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Combinatorial Structure of the
Moduli Space of Riemann Surfaces





CHAPTER 1

Introduction

1. An Overview

A complex manifold is a patchwork of open domains of the complex Euclidean
space. The complex structure of a manifold is the information how these domains
are glued together. Since each domain has the standard complex structure, the
structure of a complex manifold is a combinatorial information.

The moduli space of a complex manifold is the set of isomorphism classes of
the complex structures defined on the underlying topological manifold of a given
complex manifold. Therefore, it is natural to expect that the moduli space of a
complex manifold may have a combinatorial description.

The moduli problem in algebraic geometry is to determine the algebraic struc-
ture of the moduli space of an algebraic object, such as an algebraic variety or an
algebraic vector bundle. Often the moduli space does not admit the structure of
any algebraic variety. There are two different ways to address this difficulty. The
first is to impose a condition on the class of algebraic objects under consideration
so that the moduli space can be realized as an open subset of an algebraic variety
[20]. The second way is to enlarge the notion of the algebraic structure so that
the moduli space has an algebraic structure in the extended sense, for example, as
an algebraic stack [3]. The moduli problem is understood for relatively restricted
objects, including the Riemann surfaces or algebraic curves, but even for the case of
a Riemann surface, describing the moduli space for a high genus is a hard problem.

The purpose of our study is to give a combinatorial description of the moduli
space of Riemann surfaces with marked points and the same number of positive
real numbers, and to relate the combinatorial structure with an integrable system
of nonlinear partial differential equations through a Hermitian matrix integral.

We will prove that the moduli space of pointed Riemann surfaces with posi-
tive real numbers has the structure of a differentiable orbifold. An orbifold is a
patchwork of local pieces, where each local piece is homeomorphic to the quotient
space of the real Euclidean space of a fixed dimension by a finite group action
[31]. If the group action is through orthogonal transformations and the patching
is by diffeomorphisms, then the orbifold is said to be differentiable. In our study,
the finite groups that determine the orbifold structure of the moduli space appear
as the automorphism groups of graphs, and these graphs are the combinatorial
representatives of the holomorphic structures of pointed Riemann surfaces.

The same graph automorphism groups appear in the asymptotic expansion of a
Hermitian matrix integral. The integrand of the Hermitian matrix integral we will
consider is the exponential function of the trace of an arbitrary polynomial in one
matrix variable, and the integral is taken over the space of all Hermitian matrices
of a fixed size with respect to the standard Euclidean metric. The technique of
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4 1. INTRODUCTION

Feynman diagrams can be applied to compute the asymptotic expansion of the
Hermitian matrix integral. Due to the fact that the trace of the product of matrix
variables is invariant under the cyclic permutation of the variables, the Feynman
diagrams appearing in the asymptotic expansion of the Hermitian matrix integral
turn out to be graphs drawn on compact oriented surfaces. Through Feynman
diagram expansion, the asymptotic series of the Hermitian matrix integral gives us
the generating function of the reciprocal of the order of the automorphism group
of a graph that is drawn on a Riemann surface.

The Strebel theory [29] determines the unique graph for each Riemann surface
with marked points and the same number of positive real numbers. Each edge of this
graph has a length that is determined by the choice of the complex structure and
the positive real numbers. A metric ribbon graph is a graph drawn on an oriented
surface with a positive real number assigned to each edge. Thus the Strebel theory
gives us a description of the moduli space as the set of isomorphism classes of metric
ribbon graphs.

The space of metric ribbon graphs forms a stratified space consisting of orbifolds
of various dimensions by gluing each piece together by contraction. If an edge of
a graph is not a loop, then we can remove the edge and join the two endpoints
together. This operation is the contraction. The glued union of all the strata
has the same dimension everywhere and forms a connected differentiable orbifold,
which is shown by inflating graphs. The inverse operation of the contraction is the
inflation, which inserts a new non-loop edge to a graph such that the contraction
of the inserted edge gives us back the original graph. The space of all inflations
of a metric ribbon graph is homeomorphic to a real Euclidean space [28], and
the graph automorphism group acts on this space faithfully, except for the case of
genus one with one marked point. The quotient of the space of inflations of a metric
ribbon graph by the action of the ribbon graph automorphism group determines the
local structure of the moduli space as a differentiable orbifold. Thus we know that,
although the moduli space is not a smooth manifold, its singularities are mild. They
are modeled by a finite group action on a real Euclidean space through orthogonal
transformations.

The space of metric ribbon graphs determines a canonical orbifold cell-decomposition
of the moduli space. Using this cell-decomposition, we can give a formula for the
orbifold Euler characteristic of the moduli space in terms of the order of the graph
automorphism groups. The formula also has an expression in terms of a Hermitian
matrix integral known as the Penner model [21], which is a special case of the Her-
mitian matrix integral whose asymptotic expansion is the generating function of
the reciprocal of the order of ribbon graph automorphism groups. The asymptotic
expansion of the Penner model is explicitly computable by exact asymptotic analy-
sis [18], and the coefficients are expressed in terms of special values of the Riemann
zeta function. Thus we obtain a formula for the orbifold Euler characteristic of the
moduli space in terms of special values of the Riemann zeta function. This recovers
a theorem of Harer and Zagier [10].

There is no analytic method to calculate the Hermitian matrix integral whose
asymptotic expansion gives the generating function of the reciprocal of the order of
ribbon graph automorphism groups. But this integral can be characterized by a sys-
tem of integrable nonlinear partial differential equations known as the Kadomtsev-
Petviashvili (KP) equations. Slightly more general Hermitian matrix integrals also
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satisfy the KP equations. Since the soliton solutions of the KP equations are writ-
ten as Hermitian matrix integrals of Dirac delta functions, the Hermitian matrix
integrals can be thought of as the continuum limit of the soliton solutions.

The system of the KP equations defines a dynamical system on an infinite-
dimensional Grassmannian through the bijective correspondence between the so-
lutions of the KP equations and the points on the Grassmannian [24]. Every
finite-dimensional orbit of this KP dynamical system is isomorphic to the Jacobian
variety of an algebraic curve, and conversely, every Jacobian variety is realized as
a finite-dimensional orbit of the KP dynamical system [1], [14], [27]. Let us call
a solution to the KP equations algebraic if the point of the Grassmannian corre-
sponding to the solution is stabilized by any of the KP flows. All finite-dimensional
solutions are algebraic. There are many algebraic solutions which have infinite-
dimensional orbits on the Grassmannian, known as higher-rank solutions. There is
a bijective correspondence between all the algebraic solutions of the KP equations
and the set of geometric data consisting of algebraic curves and torsion-free sheaves
of arbitrary rank defined on them [15].

A generic solution to the KP equations is non-algebraic, or transcendental, but
it is generally difficult to give an explicit formula for a transcendental solution.
The Hermitian matrix integral that gives the generating function of the reciprocal
of the order of ribbon graph automorphism groups turns out to be a transcendental
solution to the KP equations. This fact follows from a characteristic feature that
the point of the Grassmannian corresponding to the Hermitian matrix integral
is stabilized by an algebra of differential operators that is isomorphic to sl(2,C).
The theory of tau functions of Sato gives us another asymptotic expansion of the
Hermitian matrix integral in terms of Young diagrams and Schur polynomials.

These are the topics discussed in the following chapters. Recently the role of
quantum field theory and its Feynman path integral expression has won a special
attention of the mathematical community. Its power and efficiency has been recog-
nized throughout the mathematical disciplines. The fundamental principle is the
following:

Compute a Feynman path integral in two different ways. Since the two expressions
come from the same quantum field theory, they should be equal. The equality of the
two different expressions will give us a mathematical theorem.

Unfortunately it is very often difficult to prove the equality following the line
of arguments suggested by the quantum field theory in background, although here
are many successful examples, including the new proof of the Atiyah-Singer index
theorem, where the infinite-dimensional integral can be treated rigorously.

The Hermitian matrix integral we are going to study can be thought of as
the Feynman path integral expression of a toy quantum field theory. It is finite-
dimensional so that it can be analyzed rigorously. In particular, the two formulas
of the asymptotic expansion in terms of the Feynman diagram expansion and the
classical orthogonal polynomial method gives us a non-trivial equality, which is the
formula of Harer and Zagier [10].

Yet we add another ramification to the finite-dimensional integral: the KP
equations. The Hermitian matrix integral is the partition function of a zero-
dimensional quantum field theory, and the partition function as a function with
respect to the coupling constants is characterized by the KP nonlinear integrable
system. Thus the Hermitian matrix integral connects three different mathematical
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world: moduli theory, integrable systems, and the special values of the Riemann
zeta function.

Hermitian Matrix Integral

Combinatorial Structure of
the Moduli Space of

Pointed Riemann Surfaces

Special Values of
Riemann Zeta Function

Transcendental Solution
of the KP Equations

SpecializationFeynman Diagram
Expansion

Characterizing   Integrable System

The amzing richness of Witten’s world [33] is clear. In a sense, our investigation
is just the theory of the Gromov-Witten invariants of a 0-dimensional symplectic
manifold! In the theory of Gromov-Witten invariants and quantum cohomologies,
the homology classes of the compactified moduli spaces of pointed Riemann surfaces
play an essential role.

There are other connections between the moduli spaces of algebraic curves
and graphs on topological surfaces than the one coming from the Strebel theory.
The most interesting among them is Grothendieck’s dessins d’enfant : the set of
isomorphism classes of certain graphs drawn on compact topological surfaces is
identified with the moduli space of algebraic curves defined over Q. Here the main
interests lie in the action of the absolute Galois group Gal(Q,Q) on the algebraic
fundamental group (i.e., the profinite completion of π1) of the moduli spaces [11],
[25]. Of course the KP theory can be built perfectly well on Q, but there have
been no particular motivation to investigate such a theory until now. With the
emergence of the KP theory in the Strebel theory in sight, it is the time to study
dessins d’enfant from the point of view of the infinite-dimensional Grassmannian
defined over Q.

2. A Drawing on a Riemann Surface

A two-dimensional sphere is the foundation and a cylinder is a building block
of constructing all compact connected oriented topological surfaces. In this book
we consider only connected orientable surfaces. So by a surface we always mean a
connected oriented one unless otherwise specified.

A sphere S2 is itself a compact oriented topological surface. Remove two non-
intersecting disks out of it. The surface now has the boundary consisting of two
disjoint circles. Since a cylinder has also two circles as its boundary, we can attach
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a cylinder to the 2-punctured sphere gluing the boundary circles. The result is
a sphere with one handle (Figure 1.1). This surface is homeomorphic to a two-
dimensional torus.

≈
Figure 1.1. Sphere with a Handle

The process of attaching a handle can be applied to any compact oriented
surface in the same way: first remove two non-intersecting disks from a surface
Σ, and then glue a cylinder along the boundary circles. Let us give a recursive
definition of the genus of a compact oriented surface. The genus of a sphere is
defined to be 0. If a surface Σ has genus g, then the surface obtained by attaching
a handle to Σ has genus g + 1.

A surface of genus g is a compact connected oriented surface obtained by at-
taching g handles to a sphere. The order and the way of attaching the handles do
not affect the topological structure, or the structure invariant under homeomor-
phisms, of the surface. It is known that every compact connected oriented surface
is homeomorphic to a surface of genus g.

Let Σg be a surface of genus g. Up to homeomorphism, we can realize it in the
form of Figure 1.2, where the g handles are aligned around the equator of a sphere.
Let P be the north pole of the sphere, and H1, · · · , Hg the g handles of Σg. Each
handle Hj is attached to the sphere along two circles Cej and Cwj , where Cej is the
east boundary and Cwj the west boundary of Hj . Let us draw a drawing

(1.1) Γ = α1 ∪ β1 ∪ · · · ∪ αg ∪ βg
on this surface as in Figure 1.2.

The cycle αj starts at the north pole P , goes down along a meridian to the
west-bound circle Cwj of the handle Hj , circles around Cwj , and comes back to P
along another meridian. The cycle βj starts at P , goes down to the east-bound
circle Cej first, then goes on to the handle Hj , gets out of the handle at the west
end, and comes back to P . We choose the paths αj and βj so that they intersect
only at P . Moreover, we can arrange these cycles for every j = 1, 2, · · · , g so that
none of them intersect except for the common endpoint P . On Figure 1.2, only α1

and β1 are drawn, but it is easy to complete the drawing Γ.
None of these cycles are 0-homotopic. Moreover, for every point x of Σg that

is not on the drawing Γ, there is a path on the surface that connects x and the
south pole Q without intersecting Γ. Let us cut the surface along the 2g cycles.
This is the same as considering the complement of the drawing Γ on the surface.
The result is homeomorphic to an open disk bounded by 4g edges (Figure 1.3).

In Figure 1.3, an arrow is given to each edge. Since Σg is oriented, there are
two sides for each cycle. The cutting process is more accurate if we try to cut out
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Figure 1.2. A Drawing on a Surface of Genus 4
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Figure 1.3. A 4g-gon as the Result of Cutting Σ4 Along the Drawing

a thin neighborhood of the drawing. So when we start from P , we cut along α1

on its west side. After circling around the west-bound circle Cw1 of the handle H1,
we then cut along the east side of α1 up to P . Next we cut along the west side of
β1 down to the east-bound circle Ce1 , cut along the inner side of the path on the
handle, then go along the east side of β1 as we go up to the north pole again. We
now follow α1 backward, starting on its west side first, then go up to the north
pole along the east side. Finally, we cut along β1 backward starting with its west
side, the outer side on the handle, and the east side as we go up to P . Continuing
this cutting process for all cycles, we obtain the 4g-gon as the complement of the
drawing on Σg. For each edge of the 4g-gon, the reversed direction is indicated by
the inverse sign of the name the cycle.

We can recover Σg by gluing the 4g edges of the 4g-gon pairwise with aligned
direction. All the 4g corners of the 4g-gon are identified and recover the north pole
P . The center of the 4g-gon is the south pole Q. Since Σg is made of a single
4g-gon, 2g-edges after gluing, and a single vertex P , we have the formula for the
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Euler characteristic of the surface of genus g:

(1.2) χ(Σg) = 1− 2g + 1 = 2− 2g.

The drawing Γ is an example of what we call in later sections a ribbon graph.
It has one vertex P and 2g edges

α1, β1 · · · , αg, βg.

The vertex P has degree 4g, which is the number of half-rays coming in to, and
going out of, P .

A graph is a finite collection of points (vertices) and line segments (edges),
such that each vertex bounds an edge and every endpoint of an edge is a vertex.
Figure 1.4 is a graph with four vertices of degree 1, 2, 3 and 4.

Figure 1.4. A Graph

A connected graph Γ is a ribbon graph if
(1) it is drawn on a compact connected oriented surface Σ,
(2) it has no vertices of degree 1, and
(3) it induces a cell-decomposition of Σ.

A cell-decomposition of a surface is a decomposition of the surface into the disjoint
union of several pieces such that each connected component is homeomorphic to a
point, an open line segment, or an open disk, and that an n-dimensional piece is
glued to the boundary of an (n+1)-dimensional piece, where n = 0, 1. The vertices
of Γ are the 0-cells and the edges of Γ are the 1-cells of the cell-decomposition. The
complement of Γ in Σ is the disjoint union of open disks, which are the 2-cells. The
number v(Γ) of vertices, the number e(Γ) of edges of Γ, the number b(Γ) of 2-cells
and the genus of Σ satisfy the relation

2− 2g(Σ) = v(Γ)− e(Γ) + b(Γ).

There are many different cell-decompositions of the same surface by ribbon graphs.
Then what properties of a surface does a ribbon graph represent? It is certainly
useful to compute the Euler characteristic, but for a surface it is anyway an easy
task. Why are we interested in, and what the use of, these ribbon graphs?

The answer comes from a somewhat surprising direction. The different ribbon
graphs on the same topological surface represent different types of holomorphic
structures defined on the surface. In other words, the ribbon graphs represent the
combinatorial structure of the moduli spaces of Riemann surfaces.

Definition 1.1 (Riemann surfaces and complex structures). Let Σ be a com-
pact connected oriented surface. A holomorphic structure on Σ is a finite open
covering

(1.3) Σ =
n⋃
j=1

Uj
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of Σ by open subsets Uj together with homeomorphisms

(1.4) φj : Uj
∼−→ Ωj ⊂ C

such that each Ωj is homeomorphic to an open disk of C, and that the map

φj ◦ φ−1
i

∣∣
φi(Ui∩Uj)

: φi(Ui ∩ Uj)
∼−→ φj(Ui ∩ Uj) ⊂ Ωj

is biholomorphic. A compact Riemann surface is a compact connected oriented sur-
face with a holomorphic structure defined on it. Two Riemann surfaces (Σ1, {U1

j })
and (Σ2, {U2

k}) are said to be isomorphic, conformal, or biholomorphic if there is
a homeomorphism

h : Σ1 −→ Σ2

such that
φ2
k ◦ h ◦ (φ1

j )
−1 : Ω1

j −→ Ω2
k

and
φ1
j ◦ h−1 ◦ (φ2

k)−1 : Ω2
k −→ Ω1

j

are holomorphic maps whenever they are defined.

Ω2

U1

U2

Ω1

φ
1

φ
2

Σ

φ
2

φ
1°
−1

Figure 1.5. Coordinate Patch

The moduli space Mg of Riemann surfaces of genus g is the set of all isomor-
phism classes of complex structures defined on a compact surface of genus g. What
kind of natural geometric structure does the moduli space Mg have, and how can
we define it? This question goes back to Riemann’s paper Theorie der Abel’schen
Functionen that was published in Crelle’s journal in 1847. There have been many
results established throughout the 20th century on this moduli problem. The most
successful analytic theory on the problem is called Teichmüller theory. The tech-
niques developed for the analytic study of Mg are used widely in pure and applied
mathematics, including fluid dynamics. The literature on this topic is vast. Here
we cite only [6] and [12]. There is also a nice geometric discussion on the subject in
[31]. The algebro-geometric approach to the moduli problem has evolved into the
theory of algebraic stacks and geometric invariant theory. The standard literature
on these subjects are [3] and [20].
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In order to determine the combinatorial representative of a holomorphic struc-
ture on a surface, we have to choose some points on it and a the same number of
positive real numbers. In later chapters we will show that the collection of these
data is equivalent to a ribbon graph with a positive real number assigned to each
edge. The key ingredient of our study is the automorphism group of a ribbon graph,
which appear in the theory of Riemann surfaces as well as in the asymptotic ex-
pansion of certain matrix integrals. The fact that they are the same object gives
us a mysterious connection between the totally different objects.

We now begin our more formal treatment of the combinatorial objects we need.
It is an unfortunate digression, but without precise definitions we cannot reach to
deep theorems. Figures are designed to help forming geometric understanding of
the combinatorial objects. The precise algebraic definitions are given so that we
will be able to apply the geometric method of counting to the computation of the
Hermitian matrix integrals later, where the built-in geometry is not apparent at
all. Through an algebraic manipulation of the integrals, we will encounter the
combinatorial objects of this chapter, and through the geometric visualization of
the combinatorial data, we will see the connection between geometry of Riemann
surfaces and analysis of the matrix integrals.





CHAPTER 2

Riemann Surfaces and the Combinatorial Data

Hermann Weyl defined a Riemann surface as a patch-work of complex domains
[32]. Two open domains are glued together by a biholomorphic function. The com-
plex analytic structure of a Riemann surface is then encoded in the combinatorial
data of the coordinate patches.

The combinatorial object we need in our study of the moduli spaces of Riemann
surfaces is a type of graph drawn on a Riemann surface. Since what we call a graph
is not exactly the same as that is found in the common literature of graph theory, we
give the precise definition of various kinds of combinatorial objects in this chapter.

We encounter the graph like structures in two different ways. The first one is
through Strebel theory, which gives a cell-decomposition of a Riemann surface. The
1-skeleton of the cell complex is a graph drawn on the surface. The other is through
Feynman diagram expansion of a Hermitian matrix integral. The fact that these
combinatorial data are exactly the same gives us a powerful tool to understand the
moduli spaces of Riemann surfaces.

We start with the definition of pairing schemes in Section 1. This is an unusual
manner to introduce a graph, but it turns out to be the shortest path to connect
Feynman diagram expansion of matrix integrals and the complex analytic structure
of a Riemann surface in later chapters. Ribbon graphs (or fatgraphs) are defined in
Section 2 as an equivalence class of pairing schemes. The notion of automorphism
groups of ribbon graphs is defined. It is this automorphism group that determines
the orbifold structure of the moduli space of Riemann surfaces, and at the same time
the order of the group appears as the coefficients of the asymptotic expansion of a
Hermitian matrix integral. The automorphism group of a ribbon graph naturally
acts on the set of edges of the graph. Most of the cases this action is faithful, but
there are special graphs which have a non-trivial graph automorphism acting on
the set of edges trivially. Section 3 is devoted to classify all the exceptional graphs.

1. Pairing Schemes and Graphs

The object that connects the graphs appearing in the Strebel theory and the
Feynman diagrams appearing in the asymptotic expansion of a Hermitian matrix
integral is a pairing scheme.

Definition 2.1. A pairing scheme P = (V, p) consists of a collection V =
{V1, V2, · · · , Vv} of non-empty finite ordered sets Vj = (Vj1, Vj2, · · · , Vj`j ), where
j = 1, 2, · · · , v, and a bijective pairing map p : Ṽ ∼−→ Ṽ satisfying that

(1) p(V ) 6= V for every V ∈ Ṽ, and
(2) p2 = 1,

13
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where Ṽ is the union of all elements of Vj :

Ṽ =
v⋃
j=1

Vj = {V11, · · · , V1`1 , V21, · · · , V2`2 , · · · , Vv1, · · · , Vv`v}.

There is a natural projection

(2.1) Ṽ 3 Vjk 7−→ Vj ∈ V.

The ordered set Vj is called a vertex of P of degree `j . The degree sequence
(`1, `2, · · · , `v) is always arranged to be non-decreasing:

(2.2) (`1, `2, · · · , `v) = (

n1-times︷ ︸︸ ︷
1, 1, · · · , 1,

n2-times︷ ︸︸ ︷
2, 2, · · · , 2, · · · ,

nm-times︷ ︸︸ ︷
m,m, · · · ,m),

where ni ≥ 0 is the number of vertices of degree i and n1 +n2 + · · ·+nm = v. The
set of directed edges is defined by

(2.3)
−→
E = {(V, p(V )) | V ∈ Ṽ} ⊂ Ṽ × Ṽ.

Since p2 = 1, (V, p(V )) is contained in
−→
E if and only if (p(V ), V ) ∈

−→
E . Thus

−→
E is

symmetric under the natural action of S2, where Sn denotes the symmetric group
of n letters. The quotient

(2.4) E =
−→
E /S2 ⊂ (Ṽ × Ṽ)/S2

is the set of edges, and each element (V, p(V )) = (p(V ), V ) ∈ E is an edge of P .
Two pairing schemes P = (V, p) and P ′ = (V ′, p′) are said to be isomorphic if
(1) they have the same degree sequence,
(2) there is a bijection

(2.5) αj : Vj
∼−→ V ′j

of a vertex of P of degree `j to a vertex of P ′ of the same degree for every
j = 1, 2, · · · , v,

(3) the map

(2.6) α : Ṽ ∼−→ Ṽ ′

induced by αj ’s is a bijection, and
(4) the diagram

(2.7)

Ṽ ∼−−−−→
p

Ṽ

α

yo o
yα

Ṽ ′ ∼−−−−→
p′

Ṽ ′

commutes.

We can visualize a pairing scheme by representing each vertex as a set of dots
and each edge as a pairing of two dots. The pairing scheme of Figure 2.1 has three
vertices of degree 3, 4 and 5, so its degree sequence is (3, 4, 5).

The group

(2.8) G =
m∏
k=1

Snk o (Sk)nk
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V1 E 1 E 4

E 5

E 6E 3

E 2

V2 V3

Figure 2.1. A Pairing Scheme

acts on the set of all pairing schemes with the same degree sequence. The orbit of
this group action at P consists of all pairing schemes that are isomorphic to P .

Definition 2.2. We call an isomorphism class of pairing schemes a graph
Γ = (V, E , i) with the vertex set V, the edge set E , and the incidence relation

i : E −→ (V × V)/S2,

which is the composition of the inclusion of E into (Ṽ × Ṽ)/S2 and the projection
(Ṽ × Ṽ)/S2 −→ (V × V)/S2.

The graph corresponding to the pairing scheme of Figure 2.1 is given in Fig-
ure 2.2.

V1

E 3

E 2

E 4

E 5

E 6
E 1

V2 V3

Figure 2.2. The Graph Corresponding to the Pairing Scheme of Figure 2.1

Although we use the word graph for an isomorphism class of pairing schemes
because of its graph-like structure, it is not exactly the same object found in the
usual literature of graph theory. The biggest difference lies in the notion of graph
automorphism.

Definition 2.3. Let P = (V, p) be a pairing scheme with the degree sequence
(2.2) and Γ = (V, E , i) the graph representing the isomorphism class of P . The graph
automorphism group Aut(Γ) of Γ is the isotropy subgroup of

∏m
k=1 Snk o (Sk)nk

that preserves P :

(2.9) Aut(Γ) =

g ∈
m∏
k=1

Snk o (Sk)nk

∣∣∣∣∣∣∣∣∣∣
Ṽ ∼−−−−→

p
Ṽ

g

yo o
yg

Ṽ ∼−−−−→
p

Ṽ

commutes

 .

Remark. The automorphism group Aut(Γ) does not depend on the choice of
the representing pairing scheme P . Let P ′ be a pairing scheme isomorphic to P .
Then there is an h ∈

∏m
k=1 Snko(Sk)nk such that P ′ = hP . The isotropy subgroup

of P ′ is conjugate to the isotropy subgroup of P by h in
∏m
k=1 Snk o (Sk)nk .
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For comparison, let us give the usual definition of a graph here.

Definition 2.4. A usual graph Γ = (V, E , i) consists of finite sets V of vertices
and E of edges, together with a map

i : E −→ (V × V)/S2

called the incidence relation. Let V = {V1, V2, · · · , Vv}. The number of vertices v
is called the order of Γ. The degree, or valence, of a vertex Vj is the number

deg(Vj) =
∑
k 6=j

ajk + 2ajj ,

where
ajk = |i−1(Vj , Vk)|.

The degree sequence of Γ is the list of degrees of vertices:

(deg(V1),deg(V2), · · · ,deg(Vv)).

The vertices are arranged so that the degree sequence is non-decreasing.

Remark. In this article we assume deg(Vj) > 0 for every vertex Vj ∈ V.

Definition 2.5. An isomorphism g = (a, b) of a graph Γ = (V, E , i) to another
graph Γ′ = (V ′, E ′, i′) in the usual sense is a pair of bijective maps

a : V ∼−→ V ′ and b : E ∼−→ E ′

such that the diagram

(2.10)

E i−−−−→ (V × V)/S2

b

yo o
ya×a

E ′ −−−−→
i′

(V ′ × V ′)/S2

commutes.

Every isomorphism g = (a, b) : Γ −→ Γ′ in the usual sense preserves the degree
sequence. In particular, a maps a vertex of Γ to a vertex of Γ′ of the same degree.

Let Γ = (V, E , i) be an ordinary graph in the above sense. We define the edge
refinement ΓE = (V ∪ VE , 2E , iE) of Γ to be the graph Γ with the middle point of
each edge added as a degree 2 vertex. More precisely, let VE be the midpoint of an
edge E ∈ E of Γ. We denote by VE the set of all these midpoints of edges. These
midpoints are considered to be degree 2 vertices of the new graph ΓE . The set of
vertices of ΓE is the disjoint union V ∪VE , and the set of edges is the disjoint union
E
∐
E , which we denote by 2E , because the midpoint VE divides the edge E into

two parts. The incidence relation can now be described by a map

(2.11) iE : 2E = E
∐
E −→ V × VE ,

because each edge of ΓE connects exactly one vertex of V to a vertex of VE . An edge
of ΓE is called a half-edge of Γ. For every vertex V ∈ V of Γ, the set i−1

E (V × VE)
consists of half-edges coming out of V . Note that we have

deg(V ) = |i−1
E (V × VE)|.

In Figure 2.3, the original graph Γ has three vertices V1, V2, V3 and six edges
E1, E2, · · · , E6. The edge refinement ΓE has thus six more vertices VE1 , · · · , VE6 .
There are five half-edges at V3, as the degree of the vertex V3 indicates.
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V1 V
3

V2 V3E

V
2E

V
1E

V
6E

V
4E

V
5E

Figure 2.3. The Edge Refinement of a Graph

The graph automorphism Aut(Γ) in our sense is the graph automorphism of
the edge refinement ΓE in the usual sense that preserves V, VE and E . For example,
the graph with one degree 4 vertex and two edges has (Z/2Z)3 as its automorphism,
while the usual graph theoretic automorphism is Z/2Z (Figure 2.4).

V

E2

E1

V

V
E2

E1

E 2

VE 1

E3

E4

Figure 2.4. A Graph and its Edge Refinement

The isomorphism class of a pairing scheme can be recovered from a usual graph
through the edge refinement, by defining a vertex of the pairing scheme as the set
of half-edges coming out of a vertex of the original graph.

Definition 2.6. Let Γ be a graph. Two edges E1 and E2 are connected if
there is a vertex V of Γ such that both E1 and E2 are incident to V . A sequence
of connected edges is an ordered set

(2.12) (E1, E2, · · · , Ek)

of edges of Γ such that Ej and Ej+1 are connected for every j = 1, 2, · · · , k − 1. A
graph Γ is connected if for every pair of vertices V and V ′ of Γ, there is a sequence
of connected edges (2.12) such that E1 is incident to V and Ek is incident to V ′.

Remark. As a convention, we classify the empty graph as a non-connected
graph. Thus we count that the number of graphs with 0 vertices is 1, while the
number of connected graphs with 0 vertices is 0.

2. Ribbon Graphs

Let us now turn our attention to ribbon graphs.

Definition 2.7. Two isomorphic pairing schemes P and P ′ with the same
degree sequence (2.2) have the same orientation if P ′ = gP for some

g ∈
m∏
k=1

Snk o (Z/kZ)nk .

The group element g is called an orientation preserving isomorphism of P to P ′.
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Definition 2.8. A ribbon graph (or fatgraph) Γ associated with a pairing
scheme P = (V, p) is the equivalence class of P with respect to the action of the
orientation preserving isomorphisms.

Proposition 2.9. A ribbon graph is a graph Γ = (V, E , i) together with a cyclic
ordering on each vertex

Vj = (Vj1, Vj2, · · · , Vj`j ) ∈ V

of Γ.

Proof. Since an orientation preserving isomorphism of a pairing scheme to
another pairing scheme changes the elements of a vertex only by a cyclic permuta-
tion, the notion of a cyclic order at each vertex makes sense. Conversely, if each
vertex of a pairing scheme has a cyclic ordering, then it defines an isomorphism class
of pairing schemes under orientation preserving isomorphisms. Thus it determines
a ribbon graph. �

Each vertex of a ribbon graph of degree d can be placed on a positively oriented
plane (i.e., a plane with the counter-clockwise orientation). We can make each of
the d half-edges into a road coming in to the vertex. Thus the vertex becomes an
intersection of d streets. The cyclic ordering of half-edges defines an orientation to
each of the side-walks of a street (Figure 2.5).

Figure 2.5. A Vertex with a Cyclic Ordering and a Cross Road Intersection

The streets are connected following the compatible orientation of the side-
walks to form a ribbon like object (Figure 2.6). The graph is no longer placed on
an oriented plane. The ribbon graph itself can be considered as an open oriented
surface with boundary, which are the connected side-walks.

Figure 2.6. A Ribbon Graph = A Graph with a Cyclic Order of
Half-Edges at each Vertex

The graph of Figure 2.2, when considered as a ribbon graph, is visualized in
Figure 2.7.
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V2V1 V3
E 1

E 2

E 3 E 4

E 5

E 6

Figure 2.7. A Ribbon Graph

Definition 2.10. Let Γ be a ribbon graph associated with a pairing scheme
P = (V, p). Its automorphism group Autrib(Γ) is the isotropy subgroup of

m∏
k=1

Snk o (Z/kZ)nk

that preserves P :
(2.13)

Autrib(Γ) =

g ∈
m∏
k=1

Snk o (Z/kZ)nk

∣∣∣∣∣∣∣∣∣∣
Ṽ ∼−−−−→

p
Ṽ

g

yo o
yg

Ṽ ∼−−−−→
p

Ṽ

is commutative

 .

As in Definition 2.3, Autrib(Γ) as an abstract group is independent of the choice
of the representing pairing scheme. Since we deal mainly with ribbon graphs from
now on, we use the notation Aut(Γ) for the automorphism group of a ribbon graph
Γ, unless otherwise stated.

The characteristic difference between a graph and a ribbon graph is that the
latter has boundary.

Definition 2.11. Let Γ = (V, E , i, c) be a ribbon graph associated with a
pairing scheme P = (V, p), where c denotes the cyclic ordering of half-edges at each
vertex. A boundary component of Γ is a sequence of edges

(E1, E2, · · · , Eq)
with a cyclic order satisfying the following conditions:

(1) Let Eν = (Vjνkν , p(Vjνkν )), ν = 0, 2, · · · , q − 1. Then p(Vjνkν ) and
Vjν+1kν+1 belong to the same vertex Vjν+1 , where we consider q ≡ 0
mod q.

(2) Vjν+1kν+1 is the predecessor of p(Vjνkν ) with respect to the cyclic order on
Vjν+1 .

Remark. Note that the notion of boundary is not defined for ribbon graphs
that have vertices of degree 1.

The ribbon graph associated with the pairing scheme of Figure 2.8 has three
boundary components (V11, V12), (V13, V14), and ((V14, V13), (V12, V11)), which cor-
respond to the three topological boundary components of the ribbon graph of Fig-
ure 2.9.
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V11 V12 V13 V14

Figure 2.8. A Pairing Scheme with a Vertex of Degree 4

Figure 2.9. Visualizing the Boundary Components of a Ribbon
Graph of Figure 2.8

The ribbon graphs of Figure 2.6 and Figure 2.7 have only one boundary com-
ponent. We denote by b(Γ) the number of boundary components of a ribbon graph
Γ.

Definition 2.12. The group of automorphisms of Γ that preserve the boundary
components is denoted by Aut∂(Γ), which is a subgroup of Aut(Γ).

Since a boundary component of a ribbon graph is defined to be a sequence
of edges with a cyclic order, the topological realization of the ribbon graph has a
well-defined orientation and each boundary component has the induced orientation
that is compatible with the cyclic order. Thus we can attach an oriented disk to
each boundary component of a ribbon graph Γ so that the total space, which we
denote by C(Γ), is a compact oriented topological surface.

The attached disks and the underlying graph Γ of the ribbon graph Γ defines
a cell-decomposition of C(Γ). Let v(Γ) denote the number of vertices and e(Γ)
the number of edges of Γ. Then the genus g(C(Γ)) of the closed surface C(Γ) is
determined by the following formula for the Euler characteristic:

(2.14) v(Γ)− e(Γ) + b(Γ) = 2− 2g(C(Γ)).

The ribbon graph of Figure 2.6 has two vertices, three edges and one boundary
component. From (2.14), we have 2− 3 + 1 = 2− 2 = 0, hence the surface C(Γ) is
a torus on which the graph is drawn.

Figure 2.10. A Cell-Decomposition of a Torus
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The ribbon graph of Figure 2.7 has three vertices, six edges and one boundary
component. Thus the genus of the closed surface C(Γ) associated with this ribbon
graph is 2.

Figure 2.11. A Cell-Decomposition of a Surface of Genus 2

The example of Figure 2.9 gives rise to a sphere made up with three disks and
a figure 8 shape.

Figure 2.12. A Cell-Decomposition of a Sphere with an 8-Shape

Note that (2.14) is invariant under interchanging the number of vertices and
boundary components of a ribbon graph. This invariance comes from the duality of
a cell-decomposition of an oriented surface. Let Z be the cell-decomposition of the
surface C(Γ) associated with a ribbon graph Γ. Let V denote the set of vertices,
E the set of edges, and B the set of boundary components of Γ. The dual graph
Γ∗ = (V∗, E∗, i∗) of Z consists of the vertex set V∗ = B and the edge set E∗, which
has the same cardinality of E . Two vertices of Γ∗ are connected by an edge E∗ if
the corresponding faces of Z are glued together along an edge E of Γ. The dual
graph Γ∗ is naturally a ribbon graph, but it may have vertices of degree 1. Thus
the boundary components of Γ∗ may be ill-defined. If Γ does not have any loop,
then Γ∗ has well-defined boundaries and it determines the same topological surface

C(Γ∗) = C(Γ).
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The ribbon graph of Figure 2.7 has only one boundary component. The oriented
boundary is a dodecagon as shown in Figure 2.13. The dual graph of the cell-
decomposition of Figure 2.11 has thus one vertex of degree 12, six edges, and three
boundary components, as shown in Figure 2.14.

E 1

V2

V1

V3

V2

V1
V2

V3

V3

V2

V3

V3

V1

E 3

E 2

E 4

E 1

E 3 E 5

E 6

E 5

E 4

E 6

E 2

Figure 2.13. The Boundary Disk of the Ribbon Graph of Figure 2.7

E 1
*

E 3
*

E 4
*

E 5
*

E 6
*

E 2
*

Figure 2.14. The Dual of the Cell-Decomposition of Figure 2.11

From now on, we deal only with ribbon graphs whose vertices are of degree 3
or more.

3. Exceptional Graphs

In Chapter 4, we will study metric ribbon graphs, which are ribbon graphs
with a positive real number assigned to each edge. The set of all metric edges of a
ribbon graph forms a topological space, and the automorphism group of the ribbon
graph acts on the space. To study the structure of this space, we need to examine
the action of the automorphism group of a ribbon graph Γ on the space of metric
edges Re(Γ)

+ . So let us determine all ribbon graphs that have a non-trivial graph
automorphism acting trivially on the set of edges.
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Definition 2.13. A ribbon graph Γ is exceptional if the natural homomor-
phism

(2.15) φΓ : Aut(Γ) −→ Se(Γ)

of the automorphism group of Γ to the permutation group of edges is not injective.

The exceptional graphs require a separate treatment when we determine the
orbifold structure of the graph complexes in Chapter 3. The geometric structure
of the rational cell of the graph complex differs from what we expect from the
analytic computation of the invariants through the matrix integral if the graph is
exceptional.

Let Γ be an exceptional graph. Since none of the edges are interchanged,
the graph can have at most two vertices. If the graph has two vertices, then the
graph automorphism interchanges the vertices while all edges are fixed. The only
possibility is a graph with two vertices of degree j, (j ≥ 3), as shown in Figure 2.15.

1 2

Figure 2.15. Exceptional Graph Type 1—A Ribbon

If j is odd, then it has only one boundary component, as in Figure 2.6. The
genus of the surface C(Γ) is given by

(2.16) g(C(Γ)) =
j − 1

2
.

For an even j, the graph has two boundary components, as in Figure 2.15, and

(2.17) g(C(Γ)) =
j − 2

2
.

In each case, the graph automorphism is the product group

(2.18) Aut(Γ) = Z/2Z× Z/jZ,
and the factor Z/2Z acts trivially on the set of edges.

If we label the boundary of the ribbon graph when it has two boundary com-
ponents, then we can consider the ribbon graph automorphism that preserve the
boundary:

Aut∂(Γ) = Z/jZ,
which is a factor of (2.18). Note that Aut∂(Γ) acts faithfully on the set of edges.

To obtain the one-vertex case, we only need to shrink one of the edges of the
two-vertex case considered above. The result is a graph with one vertex of degree
2k, as shown in Figure 2.16.

When k is even, the number of boundary components b(Γ) is equal to 1, and
the genus of the surface C(Γ) is

(2.19) g(C(Γ)) =
k

2
.
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1

2

Figure 2.16. Exceptional Graph Type 2

If k is odd, then the graph has two boundary components and the genus is

(2.20) g(C(Γ)) =
k − 1

2
.

The graph automorphism is Z/(2k)Z, but the action on Rk+ factors through

Z/(2k)Z −→ Z/kZ.
Here again the automorphism group fixing the boundary, Aut∂(Γ) = Z/kZ, acts
faithfully on the set of edges.

We have thus classified all exceptional graphs. These exceptional graphs ap-
pear for arbitrary genus g. The graph of Figure 2.15 has two distinct labeling of the
boundary components, but since they can be interchanged by the action of a rib-
bon graph automorphism, there is only one equivalence class of ribbon graph with
labeled boundary over this underlying ribbon graph. The automorphism group
that preserves the boundary is Z/4Z. Thus the space of metric ribbon graphs with
labeled boundary is R4

+/(Z/4Z). The change of labeling, or the action of S2, has a
non-trivial effect on the graph level, but does not act at all on the space R4

+/(Z/4Z).
The space of metric ribbon graphs is also R4

+/(Z/4Z), which is not the S2-quotient
of the space of metric ribbon graphs with labeled boundary.

The other example of an exceptional graph, Figure 2.16, gives another inter-
esting case. This time the space of metric ribbon graphs with labeled boundary
and the space of metric ribbon graphs without referring to the boundary are both
R3

+/(Z/3Z). The group S2 of changing the labels on the boundary has again no
effect on the space.

The analysis of exceptional graphs shows that labeling all edges does not induce
labeling of the boundary components of a ribbon graph. However, if we label all
half-edges of a ribbon graph, then we have a labeling of the boundary components
as well. We will come back to this point when we study the orbifold covering of the
space of metric ribbon graphs by the space of metric ribbon graphs with labeled
boundary components in Chapter 3.



CHAPTER 3

Theory of Orbifolds

1. The Moduli Space of Riemann Surfaces with Marked Points

Let C be a smooth compact Riemann surface of genus g. A set of n marked
points of C is an ordered set (p1, p2, · · · , pn) of n points of C that are labeled. Two
sets of data (C, (p1, p2, · · · , pn)) and (C ′, (p′1, p

′
2, · · · , p′n)) are said to be isomorphic

if there is a biholomorphic mapping f : C −→ C ′ such that

(3.1) f(pj) = p′j

for j = 1, 2, · · · , n. The moduli space Mg,n is the set of isomorphism classes of
smooth compact Riemann surfaces of genus g with n marked points.

We define this space merely as the set of biholomorphic classes for now. The
purpose of our study if to give a canonical and explicit combinatorial structure to
the space Mg,n × Rn+ and realize it as an orbifold [31].

The moduli space Mg,n has been defined as an open complex algebraic variety
of complex dimension 3g − 3 + n [20]. Another algebro-geometric structure as an
algebraic stack has been introduced to Mg,n [3]. Using the Teichmüller theory, the
moduli space is realized as the quotient space of an open domain homeomorphic
to R6g−6+2n by a properly discontinuous action of an infinite discrete group that
is known as the mapping class group or the modular group [6]. Since the mapping
class group action on the Teichmüller space has fixed points, the quotient space has
the structure of an orbifold.

Our approach, which deals with the product space Mg,n ×Rn+ rather than the
moduli space itself, is more explicit and combinatorial in nature. Our aim is to
define an orbifold structure in this product space, and to give a canonical rational
cell-decomposition of it. This direction of approach to the moduli theory has been
studied by [10], [13], [21], [33], and many others.

2. Orbifolds and the Euler Characteristic

A space obtained by patching pieces of the form

smooth open ball
finite group

together is called a V -manifold by Satake [23] and an orbifold by Thurston [31],
from the latter we cite:

Definition 3.1. An orbifold Q = (X(Q), {Ui}i∈I , {Gi}i∈I , {φi}i∈I) is a set of
data consisting of

(1) a Hausdorff topological space X(Q) that is called the underlying space,

25
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(2) a locally finite open covering

X(Q) =
⋃
i∈I

Ui

of the underlying space,
(3) a collection of finite groups Gi and a set {φi} of homeomorphisms such

that for every i ∈ I there exists an open subset Ũi of Rn and a faithful
Gi-action on Ũi subject to the homeomorphism

φi : Ui
∼−→ Ũi/Gi.

Whenever Ui ⊂ Uj , there is an injective group homomorphism

fij : Gi −→ Gj

and an embedding
φ̃ij : Ũi −→ Ũj

such that
φ̃ij(γx) = fij(γ)φ̃ij(x)

for every γ ∈ Gi and x ∈ Ũi, and that

Ũi
φ̃ij−−−−→ Ũjy y

Ũi/Gi
φij=φ̃ij/Gi−−−−−−−→ Ũj/fij(Gi)∥∥∥ y

Ũi/Gi −−−−→ Ũj/Gj

φi

xo o
xφj

Ui
inclusion−−−−−→ Uj .

The space Q is called an orbifold locally modeled on Rn modulo finite groups.
An orbifold with boundary is a space locally modeled on Rn modulo finite groups
and Rn+ modulo finite groups. An orbifold is said to be differentiable if the group
Gi is a finite subgroup of the orthogonal group O(n) acting on Rn, and the local
models Rn/Gi are glued together by a diffeomorphism.

Definition 3.2. A surjective map

π : Q0 −→ Q1

of an orbifoldQ0 ontoQ1 is said to be an orbifold covering if the following conditions
are satisfied:

(1) The map π induces a surjective continuous map

π : X(Q0) −→ X(Q1)

between the underlying spaces, which is not generally a covering map of
the topological spaces.



2. ORBIFOLDS AND THE EULER CHARACTERISTIC 27

(2) For every x ∈ Q0, there are an open neighborhood U ⊂ Q0, an open
subset Ũ ⊂ Rn, a finite group G1 and its subgroup G0 ⊂ G1 subject to

φ : U ∼−→ Ũ/G0

and
U

π−−−−→ π(U)

o
yφ yo

Ũ/G0 −−−−→ Ũ/G1.

(3) If we start with a point y ∈ Q1, then there are an open neighborhood
V ⊂ Q of y, an open subset Ṽ ⊂ Rn, a finite group G′1 and its subgroup
G′0 ⊂ G′1, and a connected component U ′ of π−1(V ) ⊂ Q0 such that

U ′
π−−−−→ V

o
y yo

Ṽ /G′0 −−−−→ Ṽ /G′1.

If a group G acts on a Riemannian manifold M properly discontinuously by isome-
tries, then

π : M −→M/G

is an example of a differentiable covering orbifold.
For every point x ∈ Q, there is a well-defined group Gx associated to it. Let

U = Ũ/G be a local open coordinate neighborhood of x ∈ Q. Then the isotropy
subgroup of G that stabilizes any inverse image of x is unique up to conjugation. We
define Gx to be this isotropy group. An orbifold cell-decomposition of an orbifold
is a cell-decomposition of the underlying space X(Q) such that the group Gx is the
same along each stratum. We denote by GC the group associated with a cell C.

Thurston extended the notion of the Euler characteristic to orbifolds.

Definition 3.3. If an orbifold Q admits an orbifold cell-decomposition, then
we define the Euler characteristic by

(3.2) χ(Q) =
∑
C:cell

(−1)dim(C) 1
|GC |

.

The next theorem gives us a useful method to compute the Euler characteristic.

Theorem 3.4. Let
π : Q0 −→ Q1

be a covering orbifold. We define the sheet number of the covering π to be the
cardinality k = |π−1(y)| of the preimage π−1(y) of a non-singular point y ∈ Q1.
Then

(3.3) χ(Q1) =
1
k
χ(Q0).

Proof. We first observe that for an arbitrary point y of Q1, we have

k =
∑

x:π(x)=y

|Gx|
|Gy|

.
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Let
Q1 =

∐
j

Cj

be an orbifold cell-decomposition of Q1, and

π−1(Cj) =
∐
i

Cij

a division of the preimage of Cj into its connected components. Then

kχ(Q1) = k
∑
j

(−1)dim(Cj)
1
|GCj |

=
∑
j

(−1)dim(Cj)
∑
i

|GCj |
|GCij |

1
|GCj |

=
∑
ij

(−1)dim(Cij)
1

|GCij |

= χ(Q0).

�

Corollary 3.5. Let G be a finite subgroup of Sn that acts on Rn+ by permu-
tation of the coordinate axes. Then Rn+/G is a differentiable orbifold and

(3.4) χ
(
Rn+/G

)
=

(−1)n

|G|
.

Remark. We note that in general

χ
(
Rn+/G

)
6= (−1)n

|G|
,

unless G acts on Rn+ faithfully.

Example 3.1. Let us study the quotient space Rn+/Sn. We denote by

∆(123 · · ·n)

the interior of a regular n-hyperhedron of (n− 1) dimensions. Thus ∆(12) is a line
segment, ∆(123) is an equilateral triangle, and ∆(1234) is a regular tetrahedron.
The space Rn+ is a cone over ∆(123 · · ·n):

Rn+ = ∆(123 · · ·n)× R+.

The closure ∆(123 · · ·n) has n vertices x1, · · · , xn. Let x12 be the midpoint of the
line segment x1x2, x123 the center of gravity of the triangle 4x1x2x3, etc., and
x123···n the center of gravity of ∆(123 · · ·n).

The (n− 1)-dimensional region

(3.5) ∆ = x1x12x123 · · ·x123···n

is the fundamental domain of the Sn-action on ∆(123 · · ·n) by permutation of
vertices. ∆ can be considered as a cell complex of the orbifold Rn+/Sn. Since the
n-hyperhedron does not include the boundary, ∆ has only one 0-cell x123···n,

(
n−1

1

)
1-cells

x1x123···n

x12x123···n
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x123x123···n

...
x123···(n−1)x123···n,(

n−1
2

)
2-cells

x1x12x123···n

x1x123x123···n

...
x12x123x123···n

...
x123···(n−2)x123···(n−1)x123···n,

etc. The number of k-cell is
(
n−1
k

)
(Figure 3.1).

x1

x12

x123

x1234

x2

x3

x4

Figure 3.1. ∆(1234)

The isotropy group of each cell is easily calculated. For example, the isotropy
group of a 2-cell x12x123x123···n is

S(12)×S(456 · · ·n),

where S(abc · · · z) is the permutation group of the specified letters. The definition
of the Euler characteristic (3.2) and the computation using (3.3) gives an interesting
combinatorial identity

χ
(
Rn+/Sn

)
=− χ (∆(123 · · ·n)/Sn)

= −
n−1∑
k=0

(−1)k
∑

m0+m1+···+mk=n
m0≥1,m1≥1,··· ,mk≥1

1
m0!m1! · · ·mk!

=
(−1)n

n!
.

(3.6)

The Sn-action of the cell-decomposition of

∆(123 · · ·n)/Sn
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gives a cell-decomposition of ∆(123 · · ·n) itself, and hence a cell-decomposition of
Rn+. We call this cell-decomposition the canonical cell-decomposition of Rn+, and
denote it by �(Rn+). For every subgroupG ⊂ Sn, the fixed point set of an element of
G is one of the cells of �(Rn+). In particular, �(Rn+) induces a cell-decomposition
of the orbifold Rn+/G, which we call the canonical orbifold cell-decomposition of
Rn+/G. We will come back to these canonical orbifold cell-decompositions when we
study the space of metric ribbon graphs in the next chapter.

3. The Moduli Space of Pointed Elliptic Curves

An elliptic curve E is a quotient group of the complex plane C by a lattice
subgroup Z2:

0 −→ Z2 ψ−→ C −→ E −→ 0.

The injective group homomorphism ψ : Z2 −→ C is determined by its image of the
generators (1, 0) and (0, 1). Let us denote by ω = ψ(1, 0) and τω = ψ(0, 1), where
ω is a non-zero complex number, and

(3.7) τ ∈ H = {τ ∈ C | Im(τ) > 0}

is an element of the upper half plane. Since the imaginary part of τ is positive, ω
and τω are R-linearly independent in C.

The parameter τ ∈ H defines an elliptic curve

(3.8) Eτ =
C

Zω ⊕ Zτω
.

The complex structure of Eτ does not depend on the choice of ω, because there
is a complex linear automorphism of C that brings one choice of ω to another.
The parameter τ is called the modular parameter of an elliptic curve. The elliptic
curves Eτ and Eτ ′ are biholomorphic if and only if there is a fractional linear
transformation

(3.9) τ ′ =
[
a b
c d

]
· τ =

aτ + b

cτ + d
,

where [
a b
c d

]
∈ PSL(2,Z).

Note that the group PSL(2,Z) acts properly discontinuously on the upper half
plane H. Therefore, we can identify the moduli space of elliptic curves as the
quotient space H/PSL(2,Z).

Since we have defined an elliptic curve as a quotient abelian group (3.8), it
comes with a specific point, namely the identity element 0 ∈ Eτ of the group.
Therefore, the quotient space H/PSL(2,Z) actually represents the moduli space of
elliptic curve with one marked point:

(3.10) M1,1 = H/PSL(2,Z).

Indeed, an elliptic curve as an abelian group is an analytic automorphism group
of the elliptic curve itself, and this action is transitive. Thus a pointed elliptic
curve (Eτ , p1) is always isomorphic to another pointed elliptic curve (Eτ , p2) by the
translation

p2 − p1 : Eτ 3 z 7−→ z + p2 − p1 ∈ Eτ .



3. THE MODULI SPACE OF POINTED ELLIPTIC CURVES 31

Figure 3.2 shows the fundamental domain of the PSL2(Z)-action on the upper
half plane by fractional linear transformations.

-1 -0.5 0 0.5 1

0.5

1

1.5

2

2.5

Figure 3.2. The Fundamental Domain of PSL2(Z)-Action on H

The complex analytic structure of M1,1 can be studied by using the elliptic
modular function J(τ), which is defined as follows. First, let us define two functions
in ω and τ by

(3.11) g2 =
∑

(m,n)∈Z2

(m,n)6=(0,0)

60
(mω + nτω)4

, and g3 =
∑

(m,n)∈Z2

(m,n)6=(0,0)

140
(mω + nτω)6

.

The ratio

(3.12) J(τ) =
g2(τ)3

g2(τ)3 − 27g3(τ)2

is a function in one variable τ . The elliptic modular function is a holomorphic
mapping

J : H −→ C
which is invariant under the PSL2(Z)-action on H. Thus J induces a canonical
bijection

(3.13) J̃ : H/PSL2(Z) ∼−→ C

In other words, the elliptic modular function maps the fundamental domain of
Figure 3.2 holomorphically onto the entire complex plane C. J(τ) has a zero of
degree 3 at τ = eπi/3, and J(τ) − 1 has a zero of degree 2 at τ = i. J maps i∞
to the point at infinity of P1. Except for these three points i, eπi/3, and i∞, J has
a unique finite value at each point of the fundamental domain and its derivative is
non-vanishing. Therefore, the fundamental domain minus two points i and eπi/3 is
mapped biholomorphically onto P1 minus three points:

M1,1 \ {i, eπi/3}
∼−→ P1 \ {0, 1,∞}.

When the complex analytic structure of the moduli space is in question, we introduce
the holomorphic structure on M1,1 = H/PSL2(Z) by the identification J̃ of (3.13).
As an algebraic variety, we define

(3.14) M1,1 = SpecC[J ].
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In each case, the underlying topological space is just the real 2-plane R2.
However, the moduli space M1,1 has actually a subtler structure, due to the

fact that the PSL2(Z)-action on H has fixed points, or equivalently, J−1 is not
holomorphic at 0 ∈ C and 1 ∈ C. This subtlety is articulated by the idea of
orbifold. Using the elliptic modular function, we can view

(3.15) M1,1 =
(
P1 \ {0, 1,∞}

)
∪ U0/(Z/2Z) ∪ U1/(Z/3Z),

where Up denotes a small open disk of C centered at a point p. What we have is
the complex plane with two orbifold singularities at 0 and 1.

To identify the local structure of (3.15) with the quotient H/PSL2(Z), let us
examine the PSL2(Z)-action on the upper half plane H (Figure 3.3).

0 11

a b
i

Figure 3.3. PSL2(Z)-action on the Upper Half Plane

The boundary of the fundamental domain is glued together in the following
way. The vertical line a+ it for t ∈ [0,∞) is identified with b+ it, where a = e2πi/3

and b = eπi/3. The arc
y
ai is glued with the arc

x
bi. Thus the resulting orbifold looks

as in Figure 3.4.

a

i

Figure 3.4. Orbifold M1,1

It has two corner-like singularities, corresponding to a and i of Figure 3.3. The
isotropy subgroup of PSL2(Z) that stabilizes i is{[

1
1

]
,

[
1

−1

]}
.
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Therefore, the orbifold singularity of M1,1 at i is modeled on R2/(Z/2Z). Similarly,
the singularity a has the isotropy group{[

1
1

]
,

[
1 1
−1

]
,

[
1

−1 −1

]}
,

which is modeled on R2/(Z/3Z).
Let us determine the Euler characteristic of M1,1. The moduli space M1,1 has

an orbifold cell-decomposition consisting of two singularities as 0-cells, two lines

a + it and i + it for t ≥ 0 and the arc
y
ai as three 1-cells, and two 2-dimensional

cells. The isotropy of the cells are already determined, so we conclude

(3.16) χ (M1,1) =
1
2

+
1
3
− 1− 1− 1 + 1 + 1 = −1

6
.

Remark. The notion of orbifold is different from algebraic stack when there
is a group action that is nowhere faithful. The Euler characteristic of M1,1 as an
algebraic stack has been computed by Deligne and Rapoport [4]. Their value gives

(3.17) χstack (M1,1) = ζ(−1) = − 1
12
.

The difference between (3.16) and (3.17) is factor 2, which comes from

2 =
∣∣∣∣ SL2(Z)
PSL2(Z)

∣∣∣∣ .
We will come back to this point later in Chapter 5.





CHAPTER 4

The Space of Metric Ribbon Graphs

The goal of this chapter is to show that the space of all metric ribbon graphs
with the fixed Euler characteristic and the number of boundary components forms a
differentiable orbifold, and to compute its orbifold Euler characteristic. The metric
ribbon graph space can a priori have a complicated singularity, but it will turn out
that the space has only the quotient singularities defined by finite group actions on
the Euclidean space of a fixed dimension. This characteristic feature is due to the
local behavior of deformations of a metric ribbon graph.

The structure of deformations of a metric ribbon graph has a connection to
certain questions in computer science. We refer to [28] for more discussion on this
topic.

1. Contraction and Inflation of Ribbon Graphs

Let RGg,n denote that set of all isomorphism classes of connected ribbon graphs
Γ such that

(4.1)

{
χ(Γ) = v(Γ)− e(Γ) = 2− 2g − n
b(Γ) = n,

where v(Γ) and e(Γ) denote the number of vertices and edges of Γ, respectively,
and that every vertex has degree at least 3. If an edge E of Γ is incident with two
distinct vertices V1 and V2, then we can construct another ribbon graph Γ′ ∈ RGg,n
with

(4.2) e(Γ′) = e(Γ)− 1 and v(Γ′) = v(Γ)− 1

by removing E from Γ and putting V1 and V2 together. The ribbon graph Γ′ is a
contraction of Γ. The partial ordering of RGg,n is defined by

(4.3) Γ′ ≺ Γ

when Γ′ is a contraction of Γ, and by extending this relation with the transitivity
law

Γ′′ ≺ Γ′ and Γ′ ≺ Γ =⇒ Γ′′ ≺ Γ.
Since contraction decreases the number of edges and vertices by one, a graph with
only one vertex is a minimal graph with respect to this partial ordering, and a degree
3 graph (a graph with only degree 3 vertices), or a trivalent graph, is a maximal
element of RGg,n. Every graph can be obtained by contraction of a degree 3 graph.

The inverse operation of contraction of a ribbon graph is the inflation. Every
vertex of degree d ≥ 4 of a ribbon graph Γ can be inflated by adding a new edge
as shown in Figure 4.1. The arrows represent the contraction.

Let Γ be a ribbon graph and ΓE the edge-refinement of Γ (see Section 1 of
Chapter 2). The edges of ΓE are the half-edges of Γ. In the process of inflation, we

35
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Figure 4.1. Inflation of Vertices

identify two ways of inflation if there is a ribbon graph isomorphism from one to the
other that preserves all the original half-edges of the graph. Thus when we inflate a
vertex of degree d ≥ 4, there are d(d− 3)/2 ways of inflating it by adding an edge.
The situation is easier to understand by looking at the dual graph of Figure 4.2,
where the arrows are again the contraction map.

Figure 4.2. Inflation of a Vertex of Degree 7 and its Dual Graph

Consider a ribbon graph ∗d with a vertex of degree d ≥ 4 and d half-edges
labeled by numbers 1 through d. The dual graph to ∗d is a convex polygon with d
sides. The process of inflation by adding an edge at the vertex of ∗d corresponds
to drawing a diagonal line of the d-gon of Figure 4.2. The number d(d − 3)/2
corresponds to the number of diagonals in a convex d-gon. Inflating the graph
further corresponds to adding another diagonal to the polygon in such a way that
the added diagonal does not intersect with the original diagonal except at the
vertices of the polygon. The inflation process terminates after d − 3 inflations,
because only this much non-intersecting diagonals can be placed in a convex d-gon.
Note that the maximal inflation is trivalent at the internal vertices, and its dual
defines a triangulation of the polygon. The number of all triangulations of the
d-gon is equal to

1
d− 1

(
2d− 4
d− 2

)
,

which is the Catalan number (see [7], Chapter 20).

2. Space of Metric Ribbon Graphs as an Orbifold

A metric ribbon graph is a ribbon graph with a positive real number assigned
to each edge. The assigned real number of an edge is called the length of the edge.
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For a ribbon graph Γ ∈ RGg,n, the space of metric ribbon graphs with Γ as the
underlying graph is a differentiable orbifold

(4.4)
Re(Γ)

+

Aut(Γ)
,

where the action of Aut(Γ) on Re(Γ)
+ is through the natural homomorphism

(4.5) φ : Aut(Γ) −→ Se(Γ).

We have shown that the above homomorphism φ fails to be injective if and only if
Γ is an exceptional graph. Therefore, for an exceptional graph Γex, we have

(4.6)
Re(Γex)

+

Aut(Γex)
=

Re(Γex)
+

Aut(Γex)/(Z/2Z)
,

because the factor Z/2Z acts trivially on Re(Γex)
+ (see Section 3 of Chapter 2).

For integers g and n subject to

(4.7)


g ≥ 0
n ≥ 1
2− 2g − n < 0,

we define the space of all metric ribbon graphs satisfying the topological condition
(4.1) by

(4.8) RGmet
g,n =

∐
Γ∈RGg,n

Re(Γ)
+

Aut(Γ)
.

The purpose of this section is to show that RGmet
g,n has the natural structure of

a differentiable orbifold. Each piece (4.4) of (4.8) is called a rational cell of RGmet
g,n .

The rational cells are glued together by the contraction operation of ribbon graphs
in an obvious way. A rational cell has a natural quotient topology.

Let us compute the dimension of RGmet
g,n . We denote by vj(Γ) the number of

vertices of a ribbon graph Γ of degree j. Since these numbers satisfy

−(2− 2g − n) = −v(Γ) + e(Γ)

= −
∑
j≥3

vj(Γ) +
1
2

∑
j≥3

jvj(Γ)

=
∑
j≥3

(
j

2
− 1
)
vj(Γ),

the number e(Γ) of edges takes its maximum value when all vertices have degree 3.
In that case,

3v(Γ) = 2e(Γ)

holds, and we have

(4.9) dim(RGmet
g,n ) = max

Γ∈RGg,n
(e(Γ)) = 6g − 6 + 3n.

To prove that RGmet
r,s is a differentiable orbifold, we need to show that for

every element Γmet ∈ RGmet
r,s , there is an open neighborhood Uε(Γmet) of Γmet, an
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open disk Ũε(Γmet) ⊂ R6g−6+3n, and a finite group GΓ acting on Ũε(Γmet) by an
orthogonal transformation such that

Ũε(Γmet)/GΓ
∼= Uε(Γmet).

Definition 4.1. Let Γmet ∈ RGmet
g,n be a metric ribbon graph, and ε > 0 a

positive number smaller than the half of the length of the shortest edge of Γmet.
The ε-neighborhood Uε(Γmet) of Γmet in RGmet

g,n is the set of all metric ribbon graphs
Γ′met that satisfy the following conditions:

(1) Γ � Γ′.
(2) The edges of Γ′met that are contracted in Γmet have length less than ε.
(3) Let E′ be a non-contracting edge of Γ′met that corresponds to an edge E

of Γmet. Then the length L′ of E′ is in the range of

L− ε < L′ < L+ ε,

where L is the length of E.

Remark. Since ε < L/2, the edge E′ has length L′ > ε.

The topology of the space RGmet
g,n is defined by these ε-neighborhoods.

Definition 4.2. Let Γ ∈ RGg,n be a ribbon graph and ΓE its edge-refinement.
We choose a labeling of all edges of ΓE , i.e., the half-edges of Γ. The set X�Γ

consists of Γ itself and all its inflations. Two inflations are identified if there is
a ribbon graph isomorphism of one inflation to the other that preserves all the
original half-edges coming from ΓE . The space of metric inflations of Γ, which is
denoted by Xmet

�Γ , is the set of all graphs in X�Γ with metric on each edge.

Definition 4.3. The codimension of Γ ∈ RGg,n is the integer

codim(Γ) = 6g − 6 + 3n− e(Γ).

To understand the structure of Xmet
�Γ , let us consider the inflation process of a

vertex of degree d ≥ 4. Since inflation is essentially a local operation, we can obtain
the whole picture out of it. Let ∗d denote the tree graph consisting of a single vertex
of degree d with d half-edges attached to it. Although ∗d is not the type of ribbon
graphs we are considering, we can define the space Xmet

�∗d of metric inflations of ∗d in
the same way as in Definition 4.2. Since the edges of ∗d correspond to half-edges of
our ribbon graphs, we do not assign any metric to them. Thus dim(Xmet

�∗d) = d− 3.
As we have noted in Figure 4.2, the inflation process of ∗d can be more effectively
visualized by the dual polygon. A maximal inflation corresponds to a triangulation
of the starting d-gon by non-intersecting diagonals. Since there are d−3 additional
edges in the maximal inflation tree graph, each maximal graph determines the space
Rd−3

+ of metric trees. There is a set of d− 4 non-intersecting diagonals in the d-gon
that is obtained by removing one diagonal from a triangulation T1 of the d-gon, or
removing another diagonal from another triangulation T2. The transformation of
the tree graph corresponding to T1 to the tree corresponding to T2 is the so-called
fusion move. If we consider the trivalent trees as binary trees, then the fusion move
is known as rotation [28].

Two (d−3)-dimensional cells are glued together along a (d−4)-dimensional cell.
The number of (d− 3)-dimensional cells in X�∗d is equal to the Catalan number

1
d− 1

(
2d− 4
d− 2

)
.
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Figure 4.3. Fusion Move

Theorem 4.4. The space Xmet
�∗d is homeomorphic to Rd−3, and its combinato-

rial structure defines a cell-decomposition of Rd−3, where each cell is a convex cone
with vertex at the origin. The origin is the only 0-cell of the cell complex and is
corresponding to the graph ∗d.

The group Z/dZ acts on Xmet
�∗d through orthogonal transformation with respect

to the natural Euclidean structure of Rd−3.

Remark. In the reference [28], the rotation distance between the top dimen-
sional cells of Xmet

�∗d is studied in terms of hyperbolic geometry. The research in this
direction has a close relation to the structure of binary search trees.

Proof. Draw a convex d-gon on the xy plane of the coordinate R3 with vertical
axis z. Let V be the set of vertices of the d-gon, and consider the set of all functions

f : V −→ R.
An element f ∈ RV = Rd is visualized by its function graph

(4.10) Graph(f) = {(V, f(V )) | V ∈ V} ⊂ R3.

Graph(f) is the set of d points in R3 such that its projection image onto the xy
plane is the vertex set V. Let us denote by CH(Graph(f)) the convex hull of
Graph(f) in R3. If we view the convex hull from the top, it is a d-gon with a set
of non-intersecting diagonals.

Viewing the convex hull from the positive direction of the z-axis, we obtain a
map

(4.11) ξ : RV −→ X�∗d ,

where we identify X�∗d with the set of arrangements of non-intersecting diagonals
of the convex d-gon. A generic point of RV corresponds to a triangulation of the
d-gon as in Figure 4.4, but special points give fewer number of diagonals on the
d-gon. For example, if f is a constant function, then the function graph Graph(f)
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Figure 4.4. The Convex Hull of the Function Graph of f ∈ RV
and its View from the Top

is flat and the top view of its convex hull is just the d-gon without any diagonals
in sight.

This consideration leads us to note that the map ξ factors through

(4.12)

RV pr−−−−→ RV
Affine(R2,R)∥∥∥ yη

RV ξ−−−−→ X�∗d ,

where
Affine(R2,R) ∼= R3

is the space of affine maps of R2 to R. Such an affine map induces a map of V to
R, but the image is flat and no diagonals are produced in the d-gon.

The map η of (4.12) is surjective, because we can explicitly construct a function
f that corresponds to an arbitrary element of X�∗d . We also note that the inverse
image of m-diagonal arrangement (0 ≤ m ≤ d − 3) is a cone of dimension m with
vertex at the origin. It is indeed a convex cone, because if two points of

(4.13)
RV

Affine(R2,R)
= Rd−3

correspond to the same diagonal arrangement of X�∗d , then every point on the line
segment connecting these two points corresponds to the same arrangement. To see
this, let V = {V1, V2, · · · , Vd}, and let a function f ∈ RV satisfy

f(Vd−2) = f(Vd−1) = f(Vd) = 0.



2. SPACE OF METRIC RIBBON GRAPHS AS AN ORBIFOLD 41

Then f can be thought of an element of the quotient space (4.13). Take two such
functions f and g that correspond to the same m-diagonal arrangement of the
d-gon. The line segment connecting these two functions is

(4.14) ht = f + t(g − f),

where 0 ≤ t ≤ 1. This means that the point ht(Vj) ∈ R3 is on the vertical line
segment connecting f(Vj) and g(Vj) for all j = 1, 2, 3, · · · , d − 3. Thus the top
roof of the convex hull CH(Graph(ht)) determines the same arrangement of the
diagonals on the d-gon as CH(Graph(f)) and CH(Graph(g)) do.

Since the inverse image of an m-diagonal arrangement is an m-dimensional
convex cone, it is homeomorphic to Rm+ . Hence X�∗d defines a cell-decomposition
of Rd−3, which is homeomorphic to Xmet

�∗d , as claimed.
The convex d-gon on the plane can be taken as a regular d-gon centered at

the origin. The cyclic group Z/dZ naturally acts on V by a rotation. This action
induces an action on RV through permutation of axes, which is an orthogonal
transformation with respect to the standard Euclidean structure of Rd. A rotation
of V induces a rotation of the horizontal plane R2, thus the space of affine maps
of R2 to R is invariant under the Z/dZ-action. Therefore, the cyclic group acts on
the quotient space Rd−3.

Let Affine(R2,R)⊥ denote the orthogonal complement of Affine(R2,R) in RV .
Since Affine(R2,R) is invariant under the finite group Z/dZ of orthogonal transfor-
mations, the action descends to the orthogonal complement Affine(R2,R)⊥. Thus
Z/dZ acts on

Xmet
�∗d
∼= Affine(R2,R)⊥ ∼= Rd−3

by an orthogonal transformation with respect to its natural Euclidean structure.
This completes the proof. �

Example 4.1. The space of metric inflations of a vertex of degree 5 is a cell-
decomposed plane. There are five 1-cells and also five 2-cells arranged like a cherry
blossom (Figure 4.5). The arrows indicate the contraction. Each of the 2-cells has
two boundary components, and two 1-cells are attached to the boundary. Two 2-
cells have one boundary in common, and the boundary is attached to a 1-cell. The
five 1-cells are glued together at the origin. The space of metric inflations covers
the whole plane.

The rotation of the central pentagon through the angle 2π/5 induces the rota-
tion of the angle 4π/5 of the plane.

Example 4.2. The space of metric inflations of a vertex of degree 6 is a cell-
decomposed R3. There are nine 1-cells, twenty-one 2-cells, and fourteen 3-cells. In
Figure 4.6, the line going down to the left is the x-axis, the line going down to the
right is the y-axis, and the vertical line is the z-axis. The Z/6Z-action on R3 is
generated by the orthogonal transformation − 1

2 0
√

3
2

0 −1 0
−
√

3
2 0 − 1

2

 .

Theorem 4.5. Let Γ ∈ RGg,n. Then

(4.15) Xmet
�Γ
∼= Re(Γ)

+ × Rcodim(Γ).
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Figure 4.5. The Space of Metric Inflations of a Vertex of Degree 5

The combinatorial structure of Xmet
�Γ determines a cell-decomposition of Re(Γ)

+ ×
Rcodim(Γ). The group Aut(Γ) acts on X�Γ by automorphism of a cell complex, which
is an orthogonal transformation with respect to the natural Euclidean structure of
Xmet
�Γ via the homeomorphism (4.15). The action of Aut(Γ) on the metric edge

space Re(Γ)
+ may be non-faithful (when Γ is exceptional), but its action on Rcodim(Γ)

is always faithful except for the case (g, n) = (1, 1).

Proof. The inflation process of Γ takes place at each vertex of degree 4 or
more. Since we identify inflations only when there is an isomorphism fixing all
original half-edges coming from Γ, the inflation can be done independently at each
vertex. Let ∗(1), · · · , ∗(v) be the list of vertices of Γ and dj the degree of ∗(j). We
arrange the degree sequence of Γ as

(

n3-times︷ ︸︸ ︷
3, 3, · · · , 3,

n4-times︷ ︸︸ ︷
4, 4, · · · , 4, · · · ,

nm-times︷ ︸︸ ︷
m,m, · · · ,m).

Note that
n3 + n4 + · · ·+ nm = v

is the number of vertices of Γ. Then

Xmet
�Γ = Re(Γ)

+ ×
v∏
j=1

Xmet
�∗(j),



2. SPACE OF METRIC RIBBON GRAPHS AS AN ORBIFOLD 43

Figure 4.6. The Space of Metric Inflations of a Vertex of Degree 6

and the second factor is homeomorphic to
v∏
j=1

Xmet
�∗(j)

∼=
m∏
µ=3

(
Rµ−3

)nµ = Rcodim(Γ),

because Xmet
�∗(j) is a single point if the jth vertex has degree 3.

The group

G(Γ) =
m∏
µ=3

Snµ o Z/µZ

acts on
∏v
j=1X

met
�∗(j) through an orthogonal transformation in the natural way be-

cause each factor Z/µZ acts on Xmet
�∗(j) through an orthogonal transformation if

dj = µ, and the symmetric group Snµ acts on
(
Rµ−3

)nµ by permutation of factors,
which is also an orthogonal transformation.

Since Aut(Γ) is a subgroup of G(Γ), it acts on
∏v
j=1X

met
�∗(j) through an or-

thogonal transformation. It’s action on Re(Γ)
+ is by permutation of axes, thus it is

also orthogonal if we embed Re(Γ)
+ into Re(Γ) in the natural way. Therefore, Aut(Γ)

acts on Xmet
�Γ through an orthogonal transformation with respect to the natural

Euclidean structure of Xmet
�Γ .

The action of Aut(Γ) on Rcodim(Γ) is faithful because all half-edges of Γ are
labeled in Xmet

�Γ , except for the case (g, n) = (1, 1). There are only two graphs in
RG1,1, and both are exceptional. Thus Aut(Γ)-action on Xmet

�Γ has a redundant
factor Z/2Z for RG1,1. This completes the proof. �

A cell complex like RGmet
g,n does not have to be an orbifold in general, because

it can have more complicated singularities than an orbifold. For example, we can
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glue one 0-cell, six R+’s, and twelve R2
+’s to form the singular real algebraic variety

of Figure 4.7.

Figure 4.7. Cell-Decomposition of A Singular Variety

The space of metric ribbon graphs RGmet
g,n does not have this type of singu-

larities. In fact, the worst singularity it has is modeled by the quotient space of
R6g−6+3n by a finite group action. For every codimension 1 rational cell, there
are only up to two top dimensional pieces glued together. Thus the situation of
Figure 4.7, where four top dimensional cells are glued to one codimension 1 cell,
does not happen in our graph complex. This is because a codimension 1 piece
corresponds to a ribbon graph with all vertices of degree 3 except for one vertex of
degree 4. There are only two inflations for this graph, which means only (up to)
two top dimensional rational cells are glued to this piece.

Theorem 4.6. The space

RGmet
g,n =

∐
Γ∈RGg,n

Re(Γ)
+

Aut(Γ)

of metric ribbon graphs is a differentiable orbifold locally modeled by

(4.16)
Xmet
�Γ

Aut(Γ)
.

Proof. For every ribbon graph Γ ∈ RGg,n, there is a natural map

(4.17) µ̃Γ : Xmet
�Γ −→ RGmet

g,n ,

assigning to each metric inflation of Γ its isomorphism class as a metric ribbon
graph. Since the Aut(Γ)-action on Xmet

�Γ induces ribbon graph isomorphism, the
map (4.17) factors through the map µΓ of the quotient space:

(4.18) Xmet
�Γ −→

Xmet
�Γ

Aut(Γ)
µΓ−→ RGmet

g,n .

The inverse image µ̃−1
Γ (Uε(Γmet)) of the ε-neighborhood Uε(Γmet) is an open subset

of Xmet
�Γ that is homeomorphic to a disk. We claim that

(4.19) µΓ :
µ̃−1

Γ (Uε(Γmet))
Aut(Γ)

∼−→ Uε(Γmet)
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is a homeomorphism for every metric ribbon graph Γmet if ε > 0 is chosen sufficiently
small compared to the shortest edge length of Γmet.

Take a point Γ0
met ∈ Uε(Γmet), and let

Γjmet ∈ µ̃−1
Γ (Γ0

met), j = 1, 2,

be its inverse images. The ribbon graph isomorphism α̃ that brings Γ1
met to Γ2

met

preserves the set K of contracting edges. Since Γjmet modulo the contracting edges
K is the graph Γmet, α̃ induces an automorphism α ∈ Aut(Γ). Thus α̃ factors into
the product of an automorphism α of Γ and a permutation of K. As an element
of Xmet

�Γ , a permutation of elements of contracting edges in K does not create any
difference. Thus Γ2

met is an α-image of Γ1
met in Xmet

�Γ . This shows that (4.19) is a
natural bijection.

Since the topology of the space of metric ribbon graphs is determined by these
ε-neighborhoods, the map µΓ is continuous. Thus for a small enough ε, we have a
homeomorphism (4.19).

The metric ribbon graph space is covered by local coordinate patches

(4.20)
⋃

Γ∈RGmet
g,n

µΓ

(
µ̃−1

Γ (Uε(Γmet))
Aut(Γ)

)
= RGmet

g,n ,

where
µ̃−1

Γ (Uε(Γmet))
Aut(Γ)

⊂
Xmet
�Γ

Aut(Γ)
is a differentiable orbifold. Let

Γ′′met ∈ µΓ

(
µ̃−1

Γ (Uε(Γmet))
Aut(Γ)

)
∩ µΓ′

(
µ̃−1

Γ′ (Uε(Γ′met))
Aut(Γ′)

)
be a metric ribbon graph in the intersection of two coordinate patches. Then Γ′′ � Γ
and Γ′′ � Γ′. There is a small δ such that

µΓ′′

(
µ̃−1

Γ′′ (Uδ(Γ
′′
met))

Aut(Γ′′)

)
⊂ µΓ

(
µ̃−1

Γ (Uε(Γmet))
Aut(Γ)

)
∩ µΓ′

(
µ̃−1

Γ′ (Uε(Γ′met))
Aut(Γ′)

)
.

If we label the edges of Γ′′ that are not contracting in Γ, then we have an embedding

Xmet
�Γ′′ ⊂ Xmet

�Γ

that induces
µ̃−1

Γ′′ (Uδ(Γ
′′
met))

Aut(Γ′′)
⊂
µ̃−1

Γ (Uε(Γmet))
Aut(Γ)

.

These inclusion maps are injective diffeomorphisms with respect to the natural dif-
ferentiable structure of Xmet

�Γ . The same is true for Γ′′ and Γ′. This implies that the
local coordinate neighborhoods of (4.20) are patched together by diffeomorphisms.
This completes the proof. �

Remark. The local map µΓ of (4.19) is not a homeomorphism if ε takes a large
value. In particular,

Xmet
�Γ

Aut(Γ)
does not map injectively to RGmet

g,n via the natural map µΓ.
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Theorem 4.7. The Euler characteristic of RGmet
g,n as an orbifold is given by

(4.21) χ(RGmet
g,n ) =

∑
Γ∈RGg,n

(−1)e(Γ)

|Aut(Γ)|
, (g, n) 6= (1, 1).

For (g, n) = (1, 1), we have

(4.22) χ(RGmet
1,1 ) =

∑
Γ∈RG1,1

(−1)e(Γ)

|Aut(Γ)|/2
= −1

3
+

1
2

=
1
6
.

Proof. Since the Aut(Γ)-action on Re(Γ)
+ is through the representation

Aut(Γ) −→ Se(Γ),

we have the canonical orbifold cell-decomposition of Re(Γ)
+ /Aut(Γ) defined in Ex-

ample 3.1. Gluing all these canonical cell-decompositions of the rational cells of the
orbifold RGmet

g,n , we obtain an orbifold cell-decomposition of the entire space RGmet
g,n .

To determine the isotropy subgroups of each orbifold cell, we need the local model
(4.19). We note that Aut(Γ)-action on µ̃−1

Γ (Uε(Γmet)) is faithful if (g, n) 6= (1, 1).
If Aut(Γ) acts on Re(Γ)

+ faithfully, then the contribution of the rational cell
Re(Γ)

+ /Aut(Γ) to the Euler characteristic of RGmet
g,n is

(−1)e(Γ)

|Aut(Γ)|
.

But if Γ is exceptional, then the rational cell

Re(Γ)
+

Aut(Γ)
=

Re(Γ)
+

Aut(Γ)/(Z/2Z)

itself is a singular set of Xmet
�Γ /Aut(Γ). The contribution of the Euler characteristic

of RGmet
g,n from this rational cell is thus

(−1)e(Γ)

2 · |Aut(Γ)/(Z/2Z)|
=

(−1)e(Γ)

|Aut(Γ)|
.

Summing all these, we obtain the formula for the Euler characteristic.
The case of (g, n) = (1, 1) is still different because all graphs in RG1,1 are

exceptional. The general formula (4.21) gives −1/6 + 1/4 = 1/12, but since the
factor Z/2Z of Aut(Γ) acts trivially on Xmet

�Γ , the factor 2 has to be modified. We
will study more on RG1,1 in Section 2 of Chapter 5. �

3. Ribbon Graphs with Labeled Boundary and the Orbifold Covering

Let RGBg,n denote the set of all isomorphism classes of connected ribbon
graphs with labeled boundary components subject to the topological condition
(4.1), and

(4.23) RGBmet
g,n =

∐
Γb∈RGBg,n

Re(Γ
b)

+

Aut∂(Γb)

the space of metric ribbon graphs with labeled boundary components, where

Aut∂(Γb)
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is the automorphism group of a ribbon graph Γb preserving the boundary labeling.
The same argument of the previous section applies without any alteration to show
that RGBmet

g,n is a differentiable orbifold locally modeled by

Xmet
�Γ

Aut∂(Γ)
.

The definition of the space of metric inflations Xmet
�Γ does not refer to the labeling

of the boundary components of a ribbon graph Γ, but it requires labeling of all
half-edges of Γ. As we have noted at the end of Chapter 1, labeling all half-edges
induce labeling of the boundary components. Thus every inflation of Γ appearing
in Xmet

�Γ has a boundary labeling that is consistent with the boundary labeling of
Γ.

Theorem 4.8. For every genus g ≥ 0 and n ≥ 1 subject to (4.7), the natural
forgetful projection

(4.24) pr : RGBmet
g,n −→ RGmet

g,n

is an orbifold covering of degree n!.

Proof. Let Γ be a ribbon graph. We label the boundary components of Γ,
and denote by B the set of all permutations of the boundary components. The
cardinality |B| of B is n!. The automorphism group Aut(Γ) acts on the set B, and
by definition the isotropy subgroup of Aut(Γ) of each element of B is isomorphic to
the group Aut∂(Γ) consisting of the graph automorphisms of Γ that preserve the
boundary components. The orbit space B/Aut(Γ) is the set of ribbon graphs with
labeled boundary. Thus the inverse image of the local model Xmet

�Γ /Aut(Γ) by pr−1

is the disjoint union of |B/Aut(Γ)| copies of Xmet
�Γ /Aut∂(Γ):

(4.25) pr−1

(
Xmet
�Γ

Aut(Γ)

)
=

|B/Aut(Γ)|-copies︷ ︸︸ ︷
Xmet
�Γ

Aut∂(Γ)

∐
· · ·
∐ Xmet

�Γ

Aut∂(Γ)
.

Since the projection restricted on each local model

pr :
Xmet
�Γ

Aut∂(Γ)
−→

Xmet
�Γ

Aut(Γ)

is an orbifold covering of degree |Aut(Γ)/Aut∂(Γ)|, the map

(4.26) prΓ : pr−1

(
Xmet
�Γ

Aut(Γ)

)
−→

Xmet
�Γ

Aut(Γ)

is an orbifold covering of degree

|B/Aut(Γ)| · |Aut(Γ)/Aut∂(Γ)| = |B| = n!.

Since the projection of (4.24) is just a collection of prΓ of (4.26),

pr : RGBmet
g,n −→ RGmet

g,n

is an orbifold covering of degree n! as desired. This completes the proof. �

As an immediate consequence, we have
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Corollary 4.9. The Euler characteristic of RGBmet
g,n is given by

(4.27) χ(RGBmet
g,n ) = n! · χ(RGmet

g,n ).



CHAPTER 5

Strebel Differentials on a Riemann Surface

A Riemann surface is a patchwork of a collection of complex domains. Let
us ask a question in the opposite direction: If we are given a compact Riemann
surface, then how can we find a patchwork of coordinate patches that represents
the complex structure?

In this chapter we give a canonical coordinate system of a Riemann surface
once a finite number of points on the surface and the same number of positive real
numbers are chosen. The key technique is the theory of Strebel differentials [29].
Using Strebel differentials, we can encode the holomorphic structure of a Riemann
surface in the combinatorial data of ribbon graphs.

1. Strebel Differentials and Measured Foliations on a Riemann Surface

Let C be a compact Riemann surface. We choose a set of finitely many labeled
points {p1, p2, · · · , pn} on C, and call them marked points on the Riemann surface.
The bridge that connects the complex structure of a Riemann surface and combina-
torial data is the idea of tiling. Let � be a cell-decomposition of a Riemann surface
C. Then C is made of patching tiles along the edges of �. If each edge has a
definite length, then each tile can be realized as a polygon on a complex plane with
the specified edge length. In particular, each tile has a unique complex structure.
By patching them in a compatible way, we give a combinatorial description of the
complex structure on a compact surface. Thus a complex structure of a Riemann
surface is essentially a collection of combinatorial data that is expressed in terms
of tiling.

In order to obtain a tiling, or a cell-decomposition, of a Riemann surface, we
use the Strebel differential on the Riemann surface. A Strebel differential defines
a specific foliation on a Riemann surface, and a cell arises as the union of certain
types of leaves.

Let TC be the holomorphic tangent sheaf of C, and TC∗ = KC the holomorphic
cotangent sheaf, or the canonical line bundle, of C. A holomorphic quadratic differ-
ential defined on C is an element of H0(C,K⊗2

C ), where K⊗2
C denotes the symmetric

tensor product of the canonical sheaf. In a local coordinate z of C, a quadratic
differential q is represented by q = f(z)

(
dz
)2 with a locally defined holomorphic

function f(z). With respect to a coordinate change w = w(z), the local expressions

q = f(z)
(
dz
)2 = g(w)

(
dw
)2

transform into one another by

(5.1) f(z) = g(w(z))
(
dw(z)
dz

)2

.

49
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A meromorphic quadratic differential on C is a holomorphic quadratic differential
q defined on C except for a finite set {p1, · · · , pn} of points of C such that at each
singularity pj of q, there is a local expression q = fj(z)

(
dz
)2 with a meromorphic

function fj that has a pole at z = pj . If fj(z) has a pole of order r at pj , then we
say q has a pole of order r at z = pj .

Let q = f(z)
(
dz
)2 be a meromorphic quadratic differential defined on C. A

real parametric curve

(5.2) γ : (a, b) 3 t 7−→ γ(t) = z ∈ C
parametrized on an open interval (a, b) of a real axis is a horizontal leaf (or in the
classical terminology, a horizontal trajectory) of q if

(5.3) f(γ(t))
(
dγ(t)
dt

)2

> 0

for every t ∈ (a, b). If

(5.4) f(γ(t))
(
dγ(t)
dt

)2

< 0

holds instead, then the parametric curve γ of (5.2) is called a vertical leaf of q. The
collection of all horizontal or vertical leaves form a real codimension 1 foliation on
the Riemann surface C minus the singular points and zeroes of q. There are three
important examples of the foliations for our study.

Example 5.1. Let q =
(
dz
)2. Then the horizontal lines

α(t) = t+ ci, t ∈ R
are the horizontal leaves of q, and

β(t) = it+ c, t ∈ R
are the vertical leaves for every c ∈ R. Each of these defines a simple foliation
on the complex plane C. In Figure 5.1, horizontal leaves are described by straight
lines, and vertical leaves are indicated by broken lines.

Figure 5.1. Foliations Defined by (dz)2

If a quadratic differential q = f(z)(dz)2 is holomorphic and non-zero at z = z0,
then on a neighborhood of z0 we can introduce a canonical coordinate

(5.5) w(z) =
∫ z

z0

√
f(z)dz.
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It follows from (5.1) that in w-coordinate the quadratic differential is given by
q = (dw)2. Therefore, the leaves of q near z0 look exactly as in Figure 5.1 in
the canonical coordinate. This explains the classical terminology of horizontal and
vertical trajectories. We remark here that although the coordinate w(z) is called
canonical, still there is an ambiguity of coordinate change

(5.6) w(z) 7−→ −w(z) + a

with an arbitrary complex constant a.
Using the canonical coordinate, it is obvious to see the following:

Proposition 5.1. Let S be an open Riemann surface and q a holomorphic
quadratic differential on S. Then for every point p ∈ S, there is a unique horizontal
leaf and a vertical leaf passing through p. Moreover, these leaves intersect at the
right angle with respect to the conformal structure of S near p.

When a holomorphic quadratic differential has a zero, then the foliation behaves
differently.

Example 5.2. Let q = zm(dz)2. Then (m+ 2) half rays

αk : (0,∞) 3 t 7−→ t · exp
(

2πik
m+ 2

)
∈ C, k = 0, 1, · · · ,m+ 1

give the horizontal leaves that have z = 0 on the boundary (the straight lines of
Figure 5.2), and another set of (m+ 2) half rays

βk : (0,∞) 3 t 7−→ t · exp
(
πi+ 2πik
m+ 2

)
∈ C, k = 0, 1, · · · ,m+ 1

gives the vertical leaves (the broken lines of Figure 5.2).

Figure 5.2. Horizontal and Vertical Leaves of z3(dz)2

The foliation become quite wild at singularities of q. However, the situation is
milder around a quadratic pole with a negative real coefficient .

Example 5.3. Let q = −
(
dz
z

)2
. Then every concentric circle centered at 0,

α(t) = reit, t ∈ R, r > 0,

is a horizontal leaf, and all the half-rays

β(t) = teiθ, t > 0, 0 ≤ θ < 2π,

give the vertical leaves. We note that all horizontal leaves are compact curves
(Figure 5.3).
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Figure 5.3. Horizontal Compact Leaves and Vertical Leaves of − 1
z2 (dz)2

The fundamental theorem we need is:

Theorem 5.2 (Strebel [29], Theorem 23.5). Let g and n be integers satisfying
that

(5.7)


g ≥ 0
n ≥ 1
2− 2g − n < 0.

Let (C, (p1, · · · , pn)) be a smooth Riemann surface of genus g with n marked points
p1, · · · , pn. Choose an ordered n-tuple (a1, · · · , an) ∈ Rn+ of positive real numbers.
Then there is a unique meromorphic quadratic differential q on C satisfying the
following conditions:

(1) q is holomorphic on C \ {p1, · · · , pn}.
(2) q has a double pole at each pj, j = 1, · · · , n.
(3) The union of all non-compact horizontal leaves forms a closed subset of

C of measure zero.
(4) Every compact horizontal leaf α is a simple loop circling around one of

the poles, say pj, and it satisfies

(5.8) aj =
∮
α

√
q,

where the branch of the square root is chosen so that the integral has a pos-
itive value with respect to the positive orientation of α that is determined
by the complex structure of C.

This unique quadratic differential is called the Strebel differential. Note that the
integral (5.8) is automatically a real number because of (5.3). Every non-compact
horizontal leaf of a Strebel differential defined on C is bounded by zero points of q,
and every zero of degree m of q bounds m+ 2 horizontal leaves, as we have seen in
Example 5.2.

Let γ(t) be a non-compact horizontal leaf bounded by two zeros z0 = γ(t0) and
z1 = γ(t1) of q = f(z)(dz)2. Then we can assign a positive real number

(5.9) L(γ) =
∫ z1

z0

√
q =

∫ t1

t0

√
f(γ(t))

dγ(t)
dt

dt

by choosing a branch of
√
f(z) near z0 and z1 so that the integral becomes positive.

(As before, the integral is a real number because γ is a horizontal leaf.) We call
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L(γ) the length of the edge γ with respect to q. Note that the length (5.9) is
independent of the choice of the parameter t. The length is also defined to any
compact horizontal leaf by (5.8). Thus every horizontal leaf has a uniquely defined
length, and hence the Strebel differential q defines a measured foliation on the open
subset of the Riemann surface that is the complement of the set of zeroes and poles
of q.

Around every marked point pj there is a foliated disk of compact horizontal
leaves with length equal to the prescribed value aj . As the loop becomes larger in
size (but not in length, because it is a constant), it hits zeroes of q and the shape
becomes a polygon (Figure 5.4).

α γ 1γ 4

γ 2

γ 6

γ 3

γ 5

Figure 5.4. Foliated Disk

Let the polygon be an m-gon, γ1, · · · , γm the non-compact horizontal leaves
surrounding pj , and α a compact horizontal leaf around the point. Then we have

(5.10) aj = L(α) = L(γ1) + · · ·L(γm).

We note that some of the γj ’s may be the same non-compact horizontal leaf on the
Riemann surface C. The collection of all compact horizontal leaves surrounding
pj forms a punctured disk with its center at pj . Glue all these punctured disks to
non-compact horizontal leaves and the zeroes of the Strebel differentials, and fill
the punctures with points {p1, · · · , pn}. Then we obtain a compact surface, which
is the underlying topological surface of the Riemann surface C.

Corollary 5.3. Let g and n be integers satisfying (5.7), and

(5.11) (C, (p1, p2, · · · , pn), (a1, a2, · · · , an))

a non-singular Riemann surface of genus g with n marked points and an ordered
n-tuple of positive real numbers. Then there is a unique cell-decomposition �q of
C consisting of v 0-cells, e 1-cells, and n 2-cells, where v is the number of zeroes
of the Strebel differential q associated with (5.11), and

e = v − 2 + 2g + n.

Proof. The 0-cells, or the vertices, of �q are the zeroes of the Strebel differ-
ential q of (5.11). The 1-cells, or the edges, are the non-compact horizontal leaves
that connect the 0-cells. Since each 1-cell has a finite positive length and the union
of all 1-cells is closed and has measure zero on C, the number of 1-cells is finite. The
union of all compact horizontal leaves that are homotopic to pj (together with the
center pj) forms a 2-cell, or a face, that is homeomorphic to a 2-disk. There are n
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such 2-cells. The boundary of an edge is one or two vertices, and the boundary of a
face is a union of some edges and vertices. The formula for the Euler characteristic

v − e+ n = 2− 2g

determines the number of edges. �

The 1-skeleton, or the union of the 0-cells and 1-cells, of the cell-decomposition
�q that is defined by the Strebel differential is a ribbon graph. The cyclic ordering
of the half-edges at each vertex is determined by the orientation of the Riemann
surface. The next chapter is devoted to study these graphs appearing from the
cell-decompositions of a Riemann surface. A vertex of the graph that comes from
a zero of degree m of the Strebel differential is a vertex of degree m + 2. Thus
the graph we are considering here does not have any vertices of degree less than 3.
Since each edge of the graph has the unique length by (5.9), the graph is a metric
ribbon graph.

2. Examples of Strebel Differentials

Let us give some explicit examples of the Strebel differentials.

Example 5.4. We begin with recalling the Weierstrass elliptic function

℘(z) =
1
z2

+
∑

(m,n)∈Z2

(m,n)6=(0,0)

(
1

(z −mω − nτω)2
− 1

(mω + nτω)2

)

=
1
z2

+
g2z

2

20
+
g3z

4

28
+
g2

2z
6

1200
+

3g2g3z
8

6160
+ · · ·

(5.12)

defined on an elliptic curve

Eτ =
C

Zω ⊕ Zτω
of (3.8), where g2 and g3 are defined in (3.11). With respect to a coordinate z on
C of (3.8), the Strebel differential of ((Eτ , 0), a) ∈M1,1 × R+ is given by

(5.13) q = (−a℘(z) + c) (dz)2,

where c is a suitable complex constant so that q satisfies the conditions of Theo-
rem 5.2. It is customary to write

ω1 = ω/2, ω2 = (ω + τω)/2, and ω3 = τω/2.

We also use the traditional notation

ej = ℘(ωj), j = 1, 2, 3.

It is known that g2, g3 and ej ’s satisfy the following relation:

4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3).

Let us consider now the case when τ is pure imaginary. We choose a positive real ω.
Then it is easy to see from (3.11) that g2 and g3 are real, and it can be shown that
e1, e2, e3 are also real in this case. The Weierstrass ℘-function maps the interior of
the rectangle spanned by 0, ω1, ω2, ω3 biholomorphically onto the upper half plane
(see for example, [22]). The boundary rectangle is mapped to the real axis, and we
have

e3 < e2 < e1.
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The Strebel differential is then given by

q = a (−℘(z) + e2) (dz)2.

The series expansion of (5.12) tells us that the horizontal leaves near 0 are closed
loops that are centered at the origin. The differential q has a double zero at ω2,
which we see from the Weierstrass differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 = 4 (℘(z)− e1) (℘(z)− e2) (℘(z)− e3) .

The real curve ω1 + it is a horizontal leaf, because on the edge ω1ω2 the Weierstrass
function ℘(z) takes values in [e2, e1]. The curve ω3 + t is also a horizontal leaf,
because on the edge ω3ω2 the function ℘(z) takes values in [e3, e2]. In the above
consideration we used the fact that ℘(z) is an even function:

℘(z) = ℘(−z).

The case τ = i is of special interest. Ei belongs to the boundary of the fundamental
domain Figure 3.2, which is fixed by the Z/2Z symmetry τ → −1/τ . In this case,
we have g2 = 4, g3 = 0, e1 = −e3 = 1 and e2 = 0. Therefore, the Strebel differential
(5.13) is simply given by

q = −a℘(z)(dz)2.

The extra Z/2Z symmetry comes from the transformation property

℘(iz) = −℘(z).

The metric graph corresponding to this case certainly has the Z/2Z-invariance
corresponding to interchanging the edges (Figure 5.5).

0 ωω

iω

1

ω
2

ω
3

Figure 5.5. Elliptic Curve with τ = i

The other special point of M1,1 is τ = eπi/3, which corresponds to g2 = 0,
g3 = 4, and

e1 = 1, e2 = e2πi/3, e3 = e4πi/3.

The zeroes of ℘(z) are

p =
ω1 + ω2 + ω3

3
and 2p =

2(ω1 + ω2 + ω3)
3

.

The Weierstrass function ℘(z) maps the line segment pω1 onto [0, 1], pω2 to 0e2,
and pω3 to 0e3, respectively (Figure 5.6).

The Strebel differential is again

q = −a℘(z)(dz)2,



56 5. STREBEL DIFFERENTIALS ON A RIEMANN SURFACE

0

0 1

ωω

p

τω

1

ω2ω3

3e

2e

Figure 5.6. Weierstrass ℘-Function for g2 = 0, g3 = 4

Figure 5.7. Honeycomb

and the non-compact leaves form a regular hexagonal network, which possesses a
Z/3Z-symmetry (Figure 5.7).

It is interesting to investigate what happens if we add a holomorphic quadratic
differential c(dz)2 to the Strebel differential. The addition does not affect the local
behavior of compact horizontal leaves around the pole, but the global picture of the
foliation is altered so that the conditions of Theorem 5.2 do not hold. For example,
the non-compact horizontal leaves of a quadratic differential

q1 = −
(
℘(z) +

1
2

)
(dz)2

for the case τ = i looks as in Figure 5.8. Since the central vertical line ω1 + it
remains as a horizontal leaf of q1, it has a compact horizontal leaf that is not
homotopic to the pole of q1.

0 ωω

iω

1

ω2ω3

Figure 5.8. Non-Strebel Case



3. THE CANONICAL COORDINATE SYSTEM ON A RIEMANN SURFACE 57

3. The Canonical Coordinate System on a Riemann Surface

In Section 1, we have seen that the horizontal leaves of the Strebel differential
determine a canonical cell-decomposition of a Riemann surface once a set of n
marked points and an n-tuple of positive real numbers are specified. In this section
we will see that the vertical leaves give us a canonical coordinate system of the
Riemann surface and a patchwork of open domains that determines the complex
structure.

Let (C, (p1, p2, · · · , pn), (a1, a2, · · · , an)) be the set of data of (5.11), and q the
Strebel differential associated with the data. We recall that for every point of
a vertical leaf there is a horizontal leaf intersecting perpendicularly at the point
(Proposition 5.1). Since the set of all the compact horizontal leaves of q forms
an open dense subset of C, which is indeed the disjoint union of punctured open
2-disks, every vertical leaf of q extends to one of the points pj . In particular, a
vertical leaf starting at a zero of q should end at one of the poles. In other words,
there is no vertical leaf that has both endpoints at the zeroes of q.

Figure 5.9. No Vertical Leaf Connects Zeroes of q

In Figure 5.9, the broken line represents a vertical leaf connecting two zeroes of
q. The horizontal leaves intersecting the vertical leaf are mostly closed loops that
are homotopic to a single point. But this is impossible, unless there is a pole of q
on the vertical leaf.

Thus there are finitely many vertical leaves that connect zeroes and poles of q.

Theorem 5.4. The set of all vertical leaves that connect zeroes and poles of q,
together with the cell-decomposition �q of C by the non-compact horizontal leaves,
defines a triangulation ∆q of C.

Proof. The cell-decomposition �q of C defined by the non-compact horizontal
leaves of q defines a polygonalization of C. Each polygon Figure 5.4 has a unique
center, which is a pole of q. The vertical leaves that connect zeroes and poles supply
the edges necessary for a triangulation of each polygon (Figure 5.10). �

Let Γq denote the graph consisting of zeroes of q as vertices and non-compact
horizontal leaves of q as edges. Since there is a unique and well-defined cyclic order
of half-edges at each vertex of Γq, it is a ribbon graph. By the property of the
Strebel differential, we have

(5.14)

{
χ(Γq) = v(Γq)− e(Γq) = 2− 2g
b(Γq) = n.

In particular, the closed surface associated with the ribbon graph Γq is the underly-
ing topological surface of the Riemann surface C. For every edge E of Γq, there are
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γ 1γ 4

γ 2

γ 6

γ 3

γ 5

Figure 5.10. Triangulation of a Polygon

two triangles of ∆q that share E. Gluing these two triangles along E, we obtain a
diamond shape as in Figure 5.11. This is the set of all vertical leaves that intersect
with E. Let V and V ′ be the endpoints of E, and give a direction to E from V
to V ′. We allow the case that E has only one endpoint. In that case, we assign a
direction either way. For a point P in the triangles, the canonical coordinate

(5.15) z = z(P ) =
∫ P

V

√
q

maps the diamond shape to a strip

(5.16) UE = {z ∈ C | 0 < Re(z) < L}
of infinite height and width L in the complex plane, where L is the length of E.
We identify the open set UE as the union of two triangles on the Riemann surface
C by the canonical coordinate z (Figure 5.11). The local expression of q on UE is
of course

(5.17) q = (dz)2.

E
U

=

E
U

EV

z

L0V’

Figure 5.11. Triangulation and Canonical Coordinate System

Let the degree of V be m. We note that every quadratic differential has an
expression

(5.18) q =
m2

4
wm−2(dw)2

around a zero of degree m − 2. So we use (5.18) as the expression of the Strebel
differential q on an open neighborhood UV around V with a coordinate w such that
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V is given by w = 0. On the intersection

UE ∩ UV ,

we have

(5.19) q = (dz)2 =
m2

4
wm−2(dw)2

from (5.17) and (5.18). Solving this differential equation with the initial condition
that z = 0 and w = 0 define the same point V , we obtain the coordinate transform

(5.20) w = w(z) = cz2/m,

where c satisfies that cm = 1. Thus UE and UV are glued on the Riemann surface
C in the way described in Figure 5.12.

E

0
w

E
0 L

zw = w(z)

VU EU

Figure 5.12. Gluing a Strip to a Neighborhood of a Vertex by
w = w(z) = z2/3

Since we have ∮
√
q = aj

around a quadratic pole pj , we can choose a local coordinate u on an open disk Uj
centered at pj such that

(5.21) q = −
a2
j

4π2

(du)2

u2
.

Because of the definition of the Strebel differential, the coordinate disk Uj , which
is the union of the horizontal leaves that are zero-homotopic to pj , can be defined
so that its boundary contains a zero of q. Actually, the boundary of Uj consists of
a collection of edges E1, · · · , Eµ for some µ. Let zk be the canonical coordinate on
UEk . Equations (5.17) and (5.21) give us a differential equation

(5.22) (dzk)2 = −
a2
j

4π2

(du)2

u2
.

Its solution is given by

(5.23) u = u(zk) = γe2πizk/aj ,

where γ is a constant of integration. Since the edges E1, · · · , Eµ surround the point
pj , the constant of integration for each zk is arranged so that the solution u of (5.23)
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covers the entire disk. The precise form of gluing function of open sets UEk ’s and
Uj is given by

(5.24) u = u(zk) = exp
(

2πi
L1 + L2 + · · ·+ Lk−1 + zk

L1 + L2 + · · ·+ Lµ

)
, k = 1, 2, · · · , µ,

where the length Lk satisfies the condition

aj = L1 + L2 + · · ·+ Lµ.

10

u(z )1

u(z )2

u(z )3

3
L10

z1

u = u(z )1

E1

Uj
UE1

E 1

2πL  /a
12πL  /a

22πL  /a

E 2

E 3

j

j

j

Figure 5.13. Gluing a Strip to a Neighborhood of a Pole by u =
u(z1) = exp(2πiz1/aj)

The open coordinate charts UE ’s, UV ’s and Uj ’s cover the whole Riemann
surface C. We call them the canonical coordinate charts.

Definition 5.5. The canonical coordinate system of the data

(C, (p1, p2, · · · , pn), (a1, a2, · · · , an))

is the covering

(5.25) C =
⋃
E

UE ∪
⋃
V

UV ∪
n⋃
j=1

Uj

of the Riemann surface C by the canonical coordinate charts, where the union is
defined by the gluing functions (5.20) and (5.24).

We note that the canonical coordinate z we have chosen for the strip UE around
an edge E depends on the direction of the edge. If we use the opposite direction,
then the coordinate changes to

(5.26) z 7−→ L− z,
where L is the length of E, as before. This change of coordinate does not affect the
differential equations (5.19) and (5.22), because

(dz)2 = (d(L− z))2.



CHAPTER 6

Combinatorial Description of the Moduli Spaces

We have defined the space of metric ribbon graphs with labeled boundary
components by

RGBmet
g,n =

∐
Γ∈RGBg,n

Re(Γ)
+

Aut∂(Γ)
.

The Strebel theory defines a map

(6.1) σ : Mg,n × Rn+ −→ RGBmet
g,n .

In Section 1 below, we will prove that the map σ is a bijection. Since RGBmet
g,n is

a differentiable orbifold, we can introduce the structure of a differentiable orbifold
to Mg,n × Rn+. The case of (g, n) = (1, 1) is in many ways exceptional. Section 2
is devoted to study M1,1 × R+. For (g, n) = (0, 3), all Strebel differentials are
explicitly computable. Thus we can construct the identification map

M0,3 × R3
+ = RGBmet

0,3

directly. This topic is studied in Section 3. We will also examine the orbifold
covering RGBmet

0,3 → RGmet
0,3 there.

The product group Rn+ acts naturally on Mg,n × Rn+. Therefore it acts on the
space RGBmet

g,n through the bijection σ. However, the Rn+-action on RGBmet
g,n is

complicated. The example of Section 3 shows that the action does not preserve the
rational cells.

1. The Bijection between the Moduli Space and the Space of Metric
Ribbon Graphs with Labeled Boundary

In this section we establish the following theorem:

Theorem 6.1. There is a natural bijection

Mg,n × Rn+ = RGBmet
g,n .

Proof. The proof breaks down into three steps. In Step 1, we construct a
map

(6.2)
∐

Γ∈RGBg,n

Re(Γ)
+ −→Mg,n × Rn+.

We then prove that the map descends to

(6.3) β : RGBmet
g,n −→Mg,n × Rn+

by considering the action of the graph automorphism groups preserving the bound-
ary order in Step 2. From the construction of Step 1 we will see that β is a
right-inverse of the map σ of (6.1), i.e., σ ◦ β is the identity of RGBmet

g,n . In Step 3

61
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we prove that β is also a left-inverse of the map σ. This will complete the proof of
our theorem.

Step 1. Our starting point is a metric ribbon graph Γmet with labeled boundary
components. We label all edges, and give an arbitrary direction to each edge. To
each directed edge

−→
E of Γmet, we assign a strip

U−→
E

= {z ∈ C | 0 < Re(z) < L}
of infinite length and width L, where L is the length of E (see Figure 6.1). The
open real line segment (0, L) ⊂ U−→

E
is identified with the edge

−→
E . The strip U−→

E
has a complex structure defined by the coordinate z, and a holomorphic quadratic
differential (dz)2 on it. Every horizontal leaf of the foliation defined by this qua-
dratic differential is a horizontal line of length L. If we use the opposite direction of−→
E , then U−→

E
should be rotated 180◦ about the real point L/2, and the coordinate

is changed to L− z.

E

z

L0

Figure 6.1. A Strip of Infinite Length with Horizontal Leaves

Let V be a degree m vertex of Γ. There are m half-edges attached to V , al-
though some of them may belong to the same edge. Let 1, 2, · · · ,m be the cyclic
order of the half-edges chosen at V . We give a direction to each edge by defin-
ing the positive direction to be the one coming out from V , and name the edges−→
E 1,
−→
E 2, · · · ,

−→
Em. If an edge goes out as a half-edge number j and comes back as

another half-edge number k, then we use the convention that
−→
E j =

←−
E k, where

←−
E k

denotes the edge Ek with the opposite direction. We denote by Lj the length of
Ej .

Let us place the vertex V at the origin of the w-plane. We glue a neighborhood
of the boundary point 0 of each of the strips U−→

E 1
, · · · , U−→

Em
together on the w-plane

by

(6.4) w = e2πi(j−1)/mz
2/m
j , j = 1, 2, · · · ,m

as shown in Figure 6.2.
An open neighborhood UV of w = 0 is covered by this gluing, if we include the

boundary of each U−→
E j

. It follows from (6.4) that the expression of the quadratic
differential (dzj)2 changes into

(6.5) (dzj)2 =
m2

4
wm−2(dw)2
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E 1

E 2

w(z )

V

1

w(z )2

Figure 6.2. Gluing Strips at a Vertex

in the w-coordinate for every j. So we define a holomorphic quadratic differential q
on UV by (6.5). Note that q has a zero of degree m−2 at w = 0. At least locally on
UV , the horizontal leaves of the foliation defined by q that have V as a boundary
point coincide with the image of the edges E1, · · · , Em via (6.4).

Next, let us consider the case when edges
−→
E 1,
−→
E 2, · · · ,

−→
E h form an oriented

boundary component B of Γ, where the direction of
−→
E k is chosen to be compatible

with the orientation of B. Here again we allow that some of the edges are actually
the same, with the opposite direction. As before, let Lk be the length of Ek, and
put

(6.6) aB = L1 + L2 + · · ·Lh.

This time we glue the upper half of the strips U−→
E 1
, · · · , U−→

Eh
(or the lower half, if

the edge has the opposite direction) into the unit disk of the u-plane by

(6.7) u = exp
(

2πi
aB

(L1 + L2 + · · ·+ Lk−1 + zk)
)
, k = 1, 2, · · · , h.

We note that the entire unit disk on the u-plane, which we denote by UB , is covered
by this gluing, if the boundary lines of the strips are included (Figure 6.3).

10

L

u(z )

1

L 2

L 3

1

u(z )2

u(z )3

Figure 6.3. Gluing Strips along a Loop

It follows from this coordinate transform that

(6.8) (dzk)2 = − a2
B

4π2

(du)2

u2
.
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Thus the holomorphic quadratic differential q naturally extends to a meromorphic
quadratic differential on the union

UB ∪
h⋃
k=1

U−→
E k

which has a pole of order 2 at u = 0 with a negative real coefficient. The horizontal
leaves of the foliation defined by q are concentric circles that are centered at u = 0,
which correspond to the horizontal lines on U−→

E k
through (6.7). Note that the

length of a compact horizontal leaf around u = 0 is always aB .
Now define a compact Riemann surface C(Γmet) by gluing all the UV ’s, UB ’s

and the strips U−→
E

’s by (6.4) and (6.7):

(6.9) C(Γmet) =
⋃

V : vertex of Γ

UV ∪
⋃

E: edge of Γ

U−→
E
∪

⋃
B: boundary

component of Γ

UB .

Since there are two directions for every edge E, both the upper-half part and the
lower-half part of a strip U−→

E
are included in the union of all UB ’s. Thus the union

(6.9) is compact. The Riemann surface C(Γmet) has n = b(Γ) marked points each of
which is the center of the unit disk UB . The ordering of the boundary components
of the ribbon graph determines an ordering of the marked points on the Riemann
surface. Attached to each marked point we have a positive real number aB . The
Riemann surface also comes with a meromorphic quadratic differential whose local
expressions are given by (dzj)2, (6.5), and (6.8). It is the Strebel differential on
C(Γmet). The metric ribbon graph corresponding to this Strebel differential is, by
construction, exactly the original graph Γmet, which has a natural ordering of the
boundary components.

Out of a metric ribbon graph Γmet with labeled boundary, we have made e(Γ)
strips with infinite length and various width that is specified by the length of the
edges. The combinatorial structure of the ribbon graph gives us the unique way
of sewing these strips. The result is a compact Riemann surface with marked
points and a positive real number attached to each marked point. Thus we have
constructed a map (6.2).

Step 2. Let us now consider the effect of a graph automorphism f ∈ Aut∂(Γ)
on (6.9). Let p1, · · · , pn be the marked points of C(Γmet), and a1, · · · , an the
corresponding positive numbers. We denote by E1, · · · , Ee the edges of Γ, and by
U−→
E 1
, · · · , U−→

E e
the corresponding strips with a choice of direction. Then the union

of the closures of these strips cover the Riemann surface minus the marked points:

C(Γmet) \ {p1, · · · , pn} =
e⋃
j=1

U−→
E j
.

A graph automorphism f : Γmet → Γmet induces a permutation of edges and flip
of directions, and hence a permutation of strips U−→

E 1
, · · · , U−→

E e
and a change of

coordinate zj to Lj − zj . If f fixes a vertex V of degree m, then it acts on UV by
rotation of angle an integer multiple of 2π/m, which is a holomorphic automorphism
of UV . The permutation of vertices induced by f is a holomorphic transformation
of the union of UV ’s. Since f preserves the boundary components of Γ, it does not
permute UB ’s, but it may rotate each UB following the effect of the permutation
of edges. In this case, the origin of UB , which is one of the marked points, is fixed,
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and the orientation of the boundary is also fixed. Thus the graph automorphism
induces a holomorphic automorphism of C(Γmet) \ {p1, · · · , pn}. The holomorphic
automorphism preserves the ordering of the marked points. Thus we conclude that
(6.2) descends to a map β which satisfies that σ ◦ β = id.

Step 3. We still need to show that β ◦ σ is the identity map of Mg,n × Rn+.
So we start with a Riemann surface C with n marked points p1, · · · , pn and an
ordered n-tuple (a1, · · · , an) of positive real numbers. Let q be the unique Strebel
differential on C, and Γmet the corresponding metric ribbon graph with ordered
boundary. In Chapter 4, we have introduced the canonical coordinate system on
C. The gluing of these coordinate charts is the same as in the construction of
Step 1.

This completes the proof of Theorem 6.1. �

From the computation of the Euler characteristic of RGBmet
g,n of (4.27), we

obtain

(6.10) χ
(
Mg,n × Rn+

)
=

∑
Γ∈RGBg,n

(−1)e(Γ)

|Aut∂(Γ)|
= n!

∑
Γ∈RGg,n

(−1)e(Γ)

|Aut(Γ)|

as a corollary of Theorem 6.1.
To illustrate the gluing procedure, let us apply it to the graph Figure 2.9 with

one vertex of degree 4 and two edges.

Example 6.1. We glue two strips to the graph and construct P1 with three
marked points. First we label the boundary of the strips as in Figure 6.4.

A1 D1

C1B1

E1

A2 D2

C2B2

E2

Figure 6.4. Two Strips

Since the edges E1 and E2 bound only one vertex V , the gluing process around
the two loops of the figure 8 shape makes the strips into a twin-cone (Figure 6.5).

The two cones are glued at the vertex V . The two entrances of the wigwam
are sewn together along the lines B1 = C2 and C1 = B2. Looking from the above,
the connected twin-cone becomes a figure 8 shape (Figure 6.6).

The process completes with gluing the outside of the figure 8 shape. The result
is Figure 6.7, which is P1 with three marked points. We have already encountered
this shape in Figure 2.12.

Example 6.2. We consider the Riemann surface corresponding to an excep-
tional graph of Figure 6.8. The starting point is the same strips of Figure 6.4.

To make a better picture, we cut the strips into pieces and reassemble them as
a square. Gluing the corresponding sides of the square of Figure 6.9, we obtain an
elliptic curve with one marked point.



66 6. COMBINATORIAL DESCRIPTION OF THE MODULI SPACES

A

VV

1 D1=A2 D 2

E 2 E 1

B 1

C 1B 2

C 2

=

Figure 6.5. Twin-Cone

V

D1
A 1

E 1

D2

A 2

E 2

B 2

C1

C2

B 1

Figure 6.6. Glued Cones

2. The Moduli Space M1,1 and RGmet
1,1

Recall that M1,1 has two 0-cells, three 1-cells and two 2-cells (see Section 3
of Chapter 2). We now know that RGmet

1,1 has two 1-cells, three 2-cells and one
3-cell. The action of Z/3Z on R3

+ is by cyclic permutation of three coordinates.
Thus the fundamental domain for this action is the 1/3 of R3

+ surrounded by the
three shaded planes in Figure 6.10: the vertical plane on the left, the vertical plane
standing diagonally, and the plane going up from left to right. As an orbifold with
boundary, R3

+/(Z/3Z) has one 1-cell defined by x = y = z, one 2-cell defined by
x = y, and one 3-cell. The vertical wall defined by y = 0 is the boundary of the
orbifold, which is not a cell.

In Figure 6.10, the origin is located at the left lower corner of the backside of
the cube, and x, y and z denote the length of the three edges of a trivalent graph on
an elliptic curve. Shrinking one of the edges, we obtain a degree 4 graph with two
edges. The space of such graphs with metric is R2

+/S2, and that can be identified
with the half of the wall y = 0 on Figure 6.10. It has one 1-cell, x = z, y = 0,
and one 2-cell. Since one half of the wall y = 0 is glued with the other half by
the reflection along the line x = z, y = 0, it is natural to insert one more wall
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1p 2p

3p

Figure 6.7. P1 with 3 Marked Points

D1

C2 B1

A2

B2

A1D2

C1

E2E1

Figure 6.8. Gluing for g = s = 1

D2A1

E1

C1B2

E2

E2 E1C2 B1

A2D1

Figure 6.9. An Elliptic Curve with One Marked Point

into the picture: the one connecting the lines x = y = z and x = z, y = 0 (see
Figure 6.10). Altogether, we now have two 1-cells, three 2-cells and two 3-cells,
as we have expected. The Euler characteristic can be calculated as follows. The
3-cells contribute with −1−1. The two 2-cells of R3

+/(Z/3Z) contribute with 1+1.
The 1-cell in R3

+/(Z/3Z) has the entire group Z/3Z as its isotropy group, thus it
contributes with −1/3. The boundary piece R2

+/S2 has Euler characteristic 1−1/2
coming from the two cells in it. As we glue the wall to the boundary of R3

+/(Z/3Z),
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x

y

z

x = z

x = y

y = z

x = y = z

Figure 6.10. Orbifold RGmet
1,1

it becomes just as one of the same kind of walls separating the chamber. Therefore,
the total Euler characteristic is computed as

χ
(
RGmet

1,1

)
= −1

2
− 1

3
+ 1 + 1 + 1− 1− 1 =

1
6
,

which is in agreement with (3.16).
Geometrically, M1,1×R+ can be viewed as a cone over the fundamental domain

of Figure 3.3 minus the vertex. The vertex of the cone corresponds to the origin of
Figure 6.10. The ray a × R+, which has the Z/3Z-symmetry, corresponds to the
1-cell x = y = z of Figure 6.10. The ray i×R+ corresponds to the line x = z, y = 0,
both of which enjoy the Z/2Z-symmetry. The cones over the three 1-cells of the
envelop Figure 3.4 are seen in Figure 6.10 as the three walls separating the chamber.
As we have seen in Example 5.4, the vertical line of Figure 3.3 defined by i + it
with t ≥ 0 corresponds to degree 4 graphs. The cone over this line, which is the
vertical wall y = 0 of the chamber of Figure 6.10, is exactly the space of degree 4
graphs with two edges. Therefore, as a differentiable orbifold with boundary, we
have an isomorphism

(6.11) M1,1 × R+
∼= RGmet

1,1 .

Recall that the Euler characteristic of RGmet
1,1 does not agree with the general

formula (4.21). The general formula gives 1/12, while our computation shows that
it is 1/6. The difference comes from the factor Z/2Z of the graph automorphism
groups that act trivially on the metric edge spaces. It also corresponds to the factor
2 difference between (3.16) and (3.17).

3. The Moduli Space of Three-Pointed Riemann Sphere

Example 6.3. Let us consider another example, the complex projective line
P1 with three ordered marked points, to illustrate the equality

M0,3 × R3
+ = RGBmet

0,3
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and the covering map
RGBmet

0,3 −→ RGmet
0,3 .

The holomorphic automorphism group of P1 is PSL(2,C), which acts on P1 triply
transitively. Therefore, we have a biholomorphic equivalence

(P1, (p1, p2, p3)) ∼= (P1, (0, 1,∞)).

In other words, M0,3 is just a point. Choose a triple (a0, a1, a∞) of positive real
numbers. The unique Strebel differential is given by

q = −

(
a

(
dz

z

)2

+ b

(
dz

1− z

)2

+ c

(
dz

z(1− z)

)2
)
,

where 
a = 1

2

(
a2

0 + a2
∞ − a2

1

)
b = 1

2

(
a2

1 + a2
∞ − a2

0

)
c = 1

2

(
a2

0 + a2
1 − a2

∞
)
.

The behavior of the foliation of the Strebel differential q depends on the discrimi-
nant

ab+ bc+ ca =
1
4

(a0 + a1 + a∞) (a0 + a∞ − a1) (a1 + a∞ − a0) (a0 + a1 − a∞) .

Case 1. ab+ bc+ ca > 0. The graph is of degree 3 with two vertices and three
edges, as given in Figure 6.11. The two vertices are located at

(6.12)
a± i

√
ab+ bc+ ca

a+ b
,

and the length of edges L1, L2 and L3 are given by

(6.13)


L1 = 1

2 (a0 + a∞ − a1) = 1
2

(√
a+ c+

√
a+ b−

√
b+ c

)
L2 = 1

2 (a1 + a∞ − a0) = 1
2

(√
b+ c+

√
a+ b−

√
a+ c

)
L3 = 1

2 (a0 + a1 − a∞) = 1
2

(√
a+ c+

√
b+ c−

√
a+ b

)
.

Note that positivity of L1, L2 and L3 follows from ab + bc + ca > 0. The space of
metric ribbon graphs with ordered boundary in this case is just R3

+ because there is
only one ribbon graph with boundary order of this type and a graph automorphism
that preserves the boundary order is just the identity transformation.

0 1
L 1 L 2

L 3

Figure 6.11. Case 1

The natural S3-action on the space of (a0, a1, a∞) induces faithful permutations
of L1, L2 and L3 through (6.13). The geometric picture can be easily seen from
Figure 6.12. The normal subgroup Z/3Z of S3 acts on P1 as rotation about the
axis connecting the north pole and the south pole, where the poles of Figure 6.12
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represent the zeroes (6.12) of the Strebel differential. Note that the three non-
compact leaves intersect at a zero of q with 120◦ angles. The action of the whole
group S3 is the same as the dihedral group D3 action on the triangle 401∞. As a
result, S3 acts on (L1, L2, L3) as its full permutation group.

0
1

8

L 1 L 2

L 3

Figure 6.12. Degree 3 Graph on a Sphere

Case 2. ab+bc+ca = 0. There are three ribbon graphs with labeled boundary
components in this case, whose underlying graph is a degree 4 graph with 1 vertex
and two edges (Figure 6.13). The vertex is located at a/(a+ b). Each of the three
graphs corresponds to one of the three factors, (a0 + a∞ − a1), (a1 + a∞ − a0),
and (a0 + a1 − a∞), of the discriminant that is equal to 0. For example, when
(a0 + a1 − a∞) = 0, the length of edges are given by

L1 = a0 =
√
a+ c

L2 = a1 =
√
b+ c

L3 = 0.

The S3-action on (a0, a1, a∞) interchanges the three types of ribbon graphs with
boundary order in Case 2. The automorphism group of the ribbon graph of Case 2
is Z/2Z, and only the identity element preserves the boundary order.

0 1

L 1 L 2

Figure 6.13. Case 2

Case 3. ab+bc+ca < 0. The underlying graph is of degree 3 with two vertices
and three edges, but the topological type is different from Case 1 (Figure 6.14). The
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two vertices are on the real axis located at

a±
√
−(ab+ bc+ ca)
a+ b

.

There are again three different ribbon graphs with boundary order, each of which
corresponds to one of the three factors of the discriminant that is negative. For
example, if (a0 + a1 − a∞) < 0, then the length of edges are given by

L1 = a0 =
√
a+ c

L2 = a1 =
√
b+ c

L3 = 1
2 (−a0 − a1 + a∞) = 1

2

(
−
√
a+ c−

√
b+ c+

√
a+ b

)
.

L3 is positive because ab+ bc+ ca < 0.

0 1

L 1 L 2

L 3

Figure 6.14. Case 3

In Case 2 and Case 3, the automorphism group of the ribbon graph without
boundary order is Z/2Z. In every case, we can make the length of edges arbitrary by
a suitable choice of (a0, a1, a∞). The discriminant ab+ bc+ ca breaks the space R3

+

of the triples (a0, a1, a∞) into 7 pieces: 3 copies of R3
+ along each of the a0-, a1- and

a∞-axis where the discriminant is negative, the center piece of R3
+ characterized by

positivity of the discriminant, and 3 copies of R2
+ separating the 4 chambers that

correspond to the zero points of the discriminant (Figure 6.15):

(6.14) R3
+ = R3

+

∐
R2

+

∐
R2

+

∐
R2

+

∐
R3

+

∐
R3

+

∐
R3

+.

The product group R3
+ acts on the space of (a0, a1, a∞) by multiplication, but

the action does not preserve the canonical rational cell-decomposition of RGBmet
0,3 .

Indeed, this action changes the sign of the discriminant.
The three R3

+’s along the axes are equivalent under the S3-action on the space
of (a0, a1, a∞), and each has a S2-symmetry. The three walls separating the cham-
bers are also equivalent under the S3-action, and again have the same symmetry.
Only the central chamber is acted by the full S3. Thus we have

(6.15)

R3
+ R3

+

∐
R2

+

∐
R2

+

∐
R2

+

∐
R3

+

∐
R3

+

∐
R3

+y y
R3

+/S3 R3
+/S3

∐
R2

+/S2

∐
R3

+/S2.

4. The Moduli Space Mg,1

The multiplicative group R+ naturally acts on the ribbon graph complexes
RGmet

g,n and RGBmet
g,n through the multiplication of a constant to the edge length.

Since the graph automorphism groups Aut(Γ) and Aut∂(Γ) act on the edge space
Re(Γ)

+ through a permutation of coordinate axes, the multiplicative R+-action and
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a 8

a 8a 8

a1

a1

a0

a0

=

a1 =a0 =

Figure 6.15. Partition of R3
+

the action of the graph automorphism groups are compatible one another. There-
fore, we have quotient complexes RGmet

g,n /R+ and RGBmet
g,n /R+. Since Re(Γ)

+ is a
cone over the (e(Γ)− 1)-dimensional regular e(Γ)-hyperhedron ∆(123 · · · e(Γ)) and
since the graph automorphism groups act on the hyperhedron, the quotient of each
rational cell is a rational simplex

∆(123 · · · e(Γ))
Aut(Γ)

.

Thus the quotient complexes RGmet
g,n /R+ and RGBmet

g,n /R+ are rational simplicial
complexes.

These quotient complexes are orbifolds modeled on

Xmet
�Γ /R+

G
,

where G denotes either Aut(Γ) or Aut∂(Γ). From (4.15), we have

(6.16)
Xmet
�Γ /R+

Aut(Γ)
=

∆(123 · · · e(Γ))× Rcodim(Γ)

Aut(Γ)
.

Since ∆(123 · · · e(Γ)) is homeomorphic to Re(Γ)−1
+ , the quotient complexes are topo-

logical orbifolds.
On the moduli space Mg,n×Rn+, the multiplicative group R+ acts on the space

of n-tuples Rn+ through the multiplication of a constant. The action has no effect
on Mg,n. Thus we have the quotient space

Mg,n × Rn+
R+

= Mg,n ×∆(123 · · ·n).

The bijection of Theorem 6.1 is equivariant under the R+-action, and we have

(6.17) Mg,n ×∆(123 · · ·n) =
∐

Γ∈RGBg,n

∆(123 · · · e(Γ))
Aut∂(Γ)

.
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This gives us an orbifold realization of the space Mg,n ×∆(123 · · ·n) as a rational
simplicial complex. When n = 1, the space ∆(1) consists of just a point. Therefore,
we have a rational simplicial complex realization

(6.18) Mg,1 =
∐

Γ∈RGg,1

∆(123 · · · e(Γ))
Aut(Γ)

.





Part 2

Asymptotic Expansion of
Hermitian Matrix Integrals





CHAPTER 7

Feynman Diagram Expansion of Hermitian Matrix
Integrals

We have introduced the orbifold structure in Mg,n × Rn+ through the natural
bijection

Mg,n × Rn+ =
∐

Γ∈RGBg,n

Re(Γ)
+

Aut∂(Γ)

and proved that the orbifold Euler characteristic of this space is given by

(7.1) n!
∑

Γ∈RGg,n

(−1)e(Γ)

|Aut(Γ)|
.

In this section we explain how a Hermitian matrix integral gives the generating
function of the quantities 1/|Aut(Γ)|. The computation of (7.1) using a special
Hermitian matrix integral will be performed in the next chapter.

The relation between integrals and graph theory was discovered by Feynman.
We refer to the volume edited by Schwinger [26] for original papers on this subject,
and to [8] for the history of the birth of Feynman diagrams.

Feynman’s method gives us the asymptotic expansion of the Hermitian matrix
integral in question in terms of ribbon graphs. The notion of the graph automor-
phism group that arises naturally from the asymptotic analysis is exactly the same
notion defined in Chapter 1. We recall that the graph automorphism we use is
different from the one commonly found in graph theory.

In Section 1 we define asymptotic expansion. Section 2 describes Feynman
diagram expansion of a scalar integral. We will see how the pairing scheme of
Chapter 1 fits into computing the asymptotic expansion. It was G. ’tHooft [30]
who first applied Feynman’s method to a Hermitian matrix integral. Section 3
describes his method to compute the asymptotic expansion of a Hermitian matrix
integral. In order to study all ribbon graphs, we need to consider the integral in
infinitely many parameters and to deal with asymptotic series in an infinite number
of variables. A mathematical method of dealing with these objects is presented in
Section 4.

1. Asymptotic Expansion

A holomorphic function defined on a domain is completely determined by its
convergent Taylor expansion at a point in the domain. At a boundary point of
the domain where the function is not holomorphic, there is no longer a Taylor
expansion, but we still have a useful power series expansion called an asymptotic
expansion.

77
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Definition 7.1. Let Ω be an open domain of the complex plane C having the
origin 0 on its boundary, and let h(z) be a holomorphic function defined on Ω. A
formal power series

∞∑
v=0

avz
v

is said to be an asymptotic expansion of h(z) on Ω at z = 0 if

(7.2) lim
z→0
z∈Ω

h(z)−
∑m
v=0 avz

v

zm+1
= am+1

holds for all m ≥ 0.

Formula (7.2) shows that if h(z) admits an asymptotic expansion, then it is
unique. If a function h(z) is holomorphic in the neighborhood of z = 0, then
the Taylor series expansion of h(z) at the origin is by definition the asymptotic
expansion. In general, the asymptotic expansion does not determine the original
holomorphic function. As an example, let us compute the asymptotic expansion of
e1/z defined on a domain

(7.3) Ωε = {z ∈ C | π/2 + ε < arg(z) < 3π/2− ε}

for a small ε > 0 (Figure 7.1).

Ωε

0

Figure 7.1. Domain Ωε

Since

lim
z→0
z∈Ωε

e1/z − 0
zm+1

= 0

for any m ≥ 0, the asymptotic expansion of e1/z at the origin is the 0-series. Thus
the asymptotic expansion does not recognize the difference between e1/z and the
0-function. We will use this fact many times later when we compute the Penner
model. This example also shows us that even when h(z) is not holomorphic at
z = 0, its asymptotic expansion can be a convergent power series.

To indicate that the asymptotic expansion of a holomorphic function is not
equal to the original function, we use the notation

(7.4) A
(
h(z)

)
=
∞∑
v=0

avz
v.
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If two holomorphic functions h(z) and f(z) defined on a domain Ω have the same
asymptotic expansion at z = 0, then we write

(7.5) h(z)
A≡ f(z).

Thus 0
A≡ e1/z at z = 0 as holomorphic functions defined on the domain Ωε. For

two holomorphic functions f(z) and g(z) defined on Ω admitting the asymptotic
expansions at 0, we have

A
(
f(z) + g(z)

)
= A

(
f(z)

)
+A

(
g(z)

)
A
(
f(z) · g(z)

)
= A

(
f(z)

)
· A
(
g(z)

)
.

We note that the asymptotic expansion of a holomorphic function depends on the
choice of the domain Ω. For example, e1/z does not admit any asymptotic expansion
at z = 0 as a holomorphic function on the right half plane. However, if

Ω1 ⊂ Ω2, 0 ∈ ∂Ω1 ∩ ∂Ω2,

as in Figure 7.2, and h(z) has an asymptotic expansion on Ω2 at z = 0, then it also
admits an asymptotic expansion on Ω1 at z = 0, which is actually the same series.

Ω0 1
Ω2

Figure 7.2. Domains Ω1 ⊂ Ω2

We can also define the asymptotic expansion of a real analytic function: if K
is an open interval of the real axis with 0 as one of its boundary points and h(z) a
real analytic function on K, then the same formula (7.2), replacing Ω by K, defines
the asymptotic expansion of h(z) at z = 0.

2. The Feynman Diagram Expansion of a Scalar Integral

Now let us compute the asymptotic expansion of

(7.6) Z(t,m) =
∫ ∞
−∞

e−x
2/2exp

 2m∑
j=1

tj
j!
xj

 dx√
2π
,

where m > 0 is a positive integer and

t = (t1, t2, t3, · · · , t2m) ∈ C2m

is a complex vector. We choose t2m such that t2m ∈ Ωε. Then the integral Z(t,m)
converges and defines a holomorphic function in

(7.7) t = (t1, t2, · · · , t2m−1, t2m) ∈ C2m−1 × Ωε.

We can expand Z(t,m) as a Taylor series in (t1, t2, · · · , t2m−1) ∈ C2m−1 and as an
asymptotic series in t2m ∈ Ωε at the origin. Fix a value of t2m ∈ Ωε. Then

exp
(

t2m
(2m)!

x2m

)
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acts as a uniformizing factor so that the power series expansion of the integrand in
terms of x converges uniformly on (−∞,∞) for all values of t1, t2, · · · , t2m−1 ∈ C.
Therefore, we can interchange the infinite integral and the infinite sums:

Z(t,m)

=
∫ ∞
−∞

e−x
2/2exp

 2m∑
j=1

tj
j!
xj

 dx√
2π

=
∫ ∞
−∞

e−x
2/2exp

(
t1
1!
x

)
· · · exp

(
t2m−1

(2m− 1)!
x2m−1

)
· exp

(
t2m

(2m)!
x2m

)
dx√
2π

=
∫ ∞
−∞

e−x
2/2

( ∞∑
v1=0

t1
v1

v1! · (1!)v1

)
· · ·

 ∞∑
v2m−1=0

t2m−1
v2m−1

v2m−1! · ((2m− 1)!)v2m−1


×

( ∞∑
v2m=0

t2m
v2m

v2m! · ((2m)!)v2m

)
xv1+2v2+···+(2m)v2m

dx√
2π

=

( ∞∑
v1=0

t1
v1

v1! · (1!)v1

)
· · ·

 ∞∑
v2m−1=0

t2m−1
v2m−1

v2m−1! · ((2m− 1)!)v2m−1


×
∫ ∞
−∞

e−x
2/2

( ∞∑
v2m=0

t2m
v2m

v2m! · ((2m)!)v2m

)
xv1+2v2+···+(2m)v2m

dx√
2π
.

Lemma 7.2. As a holomorphic function in z ∈ Ωε,

h(z) =
∫ ∞
−∞

e−x
2/2exp

(
z

(2m)!
x2m

)
dx

2π

admits the asymptotic expansion

A
(∫ ∞
−∞

e−x
2/2exp

(
z

(2m)!
x2m

)
dx

2π

)
=
∞∑
v=0

zv

v! · ((2m)!)v

∫ ∞
−∞

e−x
2/2x(2m)v dx

2π

at z = 0.

Proof. For a fixed positive integer k, we have∫ ∞
−∞

e−x
2/2exp

(
z

(2m)!
x2m

)
dx

2π

=
∫ ∞
−∞

e−x
2/2

∞∑
v=0

zv

v! · ((2m)!)v
x(2m)v dx

2π

=
k∑
v=0

zv

v! · ((2m)!)v

∫ ∞
−∞

e−x
2/2x(2m)v dx

2π

+
∫ ∞
−∞

e−x
2/2

∞∑
v=k+1

zv

v! · ((2m)!)v
x(2m)v dx

2π
.

Therefore,
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lim
z→0
z∈Ωε

∫∞
−∞ e−x

2/2exp
(

z
(2m)!x

2m
)
dx
2π −

∑k
v=0

zv

v!·((2m)!)v

∫∞
−∞ e−x

2/2x(2m)v dx
2π

zk+1

= lim
z→0
z∈Ωε

∫ ∞
−∞

e−x
2/2

∞∑
v=k+1

zv−k−1

v! · ((2m)!)v
x(2m)v dx

2π

=
1

(k + 1)! · ((2m)!)k+1

∫ ∞
−∞

e−x
2/2x(2m)(k+1) dx

2π
.

This completes the proof. �

Thus we have

A

(∫ ∞
−∞

e−x
2/2

( ∞∑
v2m=0

t2m
v2m

v2m! · ((2m)!)v2m

)
xv1+2v2+···+(2m)v2m

dx√
2π

)

=
∞∑

v2m=0

t2m
v2m

v2m! · ((2m)!)v2m

∫ ∞
−∞

e−x
2/2xv1+2v2+···+(2m)v2m

dx√
2π
,

and hence

(7.8) A

∫ ∞
−∞

e−x
2/2exp

 2m∑
j=1

tj
j!
xj

 dx√
2π


=
∞∑
v1=0

t1
v1

v1! · (1!)v1
· · ·

∞∑
v2m=0

t2m
v2m

v2m! · ((2m)!)v2m

∫ ∞
−∞

e−x
2/2xv1+2v2+···+(2m)v2m

dx√
2π
.

Note that (7.8) is exactly the process of interchanging the infinite sum and infi-
nite integral. We know that these two operations are not interchangeable, but if
we do interchange them, then we obtain the asymptotic expansion of the original
holomorphic function, which is no longer equal to the original function.

To complete the computation, we have to evaluate the integral

(7.9)
∫ ∞
−∞

e−x
2/2xv1+2v2+···+(2m)v2m

dx√
2π
.

The standard technique is the following:∫ ∞
−∞

e−x
2/2xv1+2v2+···+(2m)v2m

dx√
2π

=
∫ ∞
−∞

e−x
2/2

(
d

dy

)v1+2v2+···+(2m)v2m

exy

∣∣∣∣∣
y=0

dx√
2π

=
(
d

dy

)v1+2v2+···+(2m)v2m ∫ ∞
−∞

e−x
2/2exy

dx√
2π

∣∣∣∣
y=0

=
(
d

dy

)v1+2v2+···+(2m)v2m ∫ ∞
−∞

e−(x−y)2/2ey
2/2 dx√

2π

∣∣∣∣
y=0

=
(
d

dy

)v1+2v2+···+(2m)v2m

ey
2/2

∣∣∣∣∣
y=0

,
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where we have used the translational invariance of the integral∫ ∞
−∞

e−(x−y)2/2 dx√
2π

= 1

for every y ∈ R. The integration is reduced to a differentiation, which can be
computed by a combinatorial counting. Let us denote the differential operator
d/dy by a dot •. We have altogether v1 +2v2 + · · ·+(2m)v2m dots in the scene. We
partition them into v1 groups of single dots, v2 groups of double dots, v3 groups
of triple dots, etc., and v2m groups of 2m dots. Since y is set to be 0 after the
differentiation, the single differentiation gives zero value:

d

dy
ey

2/2

∣∣∣∣
y=0

= y ey
2/2
∣∣
y=0

= 0.

To obtain a nonzero result, the differentiation must be paired:(
d

dy

)2

ey
2/2

∣∣∣∣∣
y=0

= y2 ey
2/2
∣∣
y=0

+ ey
2/2
∣∣
y=0

= 1.

Noting that the result we get by the paired differentiation is 1, we conclude that
the value of the integral (7.9) is equal to the number of pairing schemes consisting
of vj vertices of degree j for every j = 1, 2, · · · , 2m. Thus we have obtained

Proposition 7.3. Let v1, v2, · · · , v2m be non-negative integers. Then the inte-
gral ∫ ∞

−∞
e−x

2/2xv1+2v2+···+(2m)v2m
dx√
2π

is equal to the number of pairing schemes with v1 vertices of degree 1, v2 vertices
of degree 2, · · · , and v2m vertices of degree 2m.

Example 7.1. By a straightforward calculation we obtain∫ ∞
−∞

e−x
2/2x4v dx√

2π
=
(
d

dy

)4v

ey
2/2

∣∣∣∣∣
y=0

=
(4v)!

(2v)! · 22v
.

It is also equal to

The number of ways of making 2v pairs out of 4v dots

=
(

4v
2

)(
4v − 2

2

)(
4v − 4

2

)
· · ·
(

4
2

)(
2
2

)/
(2v)!

=
4v(4v − 1)

2
· (4v − 2)(4v − 3)

2
· · · 4 · 3

2
· 2 · 1

2

/
(2v)!

=
(4v)!

(2v)! · 22v
.

Let P(v1, · · · , v2m) denote the set of all pairing schemes with vj vertices of
degree j for each j = 1, 2, · · · , 2m. The group

(7.10) G(v1, · · · , v2m) =
2m∏
j=1

Svj o (Sj)vj

acts on P(v1, · · · , v2m). We defined a G(v1, · · · , v2m)-orbit

G(v1, · · · , v2m) · P
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starting at P ∈ P(v1, · · · , v2m) as the graph Γ associated with the pairing scheme P
in Section 1 of Chapter 1. The isotropy subgroup of G(v1, · · · , v2m) that stabilizes
the pairing scheme P is the automorphism group of the graph Γ. Since

|G(v1, · · · , v2m)/Aut(Γ)| = |G(v1, · · · , v2m) · P | ,

we obtain a counting formula∑
GraphΓ
vj(Γ)=vj

1
|Aut(Γ)|

=
|P(v1, · · · , v2m)|
|G(v1, · · · , v2m)|

=
2m∏
j=1

1
vj ! · (j!)vj

∫ ∞
−∞

e−x
2/2xv1+2v2+···+(2m)v2m

dx√
2π
,

where the summation runs all graphs Γ such that the number of vertices of degree
j is vj for every j = 1, 2, · · · , 2m. Summarizing, we have established

Theorem 7.4. As a holomorphic function in

t = (t1, t2, · · · , t2m−1, t2m) ∈ C2m−1 × Ωε,

Z(t,m) admits the asymptotic expansion

A

∫ ∞
−∞

e−x
2/2exp

 2m∑
j=1

tj
j!
xj

 dx√
2π

 =
∑

Graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j

at t = 0, where vj(Γ) denotes the number of vertices of degree j in Γ.

The above method of computing the asymptotic expansion is the celebrated
Feynman diagram expansion. Note that the asymptotic series is a well-defined
element of the formal power series ring

Q[[t1, t2, · · · , t2m]],

because there are only finitely many graphs for given numbers v1(Γ), v2(Γ), · · · ,
v2m(Γ).

Let us now consider the relation between general graphs and connected graphs
(see Definition 2.6).

Theorem 7.5. As a formal power series in

Q[[t1, t2, · · · , t2m]],

we have an equality

(7.11)

∑
Graph Γ with

vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j

= exp

 ∑
Connected graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j

 .
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Proof. Note that we classify the empty graph as a non-connected graph. Thus
the formal power series ∑

Connected graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j

takes value 0 if we set t = 0. Thus

exp

 ∑
Connected graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j



= 1 +

 ∑
Connected graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j



+
1
2!

 ∑
Connected graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j


2

+
1
3!

 ∑
Connected graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j


3

+ · · · .

Each term of the above expansion gives

1
n!

 ∑
Connected graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j


n

=
1
n!

∑
Γ1,··· ,Γn

connected graphs with
vertices of degree ≤2m

1
|Aut(Γ1)| · · · |Aut(Γn)|

·
2m∏
j=1

t
vj(Γ1)+···+vj(Γn)
j

=
∑

Graph Γ with
vertices of degree ≤2m

and n connected components

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j .

This is because if we define a disconnected graph

Γ = Γ1 ∪ · · · ∪ Γn

with n connected components Γ1, · · · ,Γn, then

vj(Γ) = vj(Γ1) + · · ·+ vj(Γn)

and
1

|Aut(Γ)|
=

1
n!
·
n∏
`=1

1
|Aut(Γ`)|

,
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which follows from

(7.12) Aut(Γ) = Sn o
n∏
`=1

Aut(Γ`).

Summing up all terms for n = 0, 1, 2, · · · , we obtain the desired formula. This
completes the proof. �

Let us introduce a valuation

(7.13) valt : C[[t1, t2, · · · , t2m]] −→ {0, 1, 2, · · · ,∞}

by defining deg(tj) = j. For an element f ∈ C[[t1, t2, · · · , t2m]] of valuation greater
than 0, we define

log(1− f) = −
∞∑
n=0

1
n
fn,

which is a well-defined element of C[[t1, t2, · · · , t2m]]. Thus we have

(7.14)

log

 ∑
Graph Γ with

vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j


=

∑
Connected graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j .

Corollary 7.6. The asymptotic series containing only connected graphs is
given by

logA

∫ ∞
−∞

e−x
2/2exp

 2m∑
j=1

tj
j!
xj

 dx√
2π


=

∑
Connected graph Γ with
vertices of degree ≤2m

1
|Aut(Γ)|

·
2m∏
j=1

t
vj(Γ)
j .

3. Hermitian Matrix Integrals and Ribbon Graph Expansion

Let Hq denote the space of q × q Hermitian matrices. It is a q2-dimensional
Euclidean space with a metric√

trace(X − Y )2, X, Y ∈ Hq.

The standard volume form on Hq, which is compatible with the above metric, is
given by

dµ(X) = dx11 ∧ dx22 ∧ · · · ∧ dxqq ∧

∧
i<j

d(Rexij) ∧ d(Imxij)


for X = [xij ] ∈ Hq. The metric and the volume form of Hq are invariant under the
conjugation X 7−→ UXU−1 by a unitary matrix U ∈ U(n). The main subject of
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this section is the Hermitian matrix integral

(7.15) Zq(t,m) =
∫
Hq

exp
(
−1

2
trace(X2)

)
exp

trace
2m∑
j=3

tj
j
Xj

 dµ(X)
N

,

where

(7.16) N =
∫
Hq

exp
(
−1

2
trace(X2)

)
dµ(X) = 2q/2 · πq

2/2

is a normalization constant to make Zq(0,m) = 1.
There are several differences between (7.15) and (7.6). First of all, the coupling

constant tj has a coefficient 1/j instead of 1/j!. Secondly, we do not include the
t1 and t2 terms in the integral. This is because of our interests in topology of the
moduli spaces of Riemann surfaces, which will become clearer as we proceed. From
the point of view of graphs, we do not allow degree 1 and 2 vertices in the graphs
in this section.

We note that Zq(t,m) is a holomorphic function in (t3, t4, · · · , t2m−1) ∈ C2m−3

and

t2m ∈ Ωε = {t ∈ C|π/2 + ε < arg(t) < 3π/2− ε}

(ε > 0), because the dominating term trace(X2m) is positive definite on Hq. Thus
we can expand Zq(t,m) as a convergent power series in t3, t4, · · · , t2m−1 about 0
and as an asymptotic series in t2m at t2m = 0, as before.

Corresponding to the fact that the integral (7.15) has richer structure than
(7.6), the Feynman diagrams appearing in the asymptotic expansion of Zq(t,m)
have more information than just a graph as in Theorem 7.4. As we are going to
see below, the new information we have from the Hermitian matrix integral is that
the graph is a ribbon graph.

Theorem 7.7. The asymptotic expansion of the Hermitian matrix integral
Zq(t,m) as a holomorphic function in

t = (t3, t4, · · · , t2m−1, t2m) ∈ C2m−3 × Ωε

at t = 0 is given by

A

∫
Hq

exp
(
−1

2
trace(X2)

)
exp

trace
2m∑
j=3

tj
j
Xj

 dµ(X)
N


=

∑
Ribbon graph Γ with

vertices of degree 3,4,··· ,2m

1
|Aut(Γ)|

qb(Γ) ·
2m∏
j=3

tj
vj(Γ),

where b(Γ) denotes the number of boundary components and vj(Γ) the number of
degree j vertices of the ribbon graph Γ.

Remark. For given values of v3(Γ), · · · , v2m(Γ), the number of ribbon graphs
is finite. Thus the above asymptotic series is a well-defined element of(

Q[q]
)
[[t3, t4, · · · , t2m]].
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Proof. The proof breaks down into several parts.
First, the same technique we used in the previous section to prove (7.8) can be

applied to show

(7.17) A

∫
Hq

exp
(
−1

2
trace(X2)

)
exp

trace
2m∑
j=3

tj
j
Xj

 dµ(X)
N


=
∞∑
v3=0

· · ·
∞∑

v2m=0

2m∏
j=3

tj
vj

vj ! · jvj

∫
Hq

exp
(
−1

2
trace(X2)

) 2m∏
j=3

(
trace(Xj)

)vj dµ(X)
N

.

We need another matrix Y = [yij ] ∈ Hq and a matrix of differential operators

∂

∂Y
=
[
∂

∂yij

]
to evaluate the above integral.

Lemma 7.8. For every j > 0 and v > 0, we have

(7.18)

(
trace

(
∂

∂Y

)j)v
etrace(Xt·Y )

∣∣∣∣∣
Y=0

=
(
trace(Xj)

)v
.

Proof. Suppose that Y and X are both arbitrary complex matrices of size q.
Then for each j > 0, we have

trace
(
∂

∂Y

)j
etrace(Xt·Y )

∣∣∣∣∣
Y=0

=
q∑

i1,i2,i3,··· ,ij=1

∂

∂yi1i2

∂

∂yi2i3
· · · ∂

∂yiji1
exp

 q∑
k,`=1

xk` · yk`

∣∣∣∣∣∣
Y=0

=
q∑

i1,i2,i3,··· ,ij=1

xi1i2xi2i3 · · ·xiji1 = traceXj .

Repeating it v times, we obtain the desired formula (7.18) for general complex
matrices. Certainly, the formula holds after changing coordinates:

yij = uij +
√
−1wij for i < j

yji = uij −
√
−1wij for i < j

yii = uii,

where uij and wij are complex variables. Since (7.18) is an algebraic formula, it
holds for an arbitrary field of characteristic 0. In particular, (7.18) holds for real
uij and wij , which proves the lemma. �
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Therefore, we have

∫
Hq

exp
(
−1

2
trace(X2)

) 2m∏
j=3

(
trace(Xj)

)vj dµ(X)
N

=
∫
Hq

exp
(
−1

2
trace(X2)

) 2m∏
j=3

(
trace

(
∂

∂Y

)j)vj
etrace(Xt·Y )

∣∣∣∣∣∣
Y=0

dµ(X)
N

=
2m∏
j=3

(
trace

(
∂

∂Y

)j)vj ∫
Hq

exp
(
−1

2
trace(X − Y t)2

)
· e1/2trace(Y t)2

∣∣∣∣∣∣
Y=0

dµ(X)
N

=
2m∏
j=3

(
trace

(
∂

∂Y

)j)vj
e1/2traceY 2

∣∣∣∣∣∣
Y=0

=
2m∏
j=3

 ∑
α1,··· ,αj

∂

∂yα1α2

∂

∂yα2α3

· · · ∂

∂yαj−1αj

∂

∂yαjα1

vj

exp

(
1
2

∑
µ,ν

yµνyνµ

)∣∣∣∣∣∣
Y=0

.

(7.19)

The only nontrivial contribution of the differentiation comes from a paired deriva-
tives:

∂

∂yij

∂

∂yk`
exp

1
2

∑
i,j

yijyji

∣∣∣∣∣∣
Y=0

=
∂

∂yij
y`k = δi` · δjk.

If we denote by •ij the differential operator ∂
∂yij

, then we have a pairing scheme
consisting of vj sets of j dots for each j = 3, 4, · · · , 2m, and the pairing of two dots
•ij and •k` contributes δi` · δjk to the integral. The differential operator

trace
(
∂

∂Y

)j
is represented by a sequence of j indexed dots

Vα = •α1α2 •α2α3 •α3α4 · · · •αj−1αj •αjα1

with a cyclic ordering, which forms a vertex of the pairing scheme

P ∈ P(v3, v4, · · · , v2m).

There are
v = v3 + v4 + · · ·+ v2m

vertices and

e =
1
2

(3v3 + 4v4 + · · ·+ (2m)v2m)

edges in P . Let us label all edges

E1, E2, · · · , Ee
of P so that Eµ connects •kµ1kµ2 and •kµ3kµ4 . Then the last line of (7.19) is a sum
with all indices running from 1 to q of a sum of |P(v3, v4, · · · , v2m)|-terms of the
products of 2e Kronecker δ-symbols:
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2m∏
j=3

 ∑
α1,··· ,αj

∂

∂yα1α2

∂

∂yα2α3

· · · ∂

∂yαj−1αj

∂

∂yαjα1

vj

exp

(
1
2

∑
µ,ν

yµνyνµ

)∣∣∣∣∣∣
Y=0

=
∑

P∈P(v3,··· ,v2m)

q∑
k11,··· ,k14=1

· · ·
q∑

ke1,··· ,ke4=1

e∏
µ=1

δkµ1kµ4δkµ2kµ3 .

Since each vertex of P has a cyclic ordering, it has a boundary (Definition 2.11). A
boundary component is a sequence of directed edges with a cyclic ordering. If Ep
ends at •jk of a vertex V , then Ep+1 starts at •ij of the same vertex V (Figure 7.3).

hi ij jk kl

Ep+1

Ep

ab yz

Figure 7.3. A Boundary Component at a Vertex

In each term of the summation, the 2e Kronecker δ-symbols are partitioned into
b(Γ) sets, where Γ denotes the ribbon graph associated with the pairing scheme P
with cyclic ordering at each vertex, and b(Γ) is the number of boundary components
of Γ. Let (Eµ1 , Eµ2 , · · · , Eµs) be a boundary component of P . It contributes a
factor of the form

(7.20) δi1i2δi2i3δi3i4 · · · δin−1inδini1

in the product. After summing up all the indices from 1 to q, (7.20) contributes q
in the product. Therefore,

(7.21)
q∑

k11,··· ,k14=1

· · ·
q∑

ke1,··· ,ke4=1

e∏
µ=1

δkµ1kµ4δkµ2kµ3 = qe(Γ).

Recall that the group

Gor(v3, v4, · · · , v2m) =
2m∏
j=3

Svj o (Z/jZ)vj

of the orientation preserving isomorphisms of pairing schemes acts on the set
P(v3, v4, · · · , v2m), an orbit

Gor(v3, v4, · · · , v2m) · P
of this action is the ribbon graph associated with the pairing scheme, and that
the automorphism group Aut(Γ) of the ribbon graph Γ is the isotropy subgroup
of Gor(v3, v4, · · · , v2m) that stabilizes P . The computation (7.21) gives the same
result for each element of the orbit. Therefore, we obtain

(7.22)
∫
Hq

exp
(
−1

2
trace(X2)

) 2m∏
j=3

(
trace(Xj)

)vj dµ(X)
N

=
∑

Γ∈P(v3,··· ,v2m)/Gor(v3,··· ,v2m)

|Gor(v3, · · · , v2m) · P | · qb(Γ)
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=
∑

Γ∈P(v3,··· ,v2m)/Gor(v3,··· ,v2m)

∣∣∣∣Gor(v3, · · · , v2m)
Aut(Γ)

∣∣∣∣ qb(Γ).

From (7.17) and (7.22), we obtain

A

∫
Hq

exp
(
−1

2
trace(X2)

)
exp

trace
2m∑
j=3

tj
j
Xj

 dµ(X)
N


=
∞∑
v3=0

· · ·
∞∑

v2m=0

2m∏
j=3

tj
vj

vj ! · jvj
∑

Γ∈P(v3,··· ,v2m)/Gor(v3,··· ,v2m)

∣∣∣∣Gor(v3, · · · , v2m)
Aut(Γ)

∣∣∣∣ qb(Γ)

=
∑

Ribbon graph Γ with
vertices of degree 3,4,··· ,2m

1
|Aut(Γ)|

qb(Γ) ·
2m∏
j=3

tj
vj(Γ).

This completes the proof. �

The relation between connected ribbon graphs and arbitrary ribbon graphs are
the same as in the previous section. In particular, since (7.12) also holds for ribbon
graphs, application of the logarithm gives us

(7.23) logA

∫
Hq

exp
(
−1

2
trace(X2)

)
exp

trace
2m∑
j=3

tj
j
Xj

 dµ(X)
N


=

∑
Connected ribbon graph Γ
with maximum degree 2m

1
|Aut(Γ)|

qb(Γ) ·
2m∏
j=3

tj
vj(Γ).

We can rearrange the summation in terms of the genus of a compact oriented
surface C(Γ) and the number of marked points on it.

logA (Zq(t,m))

=
∑

g≥0,n>0
2−2g−n<0


∑

Connected ribbon graph Γ
with vertices of degree 3,4,··· ,2m,

χ(Γ)=2−2g−n,b(Γ)=n

qn

|Aut(Γ)|
·

2m∏
j=3

t
vj(Γ)
j

 ,
(7.24)

where χ(Γ) = v(Γ)− e(Γ) is the Euler characteristic of Γ.

4. Asymptotic Series in an Infinite Number of Variables

In the previous section we considered the asymptotic expansion of a holomor-
phic function Zq(t,m) in t = (t3, · · · , t2m−1, t2m). The asymptotic series is given
by ribbon graphs with vertices of degree 3, 4, · · · , 2m. To apply the ribbon graph
expansion to the moduli spaces of Riemann surfaces with marked points, we have
to deal with ribbon graphs with vertices of arbitrary degree. This means we have
to take the limit m→∞.
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The power series

(7.25)
∑

g≥0,n>0
2−2g−n<0


∑

Connected ribbon graph Γ
with vertices of degree 3,4,··· ,2m,

χ(Γ)=2−2g−n,b(Γ)=n

qn

|Aut(Γ)|
·

2m∏
j=3

t
vj(Γ)
j


is an element of the formal power series ring(

Q[q]
)
[[t3, t4, · · · , t2m]].

Let
(
Q[q]

)
[[t3, t4, · · · ]] be the formal power series ring in infinitely many variables.

The adic topology of this ring is given by the degree

deg tk = k, k ≥ 3

and the ideal Ik(t) of
(
Q[q]

)
[[t3, t4, · · · ]] generated by polynomials in t3, t4, · · · of

degree greater than or equal to k with coefficients in Q[q]. There is a natural
projection

πk :
(
Q[q]

)
[[t3, t4, · · · ]] −→

(
Q[q]

)
[[t3, t4, · · · ]]

/
Ik(t) =

(
Q[q]

)
[[t3, · · · , tk−1]]

/
Ik(t).

The degree of the monomial in (7.25) is

(7.26) deg

 2m∏
j=3

t
vj(Γ)
j

 = 3v3(Γ) + 4v4(Γ) + · · ·+ (2m)v2m(Γ) = v(Γ).

If we consider only the terms in (7.25) of degree less than or equal to k for k ≤ 2m,
then they do not depend on m at all. Therefore, for each fixed k ≥ 0, the projection
image

πk
(

logA
(
Zq(t,m)

))
∈
(
Q[q]

)
[[t3, t4, · · · ]]

/
Ik(t) =

(
Q[q]

)
[[t3, · · · , tk−1]]

/
Ik(t)

is stable for all 2m ≥ k.
Since the formal power series ring is defined by the projective system(

Q[q]
)
[[t3, t4, · · · ]] = lim←−

k

(
Q[q]

)
[[t3, t4, · · · ]]

/
Ik(t)

and since {
π2m

(
logA

(
Zq(t,m)

))}
m≥2

defines an element of this projective system, it gives a well-defined formal power
series in infinitely many variables. We denote it symbolically by

lim
m→∞

logA
(
Zq(t,m)

)
=
{
π2m

(
logA

(
Zq(t,m)

))}
m≥2

∈
(
Q[q]

)
[[t3, t4, · · · ]].

(7.27)

Going back to the Feynman diagram expansion, we have established the fol-
lowing:

Theorem 7.9. Recall that RGg,n is the set of all isomorphism classes of con-
nected ribbon graphs with χ(Γ) = 2− 2g − n and b(Γ) = n. We have

(7.28) lim
m→∞

logA
(
Zq(t,m)

)
=

∑
g≥0,n≥1

2−2g−n<0

 ∑
Γ∈RGg,n

qn

|Aut(Γ)|
·
∏
j≥3

t
vj(Γ)
j


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as an element of
(
Q[q]

)
[[t3, t4, · · · ]].

For each fixed g and n, the maximum possible degree of vertices of the ribbon
graphs in the second summation is 4g + 2n − 2. To see this, let Γ be a graph
with the largest possible degree `. Since the Euler characteristic of Γ is given by
2−2g−n = v(Γ)−e(Γ), the degree becomes maximum when Γ has only one vertex.
Thus

2− 2g − n = 1− 1
2
`.

This shows us that the right hand side of (7.28) does not have any infinite products.



CHAPTER 8

Computation of the Euler Characteristic of the
Moduli Space

In this chapter we compute the Euler characteristic of the moduli space of
Riemann surfaces with marked points and positive real numbers. The evaluation of
χ
(
Mg,n × Rn+

)
requires some analysis. In particular, a rigorous analytic technique

of asymptotic series in infinitely many variables has to be established. We supply
here everything we need, and complete the computation of the Euler characteristic
in terms of a special value of the Riemann zeta function.

1. The Euler Characteristic of the Moduli Space

We give a proof of the following theorem due to Harer and Zagier [10] in this
chapter.

Theorem 8.1. The Euler characteristic of the orbifold Mg,n ×Rn+ is given by

(8.1) χ
(
Mg,n × Rn+

)
= − (2g + n− 3)!(2g)(2g − 1)

(2g)!
ζ(1− 2g)

for every g ≥ 0 and n ≥ 1 subject to 2− 2g − n < 0 and (g, n) 6= (1, 1), where ζ is
the Riemann zeta function. For (g, n) = (1, 1), we have

χ (M1,1 × R+) = −2ζ(−1) =
1
6
.

The idea of the proof is that the generating function of χ
(
Mg,n × Rn+

)
is given

by a Hermitian matrix integral, and that the asymptotic expansion of the integral
is exactly computable. We follow closely the line of arguments of [21], but our
actual computation is based on the asymptotic analysis of [18].

Let us start with the generating function

(8.2) F (q, z) =
∑

g≥0,n≥1
2−2g−n<0

 ∑
Γ∈RGg,n

(−1)e(Γ)

|Aut(Γ)|

 qn(−z)−2+2g+n.

Since

χ
(
Mg,n × Rn+

)
= n!

∑
Γ∈RGg,n

(−1)e(Γ)

|Aut(Γ)|

by (6.10), it is sufficient to know F (q, z) to find the value of χ
(
Mg,n × Rn+

)
. If we

compare (7.28)

lim
m→∞

logA
(
Zq(t,m)

)
=

∑
g≥0,n≥1

2−2g−n<0

 ∑
Γ∈RGg,n

qn

|Aut(Γ)|
·
∏
j≥3

t
vj(Γ)
j


93
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and (8.2), then we see that the substitution

(8.3) tj = −
(√
z
)j−2

, j = 3, 4, · · · ,
changes (7.28) to (8.2), where

√
z is defined for Re(z) > 0. Indeed, for every ribbon

graph Γ, we have

(−1)e(Γ)(−z)−χ(Γ) = (−1)v(Γ)ze(Γ)−v(Γ)

= (−1)
P
vj(Γ) · z 1

2

P
jvj(Γ)−

P
vj(Γ)

=
∏
j≥3

(
−(
√
z)j−2

)vj(Γ)
.

This leads us to the Penner model.

2. The Penner Model

There are no known analytic methods to compute the matrix integral Zq(t,m)
for general m. Penner observed that at the limit of m→∞, the specialization (8.3)
of Zq(t,m) is actually computable.

The condition
π/2 + ε < arg(t2m) < 3π/2− ε

of t2m translates into the condition

(8.4) | arg(z)| < π

2m− 2
of z. Thus we have a holomorphic function

Pq(z,m)

=
∫
Hq

exp
(
−1

2
trace(X2)

)
exp

− 2m∑
j=3

(
√
z)j−2

j
trace(Xj)

 dµ(X)
N

=
∫
Hq

exp

− 2m∑
j=2

(
√
z)j−2

j
trace(Xj)

 dµ(X)
N

(8.5)

defined on the region of the complex plane given by (8.4) (Figure 8.1).

π
2m 2

π
2m 2

0

Figure 8.1. A Wedge-shape Domain

We note that the domain in Figure 8.1 still makes sense as the positive real
axis when we take the limit m → ∞. The quantity N is the same normalization
constant as in (7.16).
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The asymptotic expansion of (8.5) at z = 0 can be calculated by making the
same substitution (8.3) in (7.28). Taking the logarithm, we obtain

logA (Pq(z,m))

=
∑

g≥0,n≥1
2−2g−n<0


∑

Connected ribbon graph Γ
with vertices of degree 3,4,··· ,2m,

χ(Γ)=2−2g−n,b(Γ)=n

(−1)e(Γ)

|Aut(Γ)|

 qn · (−z)2g+n−2.
(8.6)

Note that the right hand side of (8.6) is a well-defined element of
(
Q[q]

)
[[z]]. For

every ν > 0, the terms in logA (Pq(z,m)) of degree less than or equal to ν with
respect to z are stable for all m ≥ ν + 1. Again by the same argument we used in
the previous section, we can define an element

lim
m→∞

logA (Pq(z,m)) ∈
(
Q[q]

)
[[z]].

Thus we have an equality

lim
m→∞

logA

∫
Hq

exp

− 2m∑
j=2

(
√
z)j−2

j
trace(Xj)

 dµ(X)
N


=

∑
g≥0,n≥1

2−2g−n<0

 ∑
Γ∈RGg,n

(−1)e(Γ)

|Aut(Γ)|

 qn · (−z)2g+n−2

= F (q, z)

(8.7)

as a well-defined element of
(
Q[q]

)
[[z]]. We recall that the number of ribbon graphs

for fixed g and n is finite.

3. Asymptotic Analysis of Penner Model

In this section we calculate the asymptotic expansion of Penner model analyt-
ically. The standard analytic technique to compute Hermitian matrix integrals is
the following.

Theorem 8.2. Let f(X) be a function on X ∈ Hq which is invariant under
the conjugation by a unitary matrix U ∈ U(q):

f(X) = f(U−1 ·X · U) = f(k0, k1, · · · , kq−1),

where k0, k1, · · · , kq−1 are the eigenvalues of the Hermitian matrix X. If f(X) is
integrable on Hq with respect to the measure dµ(X), then

(8.8)
∫
Hq
f(X)dµ(X) = c(q) ·

∫
Rq
f(k0, k1, · · · , kq−1)∆(k)2dk0dk1 · · · dkq−1,

where

(8.9) c(q) =
πq(q−1)/2

q! · (q − 1)! · · · 2! · 1!
,
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and

∆(k) = ∆
(
k0, k1 · · · , kq−1

)
= det


1 k0 k2

0 . . . kq−1
0

1 k1 k2
1 . . . kq−1

1

1 k2 k2
2 . . . kq−1

2
...

...
...

. . .
...

1 kq−1 k2
q−1 . . . kq−1

q−1

 =
∏
i>j

(ki − kj)

is the Vandermonde determinant.

Proof. Let
◦
Hq denote the open dense subset of Hq consisting of non-singular

Hermitian matrices of size q with q distinct eigenvalues. If f(X) is a regular inte-
grable function on Hq, then∫

Hq
f(X)dµ(X) =

∫
◦
Hq
f(X)dµ(X).

We denote by
◦
Rq the space of real diagonal matrices of all distinct, non-zero eigen-

values. Here again integration over Rq is equal to integration over
◦
Rq. Since every

Hermitian matrix is diagonalizable by a unitary matrix, we have a surjective map

U(q)×
◦
Rq 3

U,
k0

. . .
kq−1


 7−→ U ·

k0

. . .
kq−1

 · U−1 ∈
◦
Hq.

The fiber of this map is the set of all unitary matrices that are commutative with
a generic real diagonal matrix, which can be identified with the product of two
subgroups

T q ·Wq ⊂ U(q),

where T q ⊂ U(q) is the maximal torus of U(q), and Wq ⊂ U(q) the group of
permutation matrices of size q. Note that

dimU(q) = dimHq = q2, dimT q = q.

Therefore, the induced map

h : U(q)
/
T q ×

◦
Rq −→

◦
Hq

is a covering map of degree |Wq| = q!. We need the Jacobian determinant of h. Put

X =
[
xij
]

= U ·

k0

. . .
kq−1

 · U−1 ∈
◦
Hq,

and denote
dX =

[
dxij

]
.

Then

dX = dU ·

k0

. . .
kq−1

 · U−1 + U ·

dk0

. . .
dkq−1

 · U−1
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− U ·

k0

. . .
kq−1

 · U−1 · dU · U−1

= U ·

dk0

. . .
dkq−1

 · U−1 +
[
dU · U−1, X

]

= U ·


dk0

. . .
dkj

+

U−1 · dU,

k0

. . .
kq−1



 · U−1

= U ·


dk0

. . .
dkq−1

+
[(
kj − ki

)
dωij

] · U−1,

where
U−1 · dU =

[
dωij

]
,

which is a skew-Hermitian matrix. In terms of the above expression, we compute

dµ(X) = dk0 ∧ · · · ∧ dkq−1 ∧

∧
i<j

(kj − ki)2Re(dωij) ∧ Im(dωij)

 .

Thus the integration on
◦
Hq is separated to integration on U(q)

/
T q and

◦
Rq. Let

c(q) =
1
q!

∫
U(q)

/
T q

∧
i<j

Re(dωij) ∧ Im(dωij).

Then we obtain∫
◦
Hq
f(X)dµ(X) = c(q)

∫
◦
Rq

∆(k)2f(k0, · · · , kq−1)dk0 · · · dkq−1.

For the computation of c(q), we refer to Bessis-Itzykson-Zuber [2]. �

Using formula (8.8), we can reduce our integral to

Pq(z,m) =
c(q)
N

∫
Rq

∆(k)2

q−1∏
i=0

exp

− 2m∑
j=2

(
√
z)j−2

j
kji

 dki

 .

The following is our key idea to compute the Penner model.

Theorem 8.3 ([18]). Let Iν(z) = zν ·C[[z]] denote the ideal of C[[z]] generated
by zν , and

πν : C[[z]] −→ C[[z]]
/
Iν(z)

the natural projection. For an arbitrary polynomial p(k) ∈ C[k], consider the fol-
lowing two asymptotic series:

a(z,m) = A

∫ ∞
−∞

p(k) · exp

− 2m∑
j=2

(
√
z)j−2

j
kj

 dk

 ∈ C[[z]]
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as z → +0 with |arg(z)| < π
2m−2 , and

b(z) = A
(√

z(ez)1/z

∫ ∞
0

p

(
1− zx√

z

)
· x1/z · e−x · dx

)
∈ C[[z]]

as z → +0 with z real and positive. Then for every m > 2, we have

πm
(
a(z,m)

)
= πm

(
b(z)

)
as an element of C[[z]]

/
Im(z). In other words,

lim
m→∞

A

∫ ∞
−∞

p(k) · exp

− 2m∑
j=2

(
√
z)j−2

j
kj

 dk


= A

(√
z(ez)1/z

∫ ∞
0

p

(
1− zx√

z

)
· x1/z · e−x · dx

)
holds with respect to the Im(z)-adic topology of C[[z]].

Remark. The above integrals are not equal as holomorphic functions in z.
The limit m→∞ makes sense only for real positive z, and the equality holds only
asymptotically.

Proof. Putting y =
√
zk, we have∫ ∞

−∞
p(k) · exp

− 2m∑
j=2

(
√
z)j−2

j
kj

 dk

=
1√
z

∫ ∞
−∞

p

(
y√
z

)
· exp

−1
z

2m∑
j=2

yj

j

 dy

=
∫ ∞
−∞

dν(y,m),

where

dν(y,m) =
1√
z
· p
(
y√
z

)
· exp

−1
z

2m∑
j=2

yj

j

 dy.

Let us decompose the integral into three pieces:

(8.10)
∫ ∞
−∞

dν(y,m) =
∫ −1

−∞
dν(y,m) +

∫ 1

−1

dν(y,m) +
∫ ∞

1

dν(y,m).

Note that the polynomial
∑2m
j=2

yj

j of degree 2m takes positive values on the in-
tervals (−∞,−1] and [1,∞). Since p(k) is a polynomial, it is obvious that the
asymptotic expansion of the first and the third integrals of the right hand side of
(8.10) for z → +0 with z > 0 is the 0-series. Therefore, we have∫ ∞

−∞
dν(y,m)

A≡
∫ 1

−1

dν(y,m).

On the interval [−1, 1], if we fix a z such that Re(z) > 0, then the convergence

lim
m→∞

exp

−1
z

2m∑
j=2

yj

j

 = (1− y)1/z · ey/z
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is absolute and uniform with respect to y. Thus, for a new variable t = 1 − y, we
have

lim
m→∞

∫ 1

−1

dν(y,m)

=
1√
z

∫ 1

−1

p

(
y√
z

)
(1− y)1/zey/zdy

=
1√
z
e1/z

∫ 2

0

p

(
1− t√
z

)
t1/ze−t/zdt

=
1√
z
e1/z

∫ ∞
0

p

(
1− t√
z

)
t1/ze−t/zdt− 1√

z
e1/z

∫ ∞
2

p

(
1− t√
z

)
t1/ze−t/zdt.

This last integral is

1√
z
e1/z

∫ ∞
2

p

(
1− t√
z

)
t1/ze−t/zdt =

1√
z

∫ ∞
2

p

(
1− t√
z

)
e(1+log t−t)/zdt.

Since 1 + log t − t < 0 for t ≥ 2, the asymptotic expansion of this integral as
z → +0 with z > 0 is the 0-series. Therefore, since the integrals do not depend on
the integration variables, we have

lim
m→∞

A

∫ ∞
−∞

p(k) · exp

− 2m∑
j=2

(
√
z)j−2

j
kj

 dk


= A

(
1√
z
e1/z

∫ ∞
0

p

(
1− t√
z

)
t1/ze−t/zdt

)
= A

(√
ze1/zz1/z

∫ ∞
0

p

(
1− zx√

z

)
x1/ze−xdx

)
as a formal power series in z. This completes the proof of Theorem. �

By applying Theorem 8.3 for each ki, we obtain

lim
m→∞

A

∫
Rq

∆(k)2 ·
q−1∏
i=0

exp

− 2m∑
j=2

(
√
z)j−2

j
kji

 dki


= A

((√
ze1/zz1/z

)q ∫ ∞
0

· · ·
∫ ∞

0

∆
(

1− zx√
z

)2

·
q−1∏
i=0

x
1/z
i e−xidxi

)

= A

((√
ze1/zz1/z

)q
z
q(q−1)

2

∫ ∞
0

· · ·
∫ ∞

0

∆(x)2 ·
q−1∏
i=0

x
1/z
i e−xidxi

)
,

(8.11)

where we used the multilinear property of the Vandermonde determinant. We
can use the standard technique of orthogonal polynomials to compute the above
integral. Let pj(x) be a monic orthogonal polynomial in x of degree j with respect
to the measure

dλ(x) = x1/ze−xdx

defined on K = [0,∞) for a positive z > 0, i.e.,∫
K

pi(x)pj(x)dλ(x) = δij ‖ pj(x) ‖2 .
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Because of the multilinearity of the determinant, we have once again

∆(x) = det
(
xji

)
= det (pj(xi)) .

Therefore, ∫
Kq

∆(x)2dλ(x0) · · · dλ(xq−1)

=
∫
Kq

det (pj(xi)) det (pj(xi)dλ(xi))

=
∫
Kq

∑
σ∈Sq

∑
τ∈Sq

sign(σ)sign(τ)
q−1∏
i=0

pσ(i)(xi)
q−1∏
i=0

pτ(i)(xi)dλ(xi)

=
∑
σ∈Sq

∑
τ∈Sq

sign(σ)sign(τ)
q−1∏
i=0

∫
K

pσ(i)(x)pτ(i)(x)dλ(x)

=
∑
σ∈Sq

sign(σ)2

q−1∏
i=0

∫
K

pσ(i)(x)pσ(i)(x)dλ(x)

= q!
q−1∏
i=0

‖ pi(x) ‖2 .

(8.12)

For a real number z > 0, the Laguerre polynomial

L1/z
m (x) =

m∑
j=0

(
m+ 1/z
m− j

)
(−1)j

j!
xj =

(−1)m

m!
xm + · · ·

of degree m satisfies the orthogonality condition

(8.13)
∫ ∞

0

L
1/z
i (x)L1/z

j (x)e−xx1/zdx = δij
(j + 1/z)!

j!
.

Thus we can use

(8.14) pi(x) = (−1)i · i! · L1/z
i (x)

for the computation. From (8.11), (8.12), (8.13) and (8.14), we have

lim
m→∞

A

∫
Rq

∆(k)2 ·
q−1∏
i=0

exp

− 2m∑
j=2

(
√
z)j−2

j
kji

 dki


= A

((√
ze1/zz1/z

)q
z
q(q−1)

2 q!
q−1∏
i=0

i! ·
(
i+

1
z

)
!

)

= A

(
(ez)

n
z · z

q2

2 · q!
q−1∏
i=0

i! ·
(
−1 +

1
z

)
! ·
(
i+

1
z

)q−i)
.

(8.15)
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Thus we conclude

lim
m→∞

logA

 1
N

∫
Hq

exp

− 2m∑
j=2

(
√
z)j−2

j
trace(Xj)

 dµ(X)


= logA

(
1
N
· π

q(q−1)
2 · (ez)

q
z · z

q2

2 ·
q−1∏
i=0

(
−1 +

1
z

)
! ·
(
i+

1
z

)q−i)

= logA

(
1
N
· π

q(q−1)
2 · (ez)

q
z · z

q2

2 ·
(

Γ
(

1
z

))q
·
q−1∏
i=0

(
i+

1
z

)q−i)

= const +
n

z
+
q

z
log z +

q2

2
log z + q logA

(
Γ
(

1
z

))
+
q−1∑
i=0

(q − i) log
1 + iz

z

= const +
q

z
+
q

z
log z − q

2
log z + q logA

(
Γ
(

1
z

))
+
∞∑
r=1

(−1)r−1

r

(
q−1∑
i=0

(q − i)ir
)
zr.

(8.16)

Let us recall Stirling’s formula:

(8.17) logA
(

Γ
(

1
z

))
= −1

z
log z − 1

z
+

1
2

log z +
∞∑
r=1

b2r
2r(2r − 1)

z2r−1 + const,

where br is the Bernoulli number defined by

x

ex − 1
=
∞∑
r=0

br
r!
xr.

We are not interested in the constant term (the term independent of z) of (8.17)
because the asymptotic series F (q, z) has no constant term. We can see that sub-
stitution of (8.17) in (8.16) eliminates all the logarithmic terms as desired:

lim
m→∞

logA

 1
N

∫
Hq

exp

− 2m∑
j=2

(
√
z)j−2

j
trace(Xj)

 dµ(X)


=
∞∑
r=1

b2r
2r(2r − 1)

· q · z2r−1 +
∞∑
r=1

(−1)r−1

r

(
q−1∑
i=0

(q − i)ir
)
zr.

Let

φr(x) =
r−1∑
µ=0

(
r

µ

)
bµx

r−µ

denote the Bernoulli polynomial. Then we have
q−1∑
i=1

ir =
φr+1(q)
r + 1

.

Thus for r > 0,
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q−1∑
i=0

(q − i)ir =
qφr+1(q)
r + 1

− φr+2(q)
r + 2

=
r∑

µ=0

1
r + 1

(
r + 1
µ

)
bµ · qr+2−µ −

r+1∑
µ=0

1
r + 2

(
r + 2
µ

)
bµ · qr+2−µ

=
r∑

µ=0

r!(1− µ)
µ!(r + 2− µ)!

bµ · qr+2−µ − br+1 · q.

Therefore, we have
∞∑
r=1

b2r
2r(2r − 1)

· q · z2r−1 +
∞∑
r=1

(−1)r−1

r

(
q−1∑
i=0

(q − i)ir
)
zr

= −
∞∑
r=1

1
2r
b2r · q · z2r−1 +

∞∑
r=1

r∑
µ=0

(−1)r
(r − 1)!(µ− 1)
µ!(r + 2− µ)!

bµ · qr+2−µ · zr

= −
∞∑
r=1

1
2r
b2r · q · z2r−1 +

∞∑
r=1

(−1)r−1 1
r(r + 1)(r + 2)

qr+2 · zr

+
∞∑
r=2

[r/2]∑
µ=1

(−1)r
(r − 1)!(2µ− 1)

(2µ)!(r + 2− 2µ)!
b2µ · qr+2−2µ · zr.

(8.18)

It is time to switch the summation indices r and µ to g and n as in (8.7). The
first sum of the third line of (8.18) is the case when we specify a single point on a
Riemann surface of arbitrary genus g = r. The second sum is for genus 0 case with
more than two points specified. So we use n = r + 2 for the number of points. In
the third sum, µ = g ≥ 0 is the genus and r + 2 − 2µ = n ≥ 2 is the number of
points. Thus (8.18) is equal to

∞∑
g=1

ζ(1− 2g) · q · z2g−1 +
∞∑
n=3

(−1)n−1 1
n(n− 1)(n− 2)

qn · zn−2

+
∞∑
g=1

∞∑
n=2

(−1)n−1 (2g + n− 3)!
(2g − 2)!n!

ζ(1− 2g) · qn · z−2+2g+n,

(8.19)

where we used Euler’s formula

ζ(1− 2g) = −b2g
2g
,

and the fact that b0 = 1 and b2q+1 = 0 for q ≥ 1. Note that the first two summations
of (8.19) are actually the special cases of the third summation corresponding to
n = 1 and g = 0. Thus we have established:

Theorem 8.4.

lim
m→∞

logA

 1
N

∫
Hq

exp

− 2m∑
j=2

(
√
z)j−2

j
trace(Xj)

 dµ(X)


= −

∑
g≥0,n≥1

2−2g−n<0

(2g + n− 3)!(2g)(2g − 1)
(2g)!n!

ζ(1− 2g) · qn · (−z)−2+2g+n.
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Since the asymptotic expansion is unique, from (8.7) we obtain

(8.20)
∑

Γ∈RGg,n

(−1)e(Γ)

|Aut(Γ)|
= − (2g + n− 3)!(2g)(2g − 1)

(2g)!n!
ζ(1− 2g)

for every g ≥ 0 and n > 0 subject to 2− 2g − n < 0.

Remark. If we have taken into account the values of c(q) and N in the above
computation, then we will see that all the constant terms appearing in the compu-
tation automatically cancel out.

The Euler characteristic χ(Mg,n × Rn+) can be computed from (8.20) except
for (g, n) = (1, 1), which has been already done in Section 2 of Chapter 5. This
completes the proof of Theorem 8.1.

The Euler characteristic of

Mg,1 =
∐

Γ∈RGg,1

∆(123 · · · e(Γ))
Aut(Γ)

.

of (6.18) is also computed from (8.20). The result is a very simple formula:

(8.21) χ(Mg,1) = ζ(1− 2g).

4. Examples of the Computation

Let us examine a couple of examples of (8.20).

Example 8.1. The simplest case is g = 0 and n = 3. The ribbon graph Γ has
the topological type of S2 minus three points, which satisfies

χ(Γ) = v(Γ)− e(Γ) = 2− 2g − n = −1

and
3v(Γ) ≤ 2e(Γ).

They correspond to the Euler characteristic of a tri-punctured sphere and the re-
striction that every vertex of Γ has degree at least 3. It follows from these conditions
that

e(Γ) ≤ 3.
There are three graphs in this case, as shown in Figure 8.2.

Figure 8.2. Ribbon Graphs for g = 0, n = 3

The automorphism groups of these ribbon graphs are S2 o Z/3Z = S3, Z/2Z,
and again Z/2Z, respectively. Thus the left hand side of (8.20) is

(−1)3

3!
+

(−1)3

2
+

(−1)2

2
= −1

6
.
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The right hand side is coming from the term q3(−z)1 of the second summation in
(8.19). The value is

− 1
3(3− 1)(3− 2)

= −1
6
.

The computation using the Riemann zeta function gives us

− (2g + n− 3)!(2g)(2g − 1)
(2g)!n!

ζ(1− 2g) =
(2g)(2g − 1)b2g

(2g)!3!(2g)
= −1

6
.

Example 8.2. The next simple case is g = n = 1. Since the Euler characteristic
condition of the ribbon graphs is the same as in Example 8.1, the only possibilities
are again graphs with 1 vertex and 2 edges or 2 vertices and 3 edges. There are two
ribbon graphs satisfying the conditions (Figure 8.3). Their automorphism groups
are S2 × Z/3Z and Z/4Z. Formula (8.20) gives us

(−1)3

6
+

(−1)2

4
=

1
12

= −ζ(−1).

Figure 8.3. Ribbon Graphs for g = 1, n = 1
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CHAPTER 9

The Kadomtsev-Petviashvili Equations

The Kadomtev-Petviashvili (KP) equation was introduced in 1970 [?] to study
transversal stability of 1-dimensional solitons that satisfy the Korteweg-de Vries
(KdV) equation. The rich mathematical structures of the KP equation were im-
mediately recognized right after its discovery. The equation is the 0-curvature
condition of a connection [?]. It determines isospectral deformations of linear ordi-
nary differential operators [?]. Riemann theta functions of a Riemann surface give
solutions to the KP equation [?]. The KP equation is linearlized on the Jacobian
variety of a Riemann surface [?].

And then came a breakthrough: Sato [24] realized that the system of KP equa-
tion and its higher-order analogue is equivalent to the system of Plücker relations
that determine the Grassmannians in the projective spaces. This new point of view
of the KP equation provided many further developments, including the relation
to loop groups and affine Kac-Moody Lie algebras ([?], [?]), the application to the
Riemann-Schottky problem ([1], [14], [27]), the contribution to conformal field the-
ory ([?], [?], [?], [?]), and the application to matrix models and the moduli theory
of Riemann surfaces ([?], [13]), just naming a few.

In this chapter we introduce the KP equation as an equation for isospectral
deformations of a linear ordinary differential operator. This is the most natural
point of view of the KP equation to motivate the introduction of Sato’s infinite-
dimensional Grassmannian and to explain the deep relation with algebraic geometry
of Jacobians, algebraic curves, and vector bundles defined on them.

In the next chapter, we derive the KP equation purely geometrically from the
infinite-dimensional Grassmannian and the properties of the characters of tensor
irreducible representations of the general linear groups.

1. The KP Equation and its Soliton Solutions

The KP euqation is a nonlinear partial differential equation

(9.1)
3
4
uyy =

(
ut −

1
4
uxxx − 3uux

)
x

for an unknown function u = u(x, y, t) in three variables, where the subscripts
indicate the partial derivatives:

ux =
∂u

∂x
, uy =

∂u

∂y
, ut =

∂u

∂t
, etc.

107
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The coefficients of these terms are not important as long as they are non-zero,
because they can be arbitrarily chosen by a coordinate transformation

u 7−→ α · u
x 7−→ β · x
y 7−→ γ · y
t 7−→ δ · t

with αβγδ 6= 0. The reason of our choice of the form (9.1) will become clear later.
One of the most appealing features of the KP equation is that it describes

interacting solitons. Before taking a look at KP solitons, let us consider the KdV
equation that describes one-dimensional wave propagation.

The KdV equation is a nonlinear partial differential equation

(9.2) ut =
1
4
uxxx + 3uux

for u = u(x, t). the KdV equation is a special case of the KP equation when
the unknown function does not depend on y. This equation was derived from the
Navier-Stokes equation by taking the shallow water limit, which means that the
ratio of the depth and the wave length is brought to 0. The kdV equation has a
solitary wave solution

(9.3) u(x, t) = c
(
sech2(

√
c(x+ ct))

)
that travels from the right to the left at the constant speed c without changing
the shape of the wave. We note from the formula (9.3) that the velocity −c, the
wave length

√
c, and the height c of the wave are all related: the wave length is

proportional to the square root of the height, and the speed is proportional to the
height. For example, the height of the solitary wave of Figure 9.1 is 4 and its wave
length is about 2. In the real world situation, the unit length of the horizontal
direction is infinitely large compared to the unit length of height.

5 10 15 20

1

2

3

4

5

Figure 9.1. A Solitary Wave

More interesting solutions to the KdV equation are interacting soliton solutions.
Let us look at Figure 9.2. The first wave looks like another solitary wave, but it
decays into four solitons immediately. To be precise, it is not a decay process,
because one of the waves coming out is much taller than the initial wave. After
forming four bumps, the identity of each soliton is preserved for all time.

The entire nonlinear interaction is described in Figure 9.3. From this figure we
can see that the taller the soliton is, the faster it travels. It is consistent with the
property of the solitary wave solution of (9.3). Since the taller solitons are behind
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Figure 9.2. Nonlinear Collision of Four Solitons

the shorter solitons, the taller ones catch up the shorter ones and eventually they all
collide. The first picture of Figure 9.2 shows the very moment of the simultaneous
collision. Since the height of this collision wave is shorter than the tallest in-coming
wave, the interaction is nonlinear.

If we ignore the very moment of collision, then the interaction looks like just four
solitary waves passing each other without any interaction. Since the KdV equation
is nonlinear, such linear superposition of solitary waves is impossible. Actually, if
we look at Figure 9.3 more carefully, then we recognize that the collision kicks off
the tallest and fastest wave while bounces back the shortest and slowest one. The
position of the four solitons after collision is not exactly the same as what we expect
from the behavior of the in-coming waves. This also shows the essential nonlinear
nature of the interaction.

Another important feature of the KdV solitons is the conservation of soliton
number. In the above example, the number of bumps is four before and after the
collision.

Now let us go back to the KP equation. It describes shallow water wave propa-
gation of two-dimensional medium, such as a big tsunami wave on the ocean surface.
Figure 9.4 shows the moment of collision of two tsunami waves. The height of these
waves are the same, but the one in left moves faster than the one on the right. Both
waves travel from left to right.
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Figure 9.3. Interaction of Four Solitons

Figure 9.4. Collision of Two Tsunami Waves

After the collision, the tall tsunami waves collapse into three small waves of
the equal height and different speeds. There are two input waves, but three waves
come out of collision.

The wave at the front moves out with the largest speed after the collision, while
the waves behind travel much slowly.
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Figure 9.5. 1 + 1 = 3?

Figure 9.6. Collapsing into Three Tsunami Waves

This type of two-dimensional waves can be seen quite often on a sea shore. The
interaction we see on a beach appears to be more stable. Actually, what we see
globally is the shape of Figure 9.5 moving straight away from us, rather than two
waves coming in from the left and collapsing into three while traveling to the right.
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If we walk along the wave of Figure 9.5, then we see that the whole wave moves at
the constant speed withough changing its shape.

2. The Micro-Differential Operators in 1-variable and the Lax Equation

Our interests of the KP equation does not lie in the fact that it describes
the shallow water wave propagation. The KP equation has a two-fold relation to
the moduli spaces of Riemann surfaces, and this point is what we are going to
investigate in this and the next chapters.

Although we have given the KP equation already as a nonlinear parital differ-
ential equation in (9.1), the form of the equation does not tell us anything about
its relation to the geometry. We have to give a more fundamental definition of the
KP equation. In this section, we define the KP equation as the master equation of
all possible isospectral deformations of a linear ordinary differential opertor.

Let us consider an n×n matrix L and a family U(t) of invertible n×n matrices
depending on the parameter t differentiably. Then the matrices of the family

(9.4) L(t) = U(t) · L · U(t)−1

have the same eigenvalues for all t, because the characteristic polynomial of L(t) is
independent of t. From (9.4) it follows

(9.5)
∂L(t)
∂t

= [B(t), L(t)],

where

(9.6) B(t) =
∂U(t)
∂t

U(t)−1.

Equation of the form (9.5) is called the Lax equation.
We consider the Lax equation in the case when the quantities L(t) and B(t)

are differential operators in the other variable x. As an example, let us take

(9.7)

{
L(t) =

(
d
dx

)2
+ 2u(x, t)

B(t) =
(
d
dx

)3
+ 3u(x, t) d

dx + 3
2u(x, t)x

.

Recall that for a differentiable function f(x), we have the commutation relation

(9.8)
[
d

dx
, f(x)

]
=

d

dx
◦ f(x)− f(x) ◦ d

dx
= f(x)x.

This is essentially the Leibniz rule. Thus we compute

[B(t), L(t)] =
1
2
uxxx + 6uux.

Since
∂L(t)
∂t

= 2ut,

the Lax equation of the operators of (9.7) implies the KdV equation (9.2).
This is just a computation. The mystery behind the scene lies in the fact

that the commutator [B(t), L(t)] is a function, or a 0-th order differential operator.
Since B(t) is of order 3 and L(t) has order 2, we expect that the commutator has
a positive order. Actually, B(t) is determined by L(t) so that the commutator
becomes a function. We will see how the form of B(t) is determined shortly.

Let us turn our attention to the isospectral property of the Lax equation.
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Definition 9.1. Let L be a linear ordinary differential operator. A one-
parameter family L(t) of differential operators, where the coefficients of L(t) depend
on the deformation parameter t, is said to be a family of isospectral deformations if
L = L(0) and there is another linear ordinary differential operator B(t) such that
the system of linear equations

(9.9)

{
L(t)ψ(x, t) = λψ(x, t)
∂ψ(x,t)
∂t = B(t)ψ(x, t)

has a solution ψ(x, t) for every eigenvalue λ of L.

The first equation of (9.9) is the eigenvalue problem of the operator L(t) for
each t with an eighenvalue λ, which is constant with respect to x and t, though the
operator L(t) changes with t. The second equation determines the t dependence of
the eigenfunction ψ(x, t). If L has only discrete eigenvalues, then the meaning of
isospectral family is clear, and the first equation of (9.9) suffices to define it. But if
L has a continuous spectrum, then it is not clear what we mean by saying that L(t)
has the same spectum of L. We are appealing to (9.4) and (9.6) again to define
an isospectral family. Indeed, (9.4) corresponds to the first equation of (9.9), and
(9.6) corresponds to the second equation. The mechanism of the Lax equation is
the same as the case of matrices:

Proposition 9.2. Suppose that t-depending operators L(t) and B(t) satisfy
the condition that the system

(9.10)

{
L(t)ψ(x, t) = λ(t)ψ(x, t)
∂ψ(x,t)
∂t = B(t)ψ(x, t)

has a solution for every eigenvalue λ(t) of L(t). Then L(t) is an isospectral family
of L = L(0) if and only L(t) and B(t) satisfy the Lax equation

∂L(t)
∂t

= [B(t), L(t)].

Proof. Let us differentiate the first equation of (9.10) with respect to t:

L(t)tψ + L(t)ψt − λ(t)tψ − λ(t)ψt
= (L(t)t + L(t)B(t)− λ(t)B(t)− λ(t)t)ψ

= (L(t)t − [B(t), L(t)]− λ(t)t)ψ = 0.

Therefore, L(t)t − [B(t), L(t)] = 0 if and only if λ(t)t = 0. �

Remark. In the above argument, some completeness condition of the eigen-
functions of L(t) is assumed. Since we are interested in geometry of the Lax equa-
tion rather than its analysis, we do not go into any functional analytic detail of the
equation here.

The KdV equation describes a one-parameter isospectral deformation of a sec-
ond order differential operator

L =
(
d

dx

)2

+ 2u(x).

It is natural to ask a question: what is the largest possible family of nontrivial
isospectral deformations of L? More generally, we can ask: how can we determine
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the largest possible family of nontrivial isospectral deformations of an arbitrary
linear ordinary differential operator?

This question leads us to defining the system of KP equations, or the KP system,
which is a master equation for the universal family of isospectral deformations of
an arbitrary linear ordinary differential operator.

So far we have not specified the space of functions on which our differential
operators act. To develop a systematic investigation, let us choose a commutative
C-algebra R with a derivation operator

(9.11) ∂ : R −→ R,

which is a C-linear map satisfying the Leibniz rule

(9.12) ∂(fg) = ∂(f) · g + f · ∂(g), f, g ∈ R.

We assume that the derivation operator is surjective, and that the kernel of ∂
contains C:

C ⊂ Ker(∂) ⊂ R.

In other words, a first order linear differential equation

(9.13) ∂(f) = g

has a solution f ∈ R for every g ∈ R, and ∂(c) = 0 if c ∈ C. In our investigation of
this book, we exclusively consider the case

(R, ∂) =
(

C[[x]],
d

dx

)
,

but the theory can be generalized by using many different differential algebras [19].

Definition 9.3. The ring D of linear ordinary differential operators with coef-
ficients in R is the associative algebra generated by R and ∂ with the commutation
relation

(9.14) [∂, f ] = ∂ ◦ f − f ◦ ∂ = ∂(f) ∈ R,

which is understood as a multiplication operator acting on R.

Let us define a C-linear subspace D(ν) of D by

(9.15) D(ν) =


ν∑
j=0

aj ◦ ∂j
∣∣∣∣∣∣ aj ∈ R

 ,

and define

R[∂] =
∞⋃
ν=0

D(ν).

The commutation relation (9.14) gives

∂ ◦ f = f ◦ ∂ + ∂(f) ∈ D(1).

Thus there is a C-linear isomorphism

D
∼−→ R[∂],
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with which we identify D and R[∂] from now on. The relation (9.14) also gives an
explicit way of computing the product of two differential operators. By induction,
we can show a useful formula

(9.16) ∂ν ◦ f =
ν∑
i=0

(
ν

i

)
∂i(f) ◦ ∂ν−i ∈ D(ν), ν ≥ 0.

We use the notation

(9.17) ∂n(f) = f (n),

and call it the n-th derivative of f .
A differential operator P ∈ D is of order ν if

P =
ν∑
j=0

aj ◦ ∂j ∈ D(ν),

and monic if the leading coefficient aν is equal to 1, and normalized if aν = 1 and
aν−1 = 0.

Although the KP system is for a differential operator, it is best described in
terms of micro-differential operators.

Definition 9.4. A micro-differential operator is an element of the set

(9.18) E =
⋃
ν∈Z

E(ν),

where

(9.19) E(ν) =


∞∑
j=0

aj ◦ ∂ν−j
∣∣∣∣∣∣ aj ∈ R


is a C-linear space of formal sums. An element of E(ν) \ E(ν−1) is called a micro-
differential operator of order ν.

The vector space E has a filtration

(9.20) · · ·E(ν−1) ⊂ E(ν) ⊂ E(ν+1) · · ·

that satisfies

(9.21)
⋂
ν∈Z

E(ν) = {0}.

We introduce the natural topology in E such that {E(ν)}ν∈Z forms the basis of
open neighborhood of 0 ∈ E. The formal sum of the elements of E is convergent
with respect to this topology because of (9.21). The set {0} is a closed subset of E
because its complement is the union of infinitely many open sets:⋃

ν∈Z

⋃
a∈R\{0}

(a ◦ ∂ν + E(ν−1)).

Thus {P} is a closed set for every P ∈ E.
Let us define a commutation relation

(9.22) [∂−1, f ] = ∂−1 ◦ f − f ◦ ∂−1 =
∞∑
i=1

(−1)if (i) ◦ ∂−1−i.
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Note that the sum of the right hand side is again a convergent sum in E(−1). The
relation of (9.22) makes sense because

∂ ◦ (∂−1 ◦ f) = ∂ ◦
∞∑
i=0

(−1)if (i) ◦ ∂−1−i

=
∞∑
i=0

(−1)if (i+1) ◦ ∂−1−i +
∞∑
i=0

(−1)if (i) ◦ ∂−i

= −
∞∑
i=1

(−1)if (i) ◦ ∂−i +
∞∑
i=0

(−1)if (i) ◦ ∂−i = f.

Again by induction, we can show the general Leibniz rule

(9.23) ∂ν ◦ f =
∞∑
i=0

(
ν

i

)
f (i) ◦ ∂ν−i ∈ E(ν),

where (
ν

i

)
=
ν(ν − 1)(ν − 2) · · · (ν − i+ 1)

i!
for ν ∈ Z and i ≥ 0. Note that it generalizes both (9.16) and (9.22).

Using the general Leibniz rule (9.23), we can introduce a multiplication in E.
It is just a computation to show that this multiplication defines the structure of an
associative algebra in E. Since (9.23) is a generalization of the usual Leibniz rule,
D is a subalgebra of E. We have a natural polarization

(9.24) E = D ⊕ E(−1),

where both D and E(−1) are subalgebras of E but the direct sum is only as C-linear
spaces. The set D is a closed subset of E because its complement is give by⋃

P∈D

⋃
ν<0

⋃
a∈R\{0}

(P + a ◦ ∂ν + E(ν−1)).

We call an element of the subalgebra E(−1) a formal Volterra integral operator.
Following the porlarization (9.24), we write

P = P+ + P−,

where P ∈ E, P+ ∈ D, and P− ∈ E(−1). P+ is the differential operator part, and
P− is the Volterral operator part, of P .

The ring D acts naturally on R, but E does not. Since ∂ : R → R has a non-
trivial kernel, ∂−1 is not a map of R into itself. For the case of R = C[[x]], we can
construct an operand of E as we will see below, but in general a micro-differential
operator does not act on a function. Thus the use of the name “Volterra integral
operator” for an element of E(−1) is an abuse of terminology. The rationale of this
usage comes from the fact that every element P ∈ E(−1) is nilpotent in the general
sense, i.e.,

(9.25) lim
n→∞

Pn = 0.

This follows from Pn ∈ E(−n) and
∞⋂
n=1

E(−n) = {0}.
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The above consideration shows us that if P ∈ E(−1), then

(9.26) (1 + P )−1 = 1− P + P 2 − P 3 + · · ·

is a convergent expression and determines a well-defined element of E(0). Note that
if Q ∈ E(−1), then

(1 + P ) ◦ (1 +Q) = 1 + P +Q+ P ◦Q ∈ 1 + E(−1).

Continuing the abuse of terminology, we define:

Definition 9.5. The Volterra group is the subset of E defined by

(9.27) G = 1 + E(−1).

The inverse of an element 1+P of G, where P ∈ E(−1) is a formal Volterra integral
operator, is defined by (9.26).

Proposition 9.6 (Standard form of a normalized micro-differential operator).
Every normalized micro-differential operator P of order other than 0 is conjugate
to ∂ν by an element of the Volterra group G, where ν is the order of P .

Proof. We have to solve the equation

(9.28) P ◦ S = S ◦ ∂ν

for

S =
∞∑
n=0

sn ◦ ∂−n ∈ G,

where s0 = 1. Let

P =
∞∑
i=0

ai ◦ ∂ν−i,

where a0 = 1 and a1 = 0. Then

0 = P ◦ S − S ◦ ∂ν =
∞∑
i=0

∞∑
j=0

∞∑
n=0

(
ν − i
j

)
ais

(j)
n ◦ ∂ν−i−j−n −

∞∑
m=0

sm ◦ ∂ν−m

=
∞∑
m=0

 m∑
n=0

m−n∑
j=0

(
ν − (m− n− j)

j

)
am−n−js

(j)
n − sm

 ◦ ∂ν−m
=
∞∑
m=1

m−1∑
n=0

m−n∑
j=0

(
ν − (m− n− j)

j

)
am−n−js

(j)
n

 ◦ ∂ν−m.
Thus we have

(9.29) s
(1)
m−1 = −1

ν

m−2∑
n=0

m−n∑
j=0

(
ν − (m− n− j)

j

)
am−n−js

(j)
n .

Since ∂ : R → R is surjective, we can solve (9.29) recursively starting from s0 = 1
to determine a group element S ∈ G. This completes the proof. �

Remark. (1) The above procedure does not work if the order of P is
0. It is because the only operator that is conjugate to the identity is the
identity operator itself.
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(2) Solving the differential equation (9.29) involves determining a constant of
integration at each step. Thus the operator S is not unique. From the
computation, it is easy to see that the ambiguity is precisely

(9.30) S −→ S ◦ Sconst,

where Sconst is an element of the Volterra group whose coefficients are in
Ker(∂). We have

P = S ◦ ∂ν ◦ S−1 = (S ◦ Sconst) ◦ ∂ν(S ◦ Sconst)−1,

because
Sconst ◦ ∂ν ◦ S−1

const = ∂ν .

Corollary 9.7 (Existence of the inverse and the n-th root of a normalized
operator). Let P ∈ E be a normalized micro-differential operator of order n > 0.
Then there is a unique normalized operator P−1 of order −n, and also a unique
normalized operator P 1/n of order 1.

Proof. Let P = S ◦ ∂n ◦ S−1. Then

P−1 = S ◦ ∂−n ◦ S−1

and
P 1/n = S ◦ ∂ ◦ S−1.

The ambiguity (9.30) does not affect these definitions. �

The KP equations are about deformations of a differential operator. Thus we
need to specify the deformation parameters before defining the KP system. Since
our goal is to relate the moduli theory of Part 1, matrix integrals of Par 2, and the
KP theory of Part 3, we use C[[t1, t2, t3, · · · ]] for the set of deformation parameters.
We recall that this ring has a filtration

C[[t1, t2, t3, · · · ]] = I0 ⊃ I1 ⊃ I2 ⊃ I3 ⊃ · · · ,

where In is the ideal of C[[t1, t2, t3, · · · ]] generated by homogeneous polynomials of
degree n, and we have defined that

deg(tj) = j.

We denote by R[[t]] the ring of all formal power series in t = (t1, t2, t3, · · · ) with
coefficients in R. We assume that the derivation ∂ and elements of C[[t1, t2, t3, · · · ]]
are commutative. The ring D[[t]] of differential operators and the ring E[[t]] of
micro-differential operators with coefficients in R[[t]] are defined in exactly the
same way as before.

Definition 9.8 (Definition of the KP system). The KP system is the system
of nonlinear partial differential equations

(9.31)
∂L

∂tn
= [(Ln)+, L], n = 1, 2, 3, · · · ,

for a normalized micro-differential operator L ∈ E[[t]] of order 1.

Example 9.1. Let

L = (∂2 + 2u)1/2 = ∂ + u∂−1 − u(1)

2
∂−2 +

(
u(2)

4
− 1

2
u2

)
∂−3 + · · · .
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Then from (9.31), we derive

∂L2

∂t3
= [(L3)+, L

2] =
[
∂3 + 3u∂ +

3
2
u(1), ∂2 + 2u

]
.

Since L3 = (L3)+ + (L3)−,

[(L3)+, L
2] = [L3, L2]− [(L3)−, L2] = [(L3)−, L2].

Note that [(L3)+, L
2] ∈ D[[t]], while the order of [(L3)−, L2] ∈ E[[t]] is at most

−1 + 2 − 1 = 0. Thus [(L3)+, L
2] is just an element of R[[t]]. This is the reson of

the mysterious Lax form of the KdV equation (9.7).

Since L of Definition 9.8 is a normalized operator, ∂L/∂tn ∈ E(−1)[[t]]. As in
Example 9.1, we have

[(Ln)+, L] = −[(Ln)−, L] ∈ E(−1)[[t]].

Thus the KP system (9.31) is an equation in E(−1)[[t]].
Let P ∈ D be a normalized differential operator. Its isospectral deformation is

given by a Lax equation

(9.32)
∂P

∂t
= [Q,P ]

for some differential operator Q ∈ D. If the order of P is m, then (9.32) is equivalent
to

(9.33)
∂L

∂t
= [Q,L]

for the m-th root L = P 1/m. Since L is normalized and of order 1, the deformation
operator Q has to satisfy the condition that [Q,L] ∈ E(−1).

Proposition 9.9 (Determining all possible isospectral deformations). Let L ∈
E be a normalized micro-differential operator of order 1, and define

(9.34) FL = {Q ∈ D | [Q,L] ∈ E(−1)}.
Then FL is the set of all finite sums of the form

(9.35) Q =
ν∑
j=0

aj ◦ (Lj)+

for ν ≥ 0 and aj ∈ Ker(∂).

Proof. From the same argument as above, we have

[Q,L] =

 ν∑
j=0

aj ◦ (Lj)+, L

 = −

 ν∑
j=0

aj ◦ (Lj)−, L

 ∈ E(−1).

Conversely, let Q ∈ FL, and assume that the order of Q is ν ≥ 0. Thus Q is written
as

Q = aν ◦ (Lν)+ +Q1

with Q1 ∈ D(ν−1). Since
L = ∂ + (L)−,

the highest order term of

[Q,L] = [aν ◦ (Lν)+ +Q1, ∂ + (L)−]
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is a(1)
ν ◦ ∂ν . The condition [Q,L] ∈ E(−1) implies that a(1)

ν = 0. Thus aν ∈ Ker(∂).
Then aν ◦ (Lν)+ ∈ FL, hence Q1 ∈ FL. Since the order of Q1 is smaller that ν, we
can use the induction on ν. �

If R = C[[x]], then Ker(∂) = C. Therefore, the KP system (9.31) for L = P 1/m

exhausts all possible isospectral deformations of a normalized differential operator
P of order m up to linear combination. Thus we claim that the KP system is the
master equation for all possible isospectral deformations of an arbitrary normalized
differential operator.

3. The KP Equations and the Grassmannian

From now on, we choose

(R, ∂) =
(

C[[x]],
d

dx

)
for our differential algebra. There is a filtration

(9.36) C[[x]] ⊃ C[[x]]x ⊃ C[[x]]x2 ⊃ C[[x]]x3 ⊃ · · ·
in C[[x]] that satisfies

∞⋂
n=0

C[[x]]xn = {0}.

The Krull topology of C[[x]] is defined by taking C[[x]]xn’s as a basis for open
neighborhood of 0. A formal power series f(x) has valuation n if

f(x) ∈ C[[x]]xn \ C[[x]]xn+1.

The algebra E of micro-differential operators does not act on C[[x]]. Let us first
construct the space Vx of functions on which E naturally acts. The derivation
defines a projective system

(9.37) · · · ∂−−−−→ R
∂−−−−→ R

∂−−−−→ R
∂−−−−→ · · ·.

Definition 9.10. The vector space Vx is a subspace of the projective limit

lim
←

(R ∂−→ R)

of (9.37) consisting of the sequences f =
(
f (ν)(x)

)
ν∈Z subject to the following

conditions:
(1) f (ν)(x) ∈ C[[x]].
(2) ∂(f (ν)(x)) = f (ν+1)(x).
(3) For every f ∈ Vx, there are positive integers N and n such that for all

ν > N , f (−ν)(x) ∈ C[[x]]xν−n.

Given an integer ν ∈ Z, there is a linear projection

(9.38) πν : Vx 3
(
f (ν)(x)

)
ν∈Z
7−→ f (ν)(x) ∈ C[[x]].

A micro-differential operator P =
∑
ν≥0 aν(x) ◦ ∂m−ν of order m now acts on

an element f =
(
f (ν)(x)

)
ν∈Z of Vx by

(9.39)
π0(P (f)) =

∑
ν≥0

aν(x)f (m−ν)(x)

πµ(P (f)) = π0((∂µ ◦ P )(f))
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Since there is an integer n for every f such that

valx(aν(x)f (m−ν)(x)) ≥ valx(f (m−ν)(x)) ≥ ν −m− n
for all sufficiently large ν >> m, the formal infinite sum π0(P (f)) makes sense in
the Krull topology and determines a well-defined element of C[[x]].

4. Algebraic Solutions of the KP Equations





CHAPTER 10

Geometry of the Infinite-Grassmannian

1. The Infinite-Dimensional Grassmannian

Let V ∼= Cn be an n-dimensional complex vector space. For 0 ≤ m ≤ n, the
mth wedge product space

m∧
V = {vi1 ∧ vi2 ∧ · · · ∧ vim | vij ∈ V }

is a vector space of dimension
(
n
m

)
. Let W ⊂ V be an m-dimensional vector

subspace of V , and
{w1, w2, · · · , wm}

a basis for W . We can assign an element

(10.1) w1 ∧ w2 ∧ · · · ∧ wm ∈
m∧
V

to each basis of W . The Grassmannian Gr(m,n) is the set of all m-dimensional
vector subspaces of V , which has the structure of a smooth compact complex alge-
braic variety of dimension m(n−m) [9]. The assignment (10.1) defines the Plücker
embedding

(10.2) Gr(m,n) −→ P

(
m∧
V

)
of the Grassmannian into the projective space of

∧m
V . If we choose another basis

{u1, u2 · · · , um}, of W , then there is an m ×m nonsingular matrix A ∈ GLm(C)
such that

(u1, u2 · · · , um) = A · (w1, w2, · · · , wm).

Then

(10.3) u1 ∧ u2 ∧ · · · ∧ um = det(A) · w1 ∧ w2 ∧ · · · ∧ wm.

Thus u1∧u2∧· · ·∧um and w1∧w2∧· · ·∧wm belong to the same line in the vector
space

∧m
V , and hence defines the same element of the projective space P (

∧m
V ).

Let us consider an infinite-dimensional generalization. As a vector space we
use the set of formal Laurent series V = C((z)) in z. We choose a polarization

(10.4) C((z)) = C[z−1]⊕ C[[z]] · z

of C((Z)). The topology of C((z)) is defined by the basis of open neighborhoods

(10.5) V (µ) = C[[z]] · z−µ, µ ∈ Z

of 0 ∈ C((z)). A formal Laurent series f(z) has order µ if

f(z) ∈ V (µ) \ V (µ−1).

123
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For example, z−µ has order µ. Thus we have a valuation

ord : C((z)) \ {0} −→ Z.
The open sets define a filtration

(10.6) · · · ⊂ V (µ−1) ⊂ V (µ) ⊂ V (µ+1) ⊂ · · ·
of V , and satisfy

(10.7)
⋂
µ∈Z

V (µ) = {0},
⋃
µ∈Z

V (µ) = V.

We note here that

(10.8) V (µ)/V (µ−1) ∼= C
for every µ ∈ Z. For a subset X ⊂ V , let us define the set

(10.9) NX = {µ ∈ Z | ord(x) = µ for some x ∈ X} ⊂ Z
of the order of elements of X. The filtration (10.6) of V induces a filtration

(10.10) X =
⋃
µ∈Z

X(µ), X(µ) = X ∩ V (µ)

of X.
For an arbitrary vector subspace W ⊂ C((z)), let

(10.11) γW : W −→ C((z))/C[[z]] · z ∼= C[z−1]

denote the natural map. Consider an exact sequence

(10.12) 0 −→ Ker(γW ) −→W
γW−→ C((z))/C[[z]] · z −→ Coker(γW ) −→ 0.

The map γW is Fredholm if Ker(γW ) and Coker(γW ) are finite-dimensional. For a
Fredholm map γW , its index is defined by

(10.13) index(γW ) = dim Ker(γW )− dim Coker(γW ).

Definition 10.1. The universal Grassmannian Gr of Sato [24] is the set

(10.14) Gr = {W ⊂ V | γW : W −→ C[z−1] is Fredholm}.
It is the disjoint union

Gr =
⋃
µ∈Z

Gr(µ)

of connected components

(10.15) Gr(µ) = {W ⊂ V | γW : W −→ C[z−1] is Fredholm of index µ}.
The big-cell of the Grassmannian is the subset Gr∅ of Gr(0) consisting of vector
subspaces W ⊂ V such that γW of (10.11) is an isomorphism.

In (10.4), the factor C[z−1] is a closed subset of C((z)), because its complement
is the union ⋃

p(z−1)∈C[z−1]

⋃
µ≥1

⋃
f(z)∈C[[z]]·z
ordf(z)=−µ

(
p(z−1) + f(z) + C[[z]] · zµ+1

)
of open sets. More generally, if γW is Fredholm, then W is a closed subspace of
C((z)). Thus the universal Grassmannian parametrozes closed vector subspaces of
V .
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Let W ∈ Gr. Since γW is Fredholm, the set NW of orders of elements of W
contains only finitely many negative integers and all but finite positive integers. The
number of missing non-negative integers of NW is the dimension of Coker(γW ), and
the number of negative integers in NW is the dimension of ker(γW ). An admissible
basis for W is a collection

(10.16) {wµ}µ∈NW
of monic elements of W such that ord(wµ) = µ. A formal power series of order µ
is monic if its leading term is z−µ. Every W ∈ Gr has an admissible basis.

2. Bosonization of Fermions

Now let us restrict to the case of index zero Grassmannian Gr(0). It is more
convenient to use {0, 1, 2, · · · } as the index set of a basis for W ∈ Gr(0) than NW .
So let

{w0, w1, w2, · · · }
be an admissible basis for W such that ord(wj) < ord(wj+1). The index condition
implies that

(10.17) ord(wj) = j for all j >> 0.

For such an admissible basis for W ∈ Gr(0), we can define a formal expression

(10.18) w0 ∧ w1 ∧ w2 ∧ · · ·

called a half-infinite wedge product. Let us denote by
∧∞/2(V ) the space of linear

combinations of half-infinite wedge products for all W ∈ Gr(0). Since

(10.19) dimW (µ)/W (µ−1) =

{
1 if µ ∈ NW
0 otherwise,

two admissible bases for W are related by the multiplication of an upper-diagonal
matrix

(10.20) (w′0, w
′
1, w

′
2, w

′
3, · · · ) = (w0, w1, w2, w3, · · · )


1 a01 a02 a03 . . .

1 a12 a13 . . .
1 a23 . . .

1 . . .
. . .

 .

The infinite-dimensional version of (10.3) is simply

w0 ∧ w1 ∧ w2 ∧ · · · = w′0 ∧ w′1 ∧ w′2 ∧ · · · ,

because the determinant of the upper-triangular matrix of (10.20) is 1. Following
Dirac [5], we use the ket vector natation

|W 〉 = w0 ∧ w1 ∧ w2 ∧ · · · ∈
∞
2∧

(V ).

The infinite-dimensional Plücker embedding is the map

(10.21) i : Gr(0) 3W 7−→ [w0 ∧ w1 ∧ w2 ∧ · · · ] ∈ P

 ∞
2∧

(V )

 .
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Let eµ = z−µ ∈ V . Then {eµ}µ∈Z forms a formal basis for V . Let e∗µ be the
dual basis for the formal dual V ∗. We have

〈e∗µ|eν〉 = δµν .

This pairing can be extended to the space of the half-infinite forms in the following
restricted manner. Let W ∈ Gr(0) and {w0, w1, w2, · · · } be an addmissible basis
for W . We define

(10.22) 〈· · · ∧ e∗2 ∧ e∗1 ∧ e∗0|w0 ∧ w1 ∧ w2 ∧ · · · 〉 = 〈e∗0|w0〉 · 〈e∗1|w1〉 · 〈e∗2|w2〉 · · · · .
Since ord(wj) = j for all large j,

〈e∗j |wj〉 = 1

for all j >> 0. Thus the infinite product (10.22) is actually a well-defined finite
product. Again following Dirac, we write

〈0| = · · · ∧ e∗2 ∧ e∗1 ∧ e∗0
as a bra vector, so that the braket give us

〈0|W 〉 = 〈· · · ∧ e∗2 ∧ e∗1 ∧ e∗0|w0 ∧ w1 ∧ w2 ∧ · · · 〉.
As a function on Gr(0), 〈0|W 〉 takes values either 0 or 1:

(10.23) 〈0|W 〉 =

{
1 if W ∈ Gr∅
0 otherwise.

The function 〈0|∗〉 can be extended linearly to the whole
∧∞

2 (V ).
When V is a finite-dimensional vector space, the Grassmann algebra over V

is also finite-dimensional, hence it cannot be isomorphic to a polynomial ring. In
the case of infinite dimensions, the situation is different. Consider a weighted
homogeneous polynomial pr(t) in Q[t1, · · · , t2m] of degree r defined by

(10.24) pr(t) =
∑

n1+2n2+3n3+···+(2m)n2m=r

tn1
1 · t

n2
2 · t

n3
3 · · · t

n2m
2m

n1! · n2! · n3! · · ·n2m!
.

We have a relation

(10.25) exp

(
2m∑
α=1

tαk
α

)
=
∞∑
r=0

pr(t)kr

as an entire function in t1, · · · , t2m and k. As before, we can take the limit of
m→∞, and we have an equation

(10.26) exp

( ∞∑
α=1

tαk
α

)
=
∞∑
r=0

pr(t)kr

as an element in C[[t1, t2, t3, · · · ]] for every k ∈ C. For a given r, there are finitely
many non-negative numbers nj such that

∞∑
j=1

jnj = r.

Therefore,

(10.27) pr(t) =
∑

n1+2n2+3n3+···=r

tn1
1 · t

n2
2 · t

n3
3 · · ·

n1! · n2! · n3! · · ·
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is still a weighted homogeneous polynomial of degree r. The time evolution operator
is an expression

(10.28) H(t) = exp

( ∞∑
α=1

tαz
−α

)
=
∞∑
r=0

pr(t)z−r ∈ (C((z))) [[t1, t2, t3, · · · ]].

We note that H(t) does not make sense as an element of

(C[[t1, t2, t3, · · · ]]) ((z)).

The time evolution operator defines a map

H(t) : V 3 w 7−→ w(t) = H(t) · w ∈ (C((z))) [[t1, t2, t3, · · · ]].
For a point W of the Grassmannian, we define

(10.29) W (t) = {H(t) · w | w ∈W} ⊂ (C((z))) [[t1, t2, t3, · · · ]].
We wish to define an element

〈0|W (t)〉 ∈ C[[t1, t2, t3, · · · ]].
For this purpose, let us introduce an infinte matrix representation of the points of
the Grassmannian. An element

w(z) =
∞∑

µ=−∞
cµz

µ ∈ V

is identified with a column vector of infinite length

(10.30) w =



...
c−2

c−1

c0
c1
c2
...


.

The multiplication of z−1 to w(z) corresponds to shifting the entries of (10.30)

(10.31) z−1 · w =



. . .
0 1

0 1
0 1

0 1
0

. . .





...
c−2

c−1

c0
c1
c2
...


=



...
c−1

c0
c1
c2
c3
...


.

Thus the time evolution operator H(t) has the matrix representation as shown in
Figure 10.1, where pr = pr(t).

Let W ∈ Gr(0) be a point of the index 0 Grassmannian, and {wj}j≥0 an
admissible basis for W . Since deg(wj) = j for j >> 0, there is an integer N such
that deg(wj) = j for all j ≥ N . We can arrange the basis vectors such that

wj = z−mj +
∞∑
i=1

c−mj+i,−jz
−mj+i 0 ≤ j < N(10.32)
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Figure 10.1. The Matrix Representation of the Time Evolution Operator

wj = z−j +
∞∑
i=1

c−N+i,−jz
−j+i j ≥ N,(10.33)

where {m0,m1,m2, · · · } = NW is the set of the order of elements of W . The matrix
representation of the admissible basis is given in Figure 10.2.
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Figure 10.2. The Matrix Representation of a Point of the Grassmannian



5. TAU-FUNCTIONS AND THE KP EQUATIONS 129

The product of any row of the matrix of Figure 10.1 and any column of the
matrix of Figure 10.1 is a well-defined element of C[[t1, t2, t3, · · · ]]. We use Ir to de-
note the ideal of C[[t1, t2, t3, · · · ]] generated by weighted homogeneous polynomials
of degree r.

3. Schur Polynomials

4. Plücker Relations

5. Tau-Functions and the KP Equations





CHAPTER 11

Hermitian Matrix Integrals and the KP Equations

1. The Hermitian Matrix Integral as a τ-Function

There are no analytic methods to evaluate the Hermitian matrix integral

Zq(t,m) =
∫
Hq

exp
(
−1

2
trace(X2)

)
exp

trace
2m∑
j=3

tj
j
Xj

 dµ(X)
N

.

However, the integral as a function in t can be characterized by the fact that it
satisfies the system of the KP equations. In this section we prove this statement.

To investigate the most general case, let us define

(11.1) Zq(t,m, φ) =
∫
Hq

exp

trace
2m∑
j=1

tj
j
Xj

φ(X)
dµ(X)
N

,

where
(11.2)

φ(X) = φ(k0, k1, · · · kq−1) =

det


φ0(k0) φ1(k0) . . . φq−1(k0)
φ0(k1) φ1(k1) . . . φq−1(k1)

...
...

. . .
...

φ0(kq−1) φ1(kq−1) . . . φq−1(kq−1)


∆
(
k0, k1 · · · , kq−1

)
is a U(q)-invariant function on Hq determined by q functions φ0(k), · · · , φq−1(k) in
one variable, and k0, · · · , kq−1 are eigenvalues of X. Unlike (7.15), we allow terms
containing t1X and t2X

2 in the integral (11.1). Using (8.8), we have

Zq(t,m, φ) =
∫
Hq

exp

(
trace

2m∑
α=1

tα
α
Xα

)
φ(X) · dµ(X)

N

=
c(q)
N

∫
Rq

exp

(
q−1∑
i=0

2m∑
α=1

tα
α
kαi

)
∆(k0, · · · , kq−1) det (φj(ki)) dk0 · · · dkq−1.

Here we need a simple formula to proceed further. Let φ0(k), · · · , φq−1(k) and
ψ0(k), · · · , ψq−1(k) be 2q arbitrary functions in k. Then

(11.3) det [φi(k`)] · det [ψj(k`)] =
∑
σ∈Sq

det
[
φi(kσ(j)) · ψj(kσ(j))

]
,

where σ runs over all permutations of Sq. To prove (11.3), we calculate the left
hand side by the usual product formula of the determinant. It is a summation of
qq terms. Because of the multilinearity of the determinants, only q! of these terms

131
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are nonzero. Rearranging the q! terms, we obtain the above formula. Using this
formula for ψj(k) = kj , we obtain

Zq(t,m, φ)

=
c(q)
N

∫
Rq

exp

(
q−1∑
i=0

2m∑
α=1

tα
α
kαi

) ∑
σ∈Sq

det
(
φj(kσ(i))kiσ(i)

)
dk0 · · · dkq−1

=
c(q)
N

∫
Rq

∑
σ∈Sq

exp

(
q−1∑
i=0

2m∑
α=1

tα
α
kασ(i)

)
det
(
φj(kσ(i))kiσ(i)

)
dk0 · · · dkq−1

=
c(q)
N

∑
σ∈Sq

det

(∫
Rq

exp

(
2m∑
α=1

tα
α
kασ(i)

)
φj(kσ(i))kiσ(i)

)
dk0 · · · dkq−1

= q! · c(q)
N

det

(∫ ∞
−∞

exp

(
2m∑
α=1

tα
α
kαi

)
φj(ki)kiidki

)

= q! · c(q)
N

det

(∫ ∞
−∞

exp

(
2m∑
α=1

tα
α
kα

)
φj(k)kidk

)
.

The above computation makes sense as a complex analytic function in

(t1, · · · , t2m−1, t2m) ∈ C2m−1 × Ωε,

on which the integral converges provided that |φj(k)| grows slower than exp(k2m).
To compare our tj ’s with the standard time variables in the KP theory, let us set

Tα =
tα
α
.

From (10.25), we have

Zq(t,m, φ) = q! · c(q)
N

det

(∫ ∞
−∞

∞∑
r=0

pr(T )krφj(k)kidk

)

= q! · c(q)
N

det

(∫ ∞
−∞

∞∑
r=0

pr−i(T )krφj(k)dk

)
,

where we define pr(T ) = 0 for r < 0.

Lemma 11.1. Let φj(k), j = 0, · · · , q− 1, be a function defined on R such that∫ ∞
−∞

krφj(k)dk

exists for all r ≥ 0. Then as a holomorphic function defined for Re(t2m) < 0, we
have

A

(∫ ∞
−∞

exp

(
2m∑
α=1

tα
α
kα

)
φj(k)kidk

)
=
∞∑
r=0

pr−i(T )
∫ ∞
−∞

krφj(k)dk

as t2m → 0.

Proof. The argument is the same as the one we used in Section ??. We choose
a fixed t2m so that Re(t2m) < 0. Because of the uniform convergence of the power
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series expansion of the integrand, we can interchange the integral and the infinite
sums for α = 1, · · · , 2m− 1. Using (??), (??) and (??), we have

A

(∫ ∞
−∞

exp

(
2m∑
α=1

Tαk
α

)
φj(k)kidk

)

=
∞∑

n1=0

T1
n1

n1!
· · ·

∞∑
n2m=0

T2m
n2m

n2m!

∫ ∞
−∞

ki+n1+2n2+···+(2m)n2mφj(k)dk

=
∞∑
r=0

pr(T )
∫ ∞
−∞

ki+rφj(k)dk.

�

Thus we have established

A (Zq(t,m, φ)) = q! · c(q)
N

det

( ∞∑
r=0

pr−i(T )
∫ ∞
−∞

krφj(k)dk

)

= det

( ∞∑
r=0

pr−i(T )ξrj

)
,

(11.4)

where

ξrj = q! · c(q)
N

∫ ∞
−∞

krφj(k)dk.

We recall that the determinant in (11.4) is an n×n determinant. Sato [24] proved
that any size determinant of the form

(11.5) det

( ∞∑
r=0

pr−i(T )ξrj

)
satisfies the Hirota bilinear form of the KP equations. He also proved that every
power series solution of the KP system should be written as (11.5), allowing certain
infinite determinants. A necessary background of the KP theory can be found in
[16].

We have thus proved the following theorem.

Theorem 11.2. If φj(k), j = 0, · · · , q − 1, satisfies that∣∣∣∣∫ ∞
−∞

krφj(k)dk
∣∣∣∣ < +∞

for all r ≥ 0, then the asymptotic expansion of the matrix integral Zq(t,m, φ)
satisfies the KP equations with respect to T1, T2, · · · , T2m. Moreover, if we choose
a value of T2m such that Re(T2m) < 0 and fix it, then Zq(t,m, φ) itself is an entire
holomorphic solution to the KP equations with respect to (T1, T2, · · · , T2m−1) ∈
C2m−1. In particular,

u(T1, T2, T3, · · · ) =
∂2

∂T 2
1

log(Zq(t,m, φ))

is a meromorphic solution to the KP equation
3
4
u22 =

(
u3 −

1
4
u111 − 3uu1

)
1

,

where uj denotes the partial derivative of u with respect to Tj.
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The formula we have just established is a continuum version of the famous
Hirota soliton solution of the KP equations [24]. The most general soliton solution
of the KP equations due to Mikio and Yasuko Sato depends on nM+M parameters
cij and λi, where 0 ≤ i ≤M − 1 and 0 ≤ j ≤ q − 1. Let

η(T, k) =
2m∑
α=1

Tαk
α.

Then Sato-Sato’s soliton solution is given by

∑
0≤i0<···<iq−1≤M−1

exp

q−1∑
j=0

η(T, λij )


∆(λi0 , · · · , λiq−1) det

 ci00 . . . ci0q−1

...
...

ciq−10 . . . ciq−1q−1

 .

This coincides with our Zq(t,m, φ) if we take

φj(k) =
M−1∑
i=0

cijδ(k − λi).

Therefore, our matrix integral Zq(t,m, φ) of (??) with (??) is indeed a continuum
soliton solution of the KP equations.

So far we have dealt with the matrix integrals with a fixed integer m in this
section. As before, we can take the limit m → ∞ of these integrals, which gives
formal power series solutions of the whole hierarchy of the KP equations. Note
that the determinant expression of (11.4) does not have any explicit mention on
the integer m. Therefore, we have obtained the third asymptotic formula for the
matrix integral:

(11.6) lim
m→∞

A (Zq(t,m, φ)) = q! · c(q)
N

det

( ∞∑
r=0

pr−i(T )
∫ ∞
−∞

krφj(k)dk

)
.

2. Transcendental Solutions of the KP Equations and the sl2 Stability

There are several different ways to construct solutions to the KP equations.
The Krichever construction and its generalizations are based on the correspondence
between certain points of the Grassmannian of Sato [24] and the algebro-geometric
data consisting of an irreducible algebraic curve (possibly singular) and a torsion-
free sheaf on it [15]. These solutions deserve to be called algebraic, because they
carry geometric information of algebraic curves. Let us call a solution to the KP
equations transcendental if no algebraic curve corresponds to this solution. The
natural question we can ask is: how can we construct a transcendental solution?

In this section we show that the Hermitian matrix integrals we have been
dealing with in the earlier sections are indeed transcendental solutions.

The technique we show that these matrix integrals are transcendental solutions
is based on the observation that the points of the Grassmannian corresponding to
these solutions satisfy a peculiar sl(2) stability condition. Since these solutions are
deeply related to the moduli theory of Riemann surfaces, the appearance of sl(2)
is mysteriously suggestive. At present we do not have any geometric explanation
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of the relation between the KP equations, the sl(2) stability on the Grassmannian,
and the moduli theory of pointed Riemann surfaces.

Let W be a point of the big-cell of the Grassmannian. We can choose a basis

〈w0, w1, w2, · · · 〉

for W such that

(11.7) wj = z−j +
∞∑
i=1

cijz
i, j = 0, 1, 2, · · · .

The Bosonization is a map

(11.8) Gr −→ P(C[[T1, T2, T3, · · · ]])

that assigns a τ -function τW to each point W of the Grassmannian. For a point
W of the big-cell with a basis (11.7), the Bosonization has an infinite determinant
expression

(11.9) τW = det

(
pi−j(T ) +

∞∑
µ=1

pµ+i(T )cµj

)
.

The infinite determinant gives a well-defined element of C[[T1, T2, T3, · · · ]] in the
same manner as we have explained in the earlier sections. Sato’s formula (11.5)
gives another expression of the Bosonization map. For more detail, we refer to [16]
and [17].

The commutative stabilizer of W ∈ Gr is defined by

(11.10) AW = {a ∈ C((z)) | a ·W ⊂W}.

The key idea that connects the KP equations and algebraic curves is that the
commutative stabilizer is the coordinate ring of an algebraic curve. If the greatest
common divisor of the pole order of elements in AW is 1, then the Bosonization τW
of W is essentially the Riemann theta function associated with the algebraic curve
C whose coordinate ring is AW [14], [16].

Definition 11.3. A solution of the KP equations τW is said to be transcen-
dental if

(11.11) AW = C.

Remark. It is known that if AW 6= C, then the Bosonization τW of W is a
solution to the KP equation corresponding to a vector bundle F on an algebraic
curve C such that

(11.12) H0(C,F) = H1(C,F) = 0

[15]. Conversely, there is a solution corresponding to an arbitrary torsion-free sheaf
F defined on an arbitrary (possibly singular) algebraic curve C satisfying (11.12).
None of these solutions are transcendental.

The Hermitian matrix integral we have discussed in Section ?? gives a tran-
scendental solution to the KP equations.

Theorem 11.4. Choose arbitrary positive integers k and q, and let

a = (a1, a2, · · · , a2k) ∈ C2k
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be a complex vector such that Re(a2k) < 0. Define a formal Laurent series

(11.13) wj =
∞∑
r=0

(∫ ∞
−∞

λr+jexp

(
2k∑
µ=1

aµλ
µ

)
dλ

)
zr+1−n ∈ C((z))

for j = 0, 1, 2, · · · , q − 1, and let

(11.14) W (a) = 〈w0, w1, · · · , wq−1, z
−n, z−q−1, · · · 〉 ∈ Gr

be a point of the Grassmannian spanned by w0, w1, · · · , wq−1, and z−n, z−q−1, · · · .
Then the τ -function corresponding to W (a) is given by the asymptotic expansion of
a Hermitian matrix integral:
(11.15)

τW (a) = lim
m→∞

A

∫
Hq

exp

 2m∑
j=1

Tjtrace(Xj)

 exp

(
2k∑
µ=1

aµtrace(Xµ)

)
dX

 ,

where we take Re(T2m) < 0 first and then let m → ∞ to determine a well-defined
formal power series in C[[T1, T2, T3, · · · ]]. Define a linear differential operator

(11.16) Li(a) = z1−i d

dz
+

(3q − 1) + i(q − 1)
2

z−i +
2k∑
µ=1

µaµz
−i−µ

for i = −1, 0, 1. These differential operators satisfy the sl(2,C) relation

[Li(a), Lj(a)] = (i− j)Li+j(a).

The point W (a) of the Grassmannian satisfies the non-commutative stability con-
dition

(11.17) Li(a) ·W (a) ⊂W (a), i = −1, 0, 1.

Moreover, τW (a) is a transcendental solution of the KP equations.

Proof. The function

exp

(
2k∑
µ=1

aµtrace(Xµ)

)
is a special case of the function φ(X) defined in (??). Thus the results of the
previous section proves that τW (a) is a τ -function of the KP equations corresponding
to the point of the Grassmannian W (a).

Let us first prove that the sl(2) stability condition (11.17) implies that the
commutative stabilizer is trivial:

AW (a) = C.

Suppose f(z) ∈ AW (a) ⊂ C((z)), and let ord(f) = ν > 0, where we define the pole
order by

ord(z−ν) = ν.

Since L−1(a) and f stabilize W (a),

[L−1(a), f ] = z2 df

dz
∈ AW (a)

also stabilizes W (a). Note that

ord([L−1(a), f ]) = ν − 1.
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Thus we can immediately conclude that

AW (a) = C[z−1].

But then

(11.18) L−1(a)−
2k∑
µ=1

µaµz
1−µ = z2 d

dz
+

(3q − 1)− (q − 1)
2

z

stabilizes W (a). Since the new stabilizer (11.18) decreases the order of elements of
W (a) exactly by 1, W (a) must have an element of arbitrary negative order. But
this contradicts to the Fredholm condition of W (a). This means AW (a) = C, hence
τW (a) is a transcendental solution.

Now all we need is to show (11.17), which can be verified by a straightforward
computation. First, we note a simple formula

0 =
∫ ∞
−∞

d

dλ

(
λαexp

(
2k∑
µ=1

aµλ
µ

)
dλ

)

=
∫ ∞
−∞

αλα−1exp

(
2k∑
µ=1

aµλ
µ

)
dλ

+
∫ ∞
−∞

2k∑
µ=1

µaµλ
α+µ−1exp

(
2k∑
µ=1

aµλ
µ

)
dλ.

(11.19)

Let us compute the effect of the differential operators (11.16) on the basis elements
of W (a). First, we have

L−1(a)wj =

(
z2 d

dz
+ nz +

2k∑
µ=1

µaµz
1−µ

) ∞∑
r=0

zr+1−n
∫ ∞
−∞

λr+je
P2k
µ=1 aµλ

µ

dλ

=
∞∑
r=0

(r + 1)zr+2−n
∫ ∞
−∞

λr+je
P2k
µ=1 aµλ

µ

dλ

+
∞∑
r=0

2k∑
µ=1

zr+2−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

=
∞∑
r=0

rzr+1−n
∫ ∞
−∞

λr+j−1e
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

µ−2∑
r=0

zr+2−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

∞∑
r=µ−1

zr+2−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

=
∞∑
r=0

rzr+1−n
∫ ∞
−∞

λr+j−1e
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

µ−2∑
r=0

zr+2−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ
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+
2k∑
µ=1

∞∑
r=0

zr+1−n
∫ ∞
−∞

λr+j+µ−1µaµe
P2k
µ=1 aµλ

µ

dλ

=
∞∑
r=0

rzr+1−n
∫ ∞
−∞

λr+j−1e
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

µ−2∑
r=0

zr+2−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

−
∞∑
r=0

zr+1−n
∫ ∞
−∞

(r + j)λr+j−1e
P2k
µ=1 aµλ

µ

dλ

= −jwj−1 +
2k∑
µ=1

µ−2∑
r=0

zr+2−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

∈W (a)

for all j = 0, 1, 2, · · · , q−1. Note that w−1 does not appear in the above computation
because of the combination jwj−1. For the basis elements z−n, z−q−1, · · · , we have

L−1(a)z−n−i =

(
z2 d

dz
+ nz +

2k∑
µ=1

µaµz
1−µ

)
z−n−i

= (−i)z−n−i+1 +
2k∑
µ=1

µaµz
1−µ−n−i ∈W (a)

for all i ≥ 0. We note that the term z−n+1 does not appear in this computation.
Thus we conclude

L−1(a) ·W (a) ⊂W (a).

For j = 0, we have

L0(a)wj =

(
z
d

dz
+

3q − 1
2

+
2k∑
µ=1

µaµz
−µ

) ∞∑
r=0

zr+1−n
∫ ∞
−∞

λr+je
P2k
µ=1 aµλ

µ

dλ

=
∞∑
r=0

(r +
n+ 1

2
)zr+1−n

∫ ∞
−∞

λr+je
P2k
µ=1 aµλ

µ

dλ

+
∞∑
r=0

2k∑
µ=1

zr+1−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

=
n+ 1

2
wj +

∞∑
r=0

rzr+1−n
∫ ∞
−∞

λr+je
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

µ−1∑
r=0

zr+1−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

∞∑
r=µ

zr+1−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ
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=
n+ 1

2
wj +

∞∑
r=0

rzr+1−n
∫ ∞
−∞

λr+je
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

µ−1∑
r=0

zr+1−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

∞∑
r=0

zr+1−n
∫ ∞
−∞

λr+j+µµaµe
P2k
µ=1 aµλ

µ

dλ

=
n+ 1

2
wj +

∞∑
r=0

rzr+1−n
∫ ∞
−∞

λr+je
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

µ−1∑
r=0

zr+1−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

−
∞∑
r=0

zr+1−n
∫ ∞
−∞

(r + j + 1)λr+je
P2k
µ=1 aµλ

µ

dλ

=
(
n+ 1

2
− j − 1

)
wj +

2k∑
µ=1

µ−1∑
r=0

zr+1−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

∈W (a)

for all j = 0, 1, 2, · · · , q − 1. It is obvious that

L0(a) · z−n−i ∈W (a)

for i ≥ 0. Finally, for j = 1, we have

L1(a)wj

=

(
d

dz
+ (2q − 1)z−1 +

2k∑
µ=1

µaµz
−µ−1

) ∞∑
r=0

zr+1−n
∫ ∞
−∞

λr+je
P2k
µ=1 aµλ

µ

dλ

=
∞∑
r=0

(r + n)zr−n
∫ ∞
−∞

λr+je
P2k
µ=1 aµλ

µ

dλ

+
∞∑
r=0

2k∑
µ=1

zr−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

=
∞∑

r=−1

(r + n+ 1)zr+1−n
∫ ∞
−∞

λr+j+1e
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

µ∑
r=0

zr−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

∞∑
r=µ+1

zr−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

= z−n
∫ ∞
−∞

λje
P2k
µ=1 aµλ

µ

dλ+
∞∑
r=0

(r + n+ 1)zr+1−n
∫ ∞
−∞

λr+j+1e
P2k
µ=1 aµλ

µ

dλ
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+
2k∑
µ=1

µ∑
r=0

zr−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

∞∑
r=0

zr+1−n
∫ ∞
−∞

λr+j+µ+1µaµe
P2k
µ=1 aµλ

µ

dλ

= z−n
∫ ∞
−∞

λje
P2k
µ=1 aµλ

µ

dλ+
∞∑
r=0

(r + n+ 1)zr+1−n
∫ ∞
−∞

λr+j+1e
P2k
µ=1 aµλ

µ

dλ

+
2k∑
µ=1

µ∑
r=0

zr−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

−
∞∑
r=0

zr+1−n
∫ ∞
−∞

(r + j + 2)λr+j+1e
P2k
µ=1 aµλ

µ

dλ

= z−n
∫ ∞
−∞

λje
P2k
µ=1 aµλ

µ

dλ+ (n− j − 1)wj+1

+
2k∑
µ=1

µ∑
r=0

zr−n−µ
∫ ∞
−∞

λr+jµaµe
P2k
µ=1 aµλ

µ

dλ

∈W (a)

for all j = 0, 1, 2, · · · , q − 1. Note that the term wq does not appear in the compu-
tation. It is again obvious that

L1(a) · z−n−i ∈W (a)

for i ≥ 0. This completes the proof of the sl(2) stability of W (a), and hence we
have established the theorem. �

The action of these sl(2) generators on W (a) is very subtle, and it does not
seem to allow any generalization. For example, the above proof does not apply for
the Virasoro generators Li(a) other than i = −1, 0, 1, although the operators Li(a)
are defined for all i ∈ Z and they satisfy the Witt algebra relation

[Li(a), Lj(a)] = (i− j)Li+j(a)

for i, j ∈ Z.
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