manifold; this simplifies drastically the description of
iterated integrals. The next step will be the analysis of iterated integrals on the configuration spaces on affine curves;
these spaces can be considered as affine manifolds.

The configuration spaces on compact complex curves appear naturally in the calculation of string amplitudes.
Iterated integrals can be used in these calculations, however on compact curves of genus > 0 it is necessary to work
with non-holomorphic integrals.

Alternatively in the calculation of string amplitudes one can work with configuration spaces on affine curves. The
results of the present paper should be useful in this approach.

2 Basic definitions

Let X be a smooth manifold. Consider smooth 1-forms wy,--- ,w, on X and a smooth path « between two points Q1
to Q2 in X. Write v*w; = g; dt and consider the iterated integral

Lo, (Q1,Q2) = / (wy - -w1) (1)

- / () dts - gu(ty) dt,
0<t; <+ <t,.<1

L, = /w°p
¥

for this integral. Here the superscript op indicates the reversal of the order of the letters in the word w. (The integral
corresponds to a word w = w; ® -+ @ w, considered as an element of the tensor power of the space Q'(X) of 1-
forms). Extend this definition by linearity to all elements of the tensor algebra generated by Q!(X). (We will write
wy - - w, instead of wy ® -+ ® w, and we will use term “generalized words” for linear combinations of words). To
obtain via Equation a (multi-valued) function of Q2 one would like to restrict to those elements where the iterated
integral only depends on the homotopy class of . In this case these functions can be seen to generalize the classical

We will also use the notation



polylogarithms. By general results of Chen, see for example [4], the homotopy invariant integrals can be described in
terms of the operator D defined by

T r—1
Dw @ - @w,)=> w® - @dw;@ - Qw, + Yy w1 @ @ (wi ANwig1) @ Dwy
=1 =1

and extended to general elements of the tensor algebra by linearity. Fixing a connected model of the de Rham complex
the homotopy functionals correspond to the elements of the tensor algebra generated by degree 1 elements of the
connected model on which the operator D vanishes. We will establish basic properties of the corresponding multi-
valued functions obtained via Equation . We write from now on z for Q2 and we suppress the choice of Q7 in
the notation and denote the multi-valued functions of Equation by Ly(z). If X is an affine manifold then we
can restrict ourselves to w’s that are generalized words with respect to holomorphic forms; see [6] (Section 13) for a
detailed discussion.

In the present paper we consider the case where X is obtained from a compact smooth surface X’ by deleting a
finite subset S = {Py,---, P,}. We assume that the set of deleted points is not empty; then X can be realized as an
affine algebraic curve and the homotopy invariant iterated integrals can be very simply described. They correspond
to words with respect to a basis of one-dimensional cohomology represented by holomorphic 1-forms on X. (Such
a word represents a homotopy invariant iterated integral because on a curve every holomorphic 1-form is closed and
a wedge product of two holomorphic 1-forms vanishes. From the other side for affine curves one can find a basis in
one-dimensional cohomology represented by holomorphic 1-forms).

The dimension of the first de Rham cohomology of X = X'\{Py, -+, P,} is known to equal 2g + n — 1 where g
denotes the genus of the surface X’. One can choose a basis such that g +n — 1 of the basis elements are logarithmic
1-forms. In particular, on the punctured sphere the logarithmic 1-forms constitute the whole basis. Namely, if z
denotes a coordinate on X’\{P,} then one can take as a basis the forms w; = (2 — Piy1) ' dzfor 0 <i<n-—2. In
genus 0 foundational results on iterated integrals and their relation to multiple zeta values are described in [I] and [5].
We show that many results carry over to iterated integrals on surfaces of arbitrary genus.

We consider in some detail iterated integrals on surfaces of genus 1 (on affine elliptic curves) in the holomorphic
picture (iterated integrals on elliptic curves were considered by Brown and Levin in [2] in the non-holomorphic picture).
Let us suppose that the elliptic curve X’ is represented as C/(Z+ 7Z) for a complex number 7 with positive imaginary
part. A basis of the first de Rham cohomology of X'\{Py,---,P,} can be chosen to consist of logarithmic 1-forms
wp, -+ ,Wp—1 and a 1-form w, having a second order pole at P;, say. One can assume that wq is holomorphic and
that w; with 1 <7 <n — 1 has simple poles at P;;1, P;.

In Section [3[ an important role is played by the shuffle product relations that the functions L,,(z) satisfy. Let Lu
denote the shuffle product in the tensor algebra. It is defined as

Way ** " Wa, W Wq, )+ Wq, 1= E Wa, 1y " Wag(rqs)
o

where o ranges over those permutations on 7 + s elements such that c=1(i) < 071(j) whenever i < j and either i and
j are both at most  or both at least 7+ 1. (Again we extend this definition to arbitrary elements of the tensor algebra
by linearity). It is easy to check the shuffle product relation

Lu,, - wa, (2) * Lu, cw,, (2) (2)

CWag (Z) = L'wal W, LLWg

r+1’ r+1°

3 Multiple zeta values

We consider special values of the functions L, (z) where as before we let X be an affine curve. Due to the relation
with classical polylogarithms we denote in this situation the functions by Li,(z). The special values that we consider
generalize the classical (multiple) zeta values and are defined in the following manner: Instead of choosing the starting
point @ and endpoint @2 of the smooth path 7 to lie in X = X’\S we assume @1, Q2 are in the set S of deleted



points. Of course, in order to obtain well defined expressions one has to choose in general a suitable regularization
procedure for the iterated integrals between two punctures.

The relation between zeta functions and homotopy invariant iterated integrals between punctures on a surface can
be seen from the following special case: Consider the sphere X’ = P! and S = {0,1,00} and let Q; = 0 and Q, = 1.
Let z denote a coordinate on X’\{cc} and take the basis of 1-forms on X = X'\S as wg = dz/z and wy = dz/(1 — 2).
Then the direct calculation of the iterated integral gives for n > 2

=1
L1w0w1 Q17Q2 :Z?
k=1

Hence special values of the zeta function are expressed as special iterated integrals where the path v connects two
punctures.

3.1 Regularization near a puncture

We now describe the shuffle regularization of iterated integrals in the case where the starting point of the path ~ is
taken to be a puncture P;. We fix a basis of the first cohomology consisting of holomorphic forms on the affine curve
(on the punctured surface); we assume that only one of these forms (call it w;) has a pole at P; and it is simple. (It
seems that the uniqueness of the form w; is not important, but the simplicity of the pole is). We call the collection of
punctures with this property the set of good punctures. For example, in genus 1 the basis of 1-forms can be chosen so
that all punctures except one are good.

In the case of a good puncture we now show that one can apply the known genus 0 regularization arguments. Let
as before z be in X = X'\{Py,---, P,}. Fix a smooth path from P; to z. For each k there is a unique constant ay

(zero unless k = j) such that
lim (—ak loge + / wk)
e—0 .

exists, where 7, is the piece of v between € and z (we assume here that the coordinate of the puncture is equal to zero
and z denotes both the point @ and its coordinate). Define fv wy to be the value of this limit. More generally, for
each positive integer r define fv wp, = (fv wy )" /r! (this definition is prompted by the shuffle product relation).

We use the shuffle product to define more generally the value of the iterated integral fv w where w is an arbitrary
generalized word with respect to wy, - -+ , w,_1. We claim that every word w with respect to wq, - - - , w,_1 has a unique
expression of the form

w = Zw(z) L w; (3)

where w(7) is a word not ending in w;. To show existence, consider the summand vw;-C of w ending in a maximal
amount of £ copies of w;’s. Subtracting v LU w}“ from w yields a word where every summand ends in at most k£ — 1

w;’s and the desired existence follows by induction on k. To show uniqueness suppose there are two decompositions
as in Equation
k
Zw(z) Ww) =w= Zw'(z) L w)
i=0 i=0

Then the summand of w ending in the largest amount of w;’s is given by w(k)wéC and w’(l)wé and hence k = [ and
w(k) = w'(k) and the uniqueness follows by induction on k.
Suppose now a decomposition as in Equation is given. We have already defined

Liys ;(2) ::/Ww;l = (ij>i/i!



Since P; is a good puncture and since w(¢) does not end with w; one can define

S

Prompted by the shuffle product relations we define

k
Lin‘(Z) = ZLiw;,j('z)Liw(i),j(z) (4)
i=0

This is our choice of regularization of the functions from Equation where the starting point of the path v is a good
puncture.

Notice that in our definition of regularization we have imposed some conditions on the puncture. Instead of these
conditions we could impose the requirement that the words under consideration consist of logarithmic forms.

3.2 Multiple zeta values and monodromy

The results of the previous section can be used to define multiple zeta values as iterated integrals along paths between
two deleted points. For the remainder of this section fix two good punctures P; and P; and a smooth path «y from P;
to P;. Under this assumption the genus 0 calculations given in [I] can be generalized to the current situation. Below
we describe this in some detail.

For each generalized word w there is a non-negative integer ¢ such that the function Li,, ;(z) defined in Equation
has the asymptotic behavior

t

Liy j(2) ~ Z as(z)log(P; — z)° (5)

s=0

as z approaches P;. Here the functions as(z) have a well defined limit as z — P;. Define the multiple zeta value as

MZV; j(w) :== lim ag(z)
z—P;
We now show that the multiple zeta values can also be realized as the coefficients of a suitable analogue of Drinfeld
associators. Let xq, X1, -+ be free non-commuting variables. For a good puncture Pj define the generating function

Li(z) = ZLiw’k(z) X

where the summation is over all words w with respect to wg, ws, -+ ,w, and x is the corresponding word with respect
to xg, X1, --. By convention the coefficient of the empty word is 1. This generating function is a formal power series
in free noncommuting variables xo, X1, --- whose coefficients are functions of z. We now show that L;(z) as well as
L;(2) satisfy the same differential equation; this allows us to relate their quotient to multiple zeta values.

First note that for two paths a and § in X\\S with the starting point of 3 equal to the end point of «, we can say

that
/ wr...wlf/wr...wl:/wr...wQ/wl+/wr...wg/w2w1+...
oa « a B a B

(See for example [I] (Prop. 2.2 (iii))).
To calculate d Li, (2) let @ be the path from @1 to z and 8 a path from z to z + h, for h small. Using that there
is a constant C such that the iterated integral satisfies

|/w5---w1\ < C - length(~)®
.



one obtains the formula

d Liu’il Wi (Z) = Wiy Liwiz"'wis (Z) (6)

The above iterated integrals are integrals over a path between two points in X'\{Py, -, P,} but from our regulariza-
tion scheme one can see that the same equation holds if the starting point of the integration path is a good puncture
Pk:

d Liy,, g, k(2) = Wy, Liwiz‘..wmk(z) (7)

From Equation it follows that

dLg(z) = Zd Liw, owi, k(2) Xiy oo X, = Zwilxil Liw,, - wi, k(2) Xiy -+ X,
w w

Z wxy - L (2)
t=0

hence

(d — Z wtxt> Lij(z)=0= (d — Zwtxt> Li(2) (8)
t=0 t=0

The generating series L;(z) has an inverse in the space of formal power series with respect to xo, X1, - -+ (the coefficients
are multivalued functions of z) and we define

i =Li(2) 7" Lj(z) = Y ®ij(w) x 9)

where again x corresponds to a word w. Taking the derivative with respect to z and using Equation we obtain that
the coefficients ®; ;(w) are independent of z. Therefore ®; ;(w) can be calculated by letting z approach the puncture
P;. As z approaches P; only the iterated integrals of w¥ contribute to L;(z). After scaling we can assume that the
residue of w; at P; is equal to 1. Then one has the asymptotic behavior

o - > Liy, ;(2)" -
Li<z>1~< iy () xi-“> - (Z,dx) = exp (~Liu, (2) %) (10)

k=0 k=0
and hence

00 kip _
Li(2)™" ~ exp(~ log(P, — 2) x) = 3 (-1)F - B2 ()
k=0 )

One can say also that in the neighborhood of a puncture only one term is relevant in the sum »_;_, w¢x; in Equation
(8); neglecting all other terms and solving this equation we obtain the same asymptotic behavior.

Consider now an arbitrary word w and write it as w = wf w’ with a > 0 and w’ not beginning with w;. Replacing
L;(2)~! by its asymptotic expression via Equation one sees that the coefficient ®; ;(w) has the following asymptotic
behavior as z goes to P;

P, j(w) =@, ;(wf w') ~ Z(coeﬂicient of x¥ in exp (—log(P; — 2) x;)) - (coefficient of x¢™*x" in L;(2))
k=0



where x’ is the word with respect to xg, X1, -+ corresponding to w’. It follows that

a kip _ 2
B j(w) ~ Z(_l)k ) 1()‘5(;:%!’) 'Liwj—’“w',j(z) (12)

k=0
Since ®; ; does not depend on z one has
, - log"(P; —2) .
.. — —_ k . 71 . .
®i,j(w) = limy k_o( 1) i Li ot 5(2) (13)

Each function Li, a-x,, ;(z) has an expansion of the form

i

Li ok, ;(2) = cro + ck1log(P; — 2) + cp2 log (P — 224

such that the coefficients cj g, - - - have a well defined limit as z — P;. It follows that the only non-singular term of the
expression on the right-hand side of Equation is co,0- But this is precisely the term ag(2) associated to Liyaw j(2)
as in Equation . It follows that

(bi,j (U)) = szi,j (w)

and therefore the coefficients of ®; ; are multiple zeta values.

Note also that one can relate the monodromy of the functions Li,, ;(z) to the multiple zeta values. Namely, let M,
be the analytic continuation operator for a loop around F;. Since the coefficients of the ®; ; are constant it follows
that

M;(Lj(2)) = M;(Li(2))®; 5

Since we have shown that the coefficients of the ®; ; are multiple zeta values this gives an expression of the monodromy
around P; in terms of multiple zeta values.

4 Variational results

It is important to understand the dependence of the functions Li,(z) on the set of deleted points S = {Py,---, P,}.
As indicated before, if the compact surface X’ is of genus 0 and z denotes a coordinate on X’'\{P,} then one can take
as a basis of the first de Rham cohomology the 1-forms w; = §; dz = (2 — P;)~! dz for 1 < < n—1. Using the relation

n—1
fa - fo = Z Cff?, i (14)
i=1
where C'((l%l)) =0 unless i = a or ¢ = b and
1 b 1
C«(G«) — C( ) —
“ " F,-PB ' T B-P,
one can calculate the action of the operators Jp, on the functions Li,,(2). If wj,,---,w;, is a collection of distinct

1-forms and k # 1, r (the formulas are similar but slightly different for £k =1 and k = r) then

8ij Liwjl W, Wy, (Z)
= (15)

n—1 (#) . (1) ;
Zi:l (Cjkvjk+1 Ll“’h"'“’jk“’jk+11"i"'wjr(2) Cjk717jk LlU)“-"w]kilekwimwjr(z)



where the superscript ~ denotes that the indicated 1-form is omitted. See for example [5] for more details. Since only
C'((fb) and Céljg are non-zero this simplifies to

Opy, Ly, oy, (2) =€) c*t 14,

W, JksJk+1 1wj1"'@jk+1'”wjr(z)+ JksJk+1 “’Jl"'lﬁjk”'wa‘r(z)

—cfeh Liu;, i oy, (2) = cyy

Jk—1,Jk 1 om0y Dy wj (Z)

1 1
= — - Liy. . — - Li,. -
ij_l _ Pj lw“'““’jk_l“'“’jr (Z) + Pj _ ij+1 lw“”'“’jk+1 cwg (Z)
_ ij—l - ij+1 . Liwh”@v o (Z)
(Pju_y — Pj) (P — Pjyyy) ik

We now give a generalization to the case where X’ is a torus, see [3] for related calculations. To describe the logarithmic
1-forms fix a complex structure on X’ say X’ = C/(Z + 7Z) for a complex number 7 with positive imaginary part.
Let f(z) be an elliptic function with simple poles precisely at the lattice points Z + 7Z. One can describe f in terms
of theta functions, for example one can set

f(2) = 0.log011(2) , 611(2) = exp (m(n + %)27 + 2mi(n + %)(z + 1))

2
neE”Z

Then for the space of logarithmic 1-forms on X’\{Py,--- , P,} one can take the basis {wq," - ,w,_1} where
wo =dz = fo dz
and
w=frdz=(f(z—Pyy) — f(z—Pr,)) dz (1<k<n-1) (16)

where the points Py, , Pk, in S are suitably chosen. For example one can take P, = P; for all k and Pr, = Pi41.
Another possibility is to choose Py, = P41 and Py, = Py for all k. We now consider the iterated integrals in Equation
(1) where the wj;,’s are chosen such that no two of them have poles in common. It follows that for a # b there are

unique constants Cc% (meaning independent of z) such that the elliptic functions §; of Equation satisfy

n—1

fa fo=>_ 0" 5, (17)

=0

Such a decomposition exists since the left-hand side is an elliptic function with simple poles. The elliptic structure
constants C((lfi can be calculated using the Fay identities for theta functions, see the work of Broedel, Mafra, Matthes,
Schlotterer [3] for related calculations. For an integer v between 1 and n — 1 write z, = z — P,. One can use the Fay
identities to show that for distinct integers ¢ and j between 1 and n — 1 one has

0.logb11(%) - 0:10g61,1(2;) = 0.logbi1(2;) - 0;1logbi1(P; — P;) + 0, log0i1(z;5) - 0. log 1 1(P; — F;) (18)
n (9:log 01,1(2;))* 4+ 02 log 01,1 (2;) n (9:1og 01,1(2:))” + 92 1og b1 1(z:)
2 2

. (0:log 01,1 (Pi — Fy)))* + 02 log 611 (P, — P;) 1 07,(0)
2 2 0'171(0)




Fix distinct integers a and b between 1 and n — 1. Using Equation one can show that

fo - fo= (az log 91,1(75«11) — 0. log 91,1(2’@2)) : (az log 91,1(2171) — 0. log 91,1(21)2))
can be written as

az lOg 9171(2(11)(82 lOg 91,1(Pa1 - Pbl) - az 1Og Hl,l(Pal - Pbg))
+8Z IOg 0171(2’&2)(782 log 9171(Pa2 — Pbl) + 82 log 9171(Pa2 — sz))
+ 0, log 91’1(2’1,1)(82 log 01,1(Pb1 — Pal) — 0, log 9171(Pb1 — Pa2))

+8Z IOg 0171(21,2)(7@ IOg 91,1(P52 — Pal) + 5'2 log 0171(Pb2 — Pa2))

(82 log 6‘171(Pa1 — Pbl)))2 + ag log 61,1(Pal — Pbl) N (az log 01,1(Pa1 — sz)))2 + 83 log 91,1(P111 — PbQ)
2 2

+

_(0:10g 611 (Pa, = 1%,)))* + 02108 011 (Pay = Poy)  (9: 108011 (Pay = 12,)))* + 02 10g 011 (Pay — Pho)

2 2

We suppose now that the pole structure of the basis wy, - -+ , w,—1 of logarithmic 1-forms is chosen so that there is an
index i(a, b) such that w;(qp) = fi(a,p) dz with

fi(a7b) = 62 log 91,1(2’ — Paz) — 6.2 log 9171(2’ — sz)
One can use this to calculate the elliptic structure constants. One obtains
0 a b i(a,b
Fa-fo = C% - fo 4+ CL) - fa + Cop - o + ™ fitany (19)

where the constant coefficients are given by

C(O) — (82 logeLl(Plh _Pbl)))2+a§ logeLl(Pth _Pbl) N (az logel,l(Pal _sz)))2 +a§ logal,l(Pal _sz)
a,b 9 2
_ (8z 10g9171(Pa2 — Pb1)))2 + 8,3 log 9171(Pa2 — Pb1) + (az log 91,1(Pa2 — sz)))2 + ag log 91,1(Pa2 - sz)
2 2

C\ = 8,108 61 1(Pa, — Py,) — 0 10g 61 1(Pa, — Py,)

C") = 8108011 (Py, — Pa,) — 0:10g01,1(Py, — Pay)
CUP) = 9,108 01,1 (Pay — Py,) — 0:108 011 (Pay — Py,) — 8. 10g 01,1 (Pay — Py, ) + 0:10g 01,1 (Pay — Py,)

In particular, one sees that as in the case of iterated integrals on the sphere, most structure constants vanish.

We now calculate the variation of the functions Li,(z) as the deleted points move. We assume k # 1, r for simplicity,
as in the genus 0 case. Assume that the path v from (1 to z that is involved in the iterated integral is a straight-line
path. For 1 <4 <n — 1 one has

Ywi = (2= Q1) (f(Q1+tz— Q1) — Pi,) = (f(Q1+t(z— Q1) — P,) dt =: Fi(t) dt



For

tr th—1
I(tk) = / ij+1 </ ij+2 > dtg—1
0 0

one has

1 tr
(8ij1 + 8ij2) Liwjl“'wjk“'wjr (Ql, Qg) = (8pjkl + 81:%) / F; (/ Fj, ( ..
t t

»=0 r—1=0

tht1
/ Fj, (tr) - I(tx) dtk) dt,._q | dt,
t

k=0

It follows that

1 tr tht+1
G-t [ B[ B ( [ oumw) 1) dm) dt,_y | dt,
t,.=0 tr—1=0 0
1 tr thto n—1 i
:—/ Fj, / Fj, / chj.;)mk-lfi(tkﬂ)-.r(tkﬂ)dtk+1 dt,_q1 | dt,
t»=0 tr_1=0 0 =0

1 t, tpyr 1 @ th
+/t_0Fj1 /t _OFJ»Z.--/O > Cy  Filte)- ((/0 ij+1---) dtk1> dty, | dt,

=0
Hence one obtains

(9p

jkl

+ apjkz ) L, ooy oo, (2)
- (20)

n—1 (#) . (1) ;
Zi:o (Cjk7jk+1 ' Ll“’h"'w.ikwjk+1w77"'w.7r ('z> - Cjkfhjk ’ Ll“’h“‘wjkaw.?'kwi'“wir ('z>

in complete analogy with the genus 0 formula given in Equation . One can combine Equation (for (a,b) =
(Jkyje—1) and for (a,b) = (jr+1,4x)) with Equation to calculate explicitly the action of Op, + dp, ~on the

1 2
function Liy;, . awj, - w;, (2).
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