
DOI 10.1007/s11005-014-0679-0
Lett Math Phys

Quantum Curves for Hitchin Fibrations
and the Eynard–Orantin Theory

OLIVIA DUMITRESCU1 and MOTOHICO MULASE2

1Fakultät für Mathematik und Physik, Institut für Algebraische Geometrie,
Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany.
e-mail: dumitrescu@math.uni-hannover.de
2Department of Mathematics, University of California, Davis, CA 95616–8633, USA.
e-mail: mulase@math.ucdavis.edu

Received: 29 October 2013 / Revised: 9 January 2014 / Accepted: 10 January 2014
© Springer Science+Business Media Dordrecht 2014

Abstract. We generalize the topological recursion of Eynard–Orantin (JHEP 0612:053,
2006; Commun Number Theory Phys 1:347–452, 2007) to the family of spectral curves of
Hitchin fibrations. A spectral curve in the topological recursion, which is defined to be a
complex plane curve, is replaced with a generic curve in the cotangent bundle T ∗C of an
arbitrary smooth base curve C . We then prove that these spectral curves are quantizable,
using the new formalism. More precisely, we construct the canonical generators of the for-
mal �-deformation family of D modules over an arbitrary projective algebraic curve C of
genus greater than 1, from the geometry of a prescribed family of smooth Hitchin spectral
curves associated with the SL(2,C)-character variety of the fundamental group π1(C). We
show that the semi-classical limit through the WKB approximation of these �-deformed D
modules recovers the initial family of Hitchin spectral curves.
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1. Introduction and the Main Results

A quantum curve [2,11,23–25,39,54,61] is a magical object. It conjecturally cap-
tures information of quantum topological invariants in an effective and compact
manner. Mathematically, it is a D module defined on a formal family of complex
holomorphic curves C[[�]] that quantizes a spectral curve �. It is automatically
holonomic, and its semi-classical limit through the WKB approximation induces a
holomorphic Lagrangian immersion

ι :� −−−−→ T ∗C
⏐
⏐
�π

C

(1.1)

with respect to the natural symplectic structure of the cotangent bundle T ∗C . It is
also closely related to an oper of [9,45], a λ-connection of Deligne (see for exam-
ple, [7]), a quantum characteristic polynomial in the theory of integrable models in
statistical mechanics [21,78], a Cherednik algebra [36], and the differential equa-
tion appearing in the context of determining the Nekrasov partition function [75]
through the AGT correspondence [4,12,48].

We note that not every morphism of curves �−→C is quantizable. Clearly we
need a Lagrangian immersion for the WKB method to work. Therefore, it is nat-
ural to ask what type of conditions we need for the existence of quantization.

The purpose of this paper is to show that the spectral curves associated with
SL(2,C)-Hitchin fibrations [58,59] are quantizable, by concretely constructing a
canonical generator (which is related to the conformal block in the context of the
AGT correspondence) of �-deformed D modules on an arbitrary smooth projec-
tive algebraic curve C of genus g(C)≥2. For this construction, we first generalize
the topological recursion mechanism proposed in [41], which is strictly restricted to
the case of C=C or C=C

∗, to what we call the Eynard–Orantin theory, making it
applicable to the spectral curves of (1.1) with an arbitrary base curve C . We show
that this new formalism allows us to construct the desired quantization of �.

Since our work connects many different developments that took place in a vast
array of mathematics in recent years, we present each component that forms our
work in this introductory section.
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1.1. GENERALIZATION OF THE TOPOLOGICAL RECURSION OF EYNARD

AND ORANTIN

The Eynard–Orantin theory that we propose in this paper stems out of various
physics literature, including [11,16,20,26,41,67]. The key ingredient in both Hitchin
fibrations and the Eynard–Orantin theory is the notion of spectral curves. By gen-
eralizing the original topological recursion of [41], we shall show that these spec-
tral curves are exactly the same object. As a consequence of this identification,
we obtain a purely geometric interpretation of what the topological recursion does.
More precisely, we construct a quantum curve when the spectral curve (1.1) is
non-singular and π :� −→C is a ramified double-sheeted covering. In this par-
ticular mechanism, the Eynard–Orantin theory that we propose solves the all-
order Wentzel–Kramers–Brillouin (WKB) approximation (see for example, [10]). The
mechanism works as follows.

• The spectral curves of Hitchin fibrations are quantized by the WKB method.
• The Eynard–Orantin theory gives a solution to the all-order, exact WKB

approximation from the geometry of spectral curves as the initial condition.
• Along the branched points of π : � −→ C , the WKB method does not

work. Around these points, asymptotically, the Eynard–Orantin theory gives
the expected Airy function solution [11], in the same way as it appears in
[7]. This is because the local behavior of π around a branched point is the
double-sheeted covering of a formal disc by another formal disc, ramified
at the origin. The Airy function here is representing the Witten–Kontsevich
theory of the cotangent ψ-class intersection numbers on Mg,n [62,80] (see
also [32]).

We note that the relation between Hitchin systems and the WKB method is exten-
sively studied in Gaiotto–Moore–Neitzke [49] and their subsequent papers.

The first formulation of the topological recursion in [20,41] assumes that the
base curve C is always the complex line C. A modification is proposed for the
case of C=C

∗ in [16,17]. Our current work provides a generalization of these the-
ories to compact base curve C . The original case is just a restriction of our pic-
ture onto an affine piece of C . From this point of view, we develop a global topo-
logical recursion, utilizing the full global structure of the starting spectral curve.
The main technical difficulty of the theory that we overcome in this paper is our
global calculation of the residue integrals appearing in the topological recursion
formula.

When we consider a spectral curve embedded in the principal C
∗ bundle asso-

ciated with T ∗C , such as those we find in [23,54], even though a similar formal-
ism works, the topological recursion acquires a different mathematical flavor. It is
a relation to algebraic K theory and the Bloch regulator appearing as a Bohr–
Sommerfeld type quantization condition described in [2,54]. We come back to this
point later.
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1.2. HITCHIN SPECTRAL CURVES

In algebraic geometry, a spectral curve simply means the diagram (1.1) for an alge-
braic curve C . The curve � also appress as the Seiberg–Witten curve [48]. It is
obvious that such a � cannot be the characteristic variety of a D module defined
over the base curve C , because dim C = 1 and the characteristic varieties are nec-
essarily C

∗ invariant with respect to the C
∗ action on T ∗C . To capture the geome-

try of a spectral curve, we need to utilize Deligne’s λ-connections. The idea of the
λ-connections is parallel to that of the WKB method in analysis. This is explained
in Section 5.

The notion of spectral curves was developed by Hitchin [58,59] in the process
of Abelianization of the moduli spaces of stable vector bundles on a projective
algebraic curve C of genus greater than 1 (see also [8,29,55,56,65,77]). Consider a
Higgs pair (E, φ) consisting of a vector bundle E of rank r on C and a Higgs field
φ ∈ H0(C,End(E)⊗�1

C ), where �1
C denotes the sheaf of holomorphic 1-forms on

C . The Higgs field here is defined on a curve through the dimensional reduction of
the Higgs boson [57] on a four-dimensional space-time. Let η be the tautological
1-form on T ∗C such that −dη gives the natural holomorphic symplectic form on
T ∗C . Then the characteristic equation det(η−φ)=0 defines a spectral curve � as
the space of eigenvalues of φ. Under a good condition, � is non-singular and the
natural projection π :�−→C is a ramified covering of degree r with ramification
divisor R. In symplectic geometry, a ramification point p∈ R is called a Lagrangian
singularity, and the branch divisor π(R)⊂C the caustics of π . Let M−→� be the
eigenspace bundle of the Higgs field on �, and define L =M ⊗O�(R). Then the
original vector bundle E is recovered by E=π∗L. The Abelianization refers to the
correspondence

(C, E, φ)←→ (π :�−→C, L , ι∗η).

Let us denote by

s= (s1, s2, . . . , sr )=
(

−trφ, tr(∧2φ), . . . , (−1)r tr(∧rφ)
)

∈V ∗GLr
:=

r
⊕

i=1

H0
(

C, (�1
C )
⊗i
)

(1.2)

the characteristic coefficients of the Higgs field φ. The dual notation ∗ on the vec-
tor space is due to the analogy with the dual Lie algebra we normally have as a
target space of a moment map in real symplectic geometry. In algebraic geometry,
a family of groups can act symplectomorphically, with the same Lie algebra. Here,
we have such a situation (see for example, [60]). The notation tr(∧iφ) of a matrix
φ means the sum of all principal i × i minors of φ that is considered as an ele-
ment of the symmetric power H0

(

C, (�1
C )
⊗i
)

. We are not talking about the exte-
rior power φ ∧φ here, since all higher exterior powers of φ automatically vanish
on C . The global section
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η⊗r +
r
∑

i=1

η⊗(r−i)⊗π∗si ∈H0(T ∗C×V ∗GLr
, π∗(�1

C )
⊗r �OV ∗GLr

)

(1.3)

defines a family of spectral curves

�s⊂ �̃ ι−−−−→ T ∗C×V ∗GLr
−−−−→ V ∗GLr

⏐
⏐
�π×id

C×{s} −−−−→ C×V ∗GLr

(1.4)

on V ∗GLr
. The morphism π :�s−→C has degree r . When there is no need to spec-

ify the rank r , we denote simply by V ∗GLr
=V ∗GL .

Our discovery of this paper is that when we restrict ourselves to the case of r=2
and generic s∈V ∗GL2

so that �s is smooth and the covering is simply ramified, the
generalized Eynard–Orantin theory precisely gives the quantization of a family of
smooth spectral curves �̃

∣
∣
V for a contractible open neighborhood V ⊂V ∗GL2

of s.

1.3. THE GENERALIZED EYNARD–ORANTIN THEORY

In their seminal paper [41], Eynard and Orantin propose a geometric theory of
computing quantum invariants using an integral recursion formula on a plane
curve � which is realized as a simply ramified covering π :�−→C, i.e., when the
base curve C of (1.1) is the complex line C. In Section 3, we generalize the original
topological recursion to a mathematical framework suitable for the purpose of the
current paper. The heart of this theory is an integral recursion formula, originally
found in random matrix theory [5,20,37].

The topological nature of the formula itself is known to the mathematics com-
munity for a long time. It is the same degeneration on the Deligne–Mumford mod-
uli stack Mg,n of n-pointed stable curves of genus g as described in [6, Chapter 17,
Section 5, Page 589]. It appears as the Dijkgraaf–Verlinde–Verlinde formula [27]
for the Witten–Kontsevich intersection theory [62,80], known as the Virasoro con-
straint condition, and also as a recursion formula for the Weil–Petersson volume of
the moduli space of bordered hyperbolic surfaces in Mirzakhani’s work [68,69] (see
also [66,70]). The key difference between the topological recursion and the above-
mentioned formalisms is that the former is a B-model theory that exhibits a univer-
sal structure (cf. [16,67]). Indeed, the B-model formalism is the Laplace transform
[32,40] of the geometric equations mentioned above.

In the context of the Hitchin spectral curves or the Seiberg–Witten curves (1.4),
the generalized formalism goes as follows. The goal of the theory is to define sym-
metric differentials W s

g,n on �n
s for g≥ 0 and n≥ 1. The starting point is the two

unstable cases 2g − 2 + n ≤ 0. We first define W s
0,1(z1)= ι∗η(z1), which is called

the Seiberg–Witten differential. As W s
0,2(z1, z2), we take the Riemann fundamen-

tal form of the second kind [44,74] with an appropriate normalization that we can
choose on an open neighborhood of a generic point s ∈ V ∗GL . This is the unique
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differential form of degree 2 on �s×�s with double poles along the diagonal, and
when considered as an integration kernel it operates as the exterior differentiation
f �−→d f for any meromorphic function on �s . For the stable range 2g−2+n>0,
the differentials W s

g,n at a point (z1, . . . , zn)∈�n
s are recursively defined by the fol-

lowing integral recursion formula:

W s
g,n(z1, . . . , zn)= 1

2
1

2π i

∑

p∈Rs

∮

γp

∫ σp(z)
z W s

0,2( · , z1)

W s
0,1

(

σp(z)
)−W s

0,1(z)

×
[ n
∑

j=2

(

W s
0,2(z, z j )W

s
g,n−1

(

σp(z), z[1̂, ĵ]
)+W s

0,2

(

σp(z), z j
)

W s
g,n−1

(

z, z[1̂, ĵ]
)
)

+W s
g−1,n+1

(

z, σp(z), z[1̂]
)+

stable
∑

g1+g2=g
I�J=[1̂]

W s
g1,|I |+1(z, zI )W

s
g2,|J |+1

(

σp(z), z J
)
]

. (1.5)

Here, Rs is the ramification divisor of the spectral curve π :�s −→ C which is
assumed to be a simple ramified covering, γp is a small simple closed loop with
the positive orientation around a Lagrangian singularity p∈ Rs⊂�s , and σp is the
local Galois conjugation of the curve �s near p. The residue integration is taken
with respect to the z variable on γp. For the index set [n]={1, . . . ,n}, we indicate
missing indices by the ˆ notation. For a subset I ⊂[n], we denote zI = (zi )i∈I , and
by |I | the cardinality of I . The sum in the last line runs for all partitions of g
and set partitions of {2, . . . ,n}, subject to the condition that 2g1− 1+|I |> 0 and
2g2−1+|J |>0.

The free energy of type (g,n) is a (meromorphic) function Fs
g,n on �n

s satisfying
that

d1 · · ·dn Fs
g,n=W s

g,n . (1.6)

Of course such Fs
g,n ’s are never unique because of the constants of integration, and

their existence is not even guaranteed because �s has a non-trivial fundamental
group. When Fs

g,n exists, we impose the uniqueness condition by integration along
the fiber:

(πi )∗Fs
g,n :=

∑

zi∈π−1(xi )

Fs
g,n(z1, . . . , zi , . . . , zn)=0, (g,n) 
= (0,2). (1.7)

Here, we choose an arbitrary point xi ∈C that is not a branched point, and con-
sider the integration of Fs

g,n along the fiber of π at xi for the ith component of
the product of �s , while fixing all other z j ’s, j 
= i .

1.4. THE MAIN RESULT

We prove the following.
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THEOREM 1.1 (Main Theorem). Let C be an arbitrary smooth projective alge-
braic curve of genus g≥2 over C. We consider the family (1.4) of degree 2 spectral
curves on C × V ∗SL2

corresponding to the SL(2,C) Hitchin fibration. If the spectral
data s ∈ V ∗SL2

:= H0
(

C, (�1
C )
⊗2
)

is generic so that �s is non-singular and the cov-
ering π :�s −→C is simply ramified, then there is an open neighborhood s ∈ V ⊂
H0
(

C, (�1
C )
⊗2
)

such that the family of spectral curves �̃
∣
∣
V is quantizable using the

Eynard–Orantin theory.

More precisely, we construct a quantum curve, or a Schrödinger operator
Ps(x,�), as more commonly known, on a formal family C[[�]] of the curve C such
that

E=D�
/D� Ps (1.8)

is a D module of OC[[�]]-rank 2 over C[[�]]. Here, we denote by D�=D�

C[[�]] the
sheaf of differential operators on C[[�]] without � derivatives. We use local coordi-
nates z on �s , x on C , and a local section z= z(x) of π . We prove that the canon-
ical solution of the Schrödinger equation

Ps(x,�)
∣
∣
U�s

(

z(x),�
)=0 (1.9)

defined on an open subset U ⊂C that contains no caustics of π :�s−→C is con-
structed by the formula of [41,54]

�s(z,�)= exp

⎛

⎝

∑

g≥0

∑

n≥1

1
n!�

2g−2+n Fs
g,n(z, . . . , z)

⎞

⎠ . (1.10)

In the context of the AGT correspondence, this seems to be related to the function
known as a conformal block. We note that (1.10) is exactly a geometric refinement
of the singular perturbation method known as the WKB approximation. Moreover,
the semi-classical limit (i.e., the zeroth-order terms in the � expansion of the WKB
approximation) of this Schrödinger equation recovers the spectral curve equation

η⊗2+π∗s=0

for �s⊂T ∗C .
The heart of the construction is Theorem 4.7, which is derived from the general-

ized integral recursion (1.5) by concretely evaluating the residue integration of the
formula. We emphasize that the residue calculation of (1.5) is made possible only
because we generalize the topological recursion formalism of [41] to the compact
base curve C . We establish the unique existence of the free energy Fs

g,n for every
(g,n) 
= (0,2), and construct the Schrödinger operator Ps from (4.7), after iden-
tifying Fs

0,2 through the first-order WKB approximation. Although in its expres-
sion, (1.10) depends on the choice of coordinates, Theorem 4.7 is coordinate inde-
pendent, and establishes the quantization of the spectral curve in a coordinate-free
manner.
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We also remark that though our formalism is more general, the actual technical
calculations are parallel to that of [11]. Indeed, we asked the following question:
what would be the mathematical framework that would allow the analysis tech-
nique of [11,32,72] work? In the process of answering this question, we discover
that the Hitchin spectral curves are the right framework.

The SL(2,C) assumption we impose is due to a technical reason, but not by
any conceptual reason. The formulation of [14], which assumes that the spectral
curve is a compact plane algebraic curve, can easily be generalized to our situ-
ation of Hitchin spectral curves (1.4). However, the idea developed in [14] does
not seem to directly provide the counterpart of our Theorem 4.7. We can also
allow a base curve C with prescribed marked points, and consider the moduli
space of parabolic Higgs bundles. In the context of the AGT correspondence and
Seiberg–Witten curves [4,48], such a setup naturally arises. In this paper, however,
we stay with the simplest situation, avoiding too much technical complications. The
case for parabolic Higgs bundles with singular Seiberg–Witten differentials will be
treated in a forthcoming paper.

1.5. THE GEOMETRIC SIGNIFICANCE OF THE TOPOLOGICAL RECURSION

The significance of what the topological recursion does is first recognized in the
string theory community [16,26,67,76]. Mariño [67], and then Bouchard, Klemm,
Mariño, and Pasquetti [16], have conjectured that when the spectral curve π :�−→
C
∗ is the mirror curve of a toric Calabi–Yau space X of dimension 3 (in this case

it covers the punctured complex line C
∗), the topological recursion should calculate

open Gromov–Witten invariants of X for all genera (the remodeling conjecture).
Their conjecture is a concrete and universal mechanism to read off, from Wg,n of
(1.5), all open Gromov–Witten invariants of genus g with n boundary components
of the source Riemann surface that are mapped to a Lagrangian in X .

Bouchard and Mariño then related the topological recursion with the counting
problem of simple Hurwitz numbers [17]. They conjectured that certain generating
functions of simple Hurwitz numbers should satisfy (1.5) for C=C

∗ with the spec-
tral curve � defined by the Lambert function x= ye−y .

The Hurwitz number conjecture of Bouchard and Mariño was solved in [40,73].
The key discovery was that the topological recursion was equivalent to the Laplace
transform of the combinatorial relation known as the cut-and-join equation [52,53,
79] of Hurwitz numbers. Here, again, we emphasize that the proof of the conjec-
ture is based on the global complex analysis of the Lambert curve, rather than the
local behavior of the spectral curve.

Once the relation between a counting problem (A-model) and the integral recur-
sion on a complex curve (B-model) is understood as the Laplace transform, the
same idea is used to solve the remodeling conjecture of [16] for the case of topo-
logical vertex [19,81]. Since the topological vertex method gives a combinatorial
description of the Gromov–Witten invariants for an arbitrary smooth toric Calabi–
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Yau threefold [64], the smooth case of the remodeling conjecture was solved in [42]
by identifying the combinatorial structure of the integral recursion with the local-
ization method in open Gromov–Witten invariants. Most recently, the general orb-
ifold case of the conjecture is solved in [43].

The mathematical structure of topological recursion has also been studied in [34,
38], when the spectral curve is considered as a collection of disjoint open discs. In
particular, the discovery of the equivalence to the Givental formalism in this local
case [34], and its application to obtaining a new proof of the ELSV formula [33],
are significant. Compared to these structural analysis, the emphasis of our current
work lies in noticing the importance of the global structure of the spectral curve
that covers an arbitrary projective algebraic curve.

1.6. QUANTUM CURVES AND THE MOTIVATION OF OUR CURRENT PAPER

Although the topological recursion for simple Hurwitz numbers was conjectured
from the consideration of open Gromov–Witten invariants of C

3 at the infinity
limit of the framing parameter, the Hurwitz case has a feature not shared with
the geometry of toric Calabi–Yau spaces. This is the existence of the quantum curve
[72]. The similar situation happens also for orbifold Hurwitz numbers [15,71].

Gukov and Sułkowski [54] considered the A-polynomial of Cooper, Culler, Gillet,
Long, and Shalen [22] associated with a knot K . The SL(2,C)-character variety of
the fundamental group of the knot complement is mapped to the boundary torus

Hom
(

π1(S
3\K ), SL(2,C)

)//

SL(2,C)−→Hom
(

π1(T
2), SL(2,C)

)//

SL(2,C)∼= (C∗)2

and determines a (usually) singular plane algebraic curve in (C∗)2 defined over Z.
Its defining equation is the A-polynomial, which captures the classical knot invari-
ant π1(S3 \K ). The proposal of Gukov–Sułkowski is that by applying the topolog-
ical recursion that is suitably modified for spectral curves in (C∗)2, one can quan-
tize the A-polynomial into a Schrödinger equation, much like (1.9) above but of an
infinite order due to the appearance of C

∗ in the fiber direction of π , whose semi-
classical limit recovers precisely the A-polynomial. Moreover, they predict that the
Schrödinger equation is equivalent to the AJ-conjecture of Garoufalidis [50,51],
which implies that the generator � of the �-deformed D module is the colored
Jones polynomial of the knot K !

We recall that the A-polynomial of a knot K is a polynomial in Z[x, y], where
x and y are determined by the meridian and the longitude of the torus bound-
ary of the knot complement in S3. It is established in [22] that the Steinberg
symbol {x, y} ∈ K2

(

C(CK )
)

is a torsion element of the second algebraic K-group
of the function field of the projective curve CK determined by the A-polynomial
of the knot K . Gukov and Sułkowski [54] attribute the quantizability of the
A-polynomial to this algebraic K theory condition, which plays a similar role of
the Bohr–Sommerfeld quantization condition through the Bloch regulator.
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We have constructed rigorous mathematical examples of the topological recur-
sion in [32], for which we can test all physics predictions. A quantum curve con-
struction is also carried out in [72], and for many other examples of counting
problems of Hurwitz type [15,71,82]. For these cases the K2 condition (the tor-
sion property of the Steinberg symbol) holds. But it has to be remarked that all
these rigorous examples have spectral curves of genus 0. So far no examples of
quantum curves have been rigorously constructed for a spectral curve with a higher
genus. This motivates our current paper. Although we do not address the question
in this paper, the ultimate interest is to identify the quantum topological informa-
tion that our � must carry. In this context, establishing the relation to the Seiberg–
Witten prepotential of Nekrasov [75] through the AGT correspondence [4] is the
key [12,48]. The Eynard–Orantin theory then provides an expansion formula for
the conformal block � from the geometric data of the Seiberg–Witten curve cov-
ering the Gaiotto curve.

We note that the relation between the topological recursion and knot invariants
are growing at this moment [3,13,18,23,46,47]. It is beyond our scope to make any
comment in this direction.

1.7. ORGANIZATION OF THE PAPER

The paper is organized as follows. We begin with gathering the classical geometric
materials we use in this paper, recalling spectral curves, Riemann prime forms, and
geometry of degree 2 spectral curves, in Section 2. Then in Section 3, we re-define
the topological recursion with an arbitrary base curve. Section 4 is devoted to inte-
grating the newly formulated recursion. We will establish a differential recursion
formula for free energies. Here, our generalization (1.5) of the topological recursion
of [41] plays an essential role, due to the fact that our spectral curve and the base
curve are both compact. The notion of quantum curves from physics requires us to
utilize Deligne’s λ-connections. We review the necessary materials in Section 5, fol-
lowing [7]. Finally in Section 6, we take the principal specialization of the formula
established in Section 4. In this way, we construct the quantum curve and the �-
deformed D module, quantizing the spectral curve. This method is indeed the same
as solving the exact WKB analysis.

2. Geometry of Spectral Curves

Let C be a non-singular complete algebraic curve over C of genus g= g(C)≥ 2.
Although somewhat restrictive, since we need the smoothness and the simple ram-
ification conditions, we adopt the following definition in this paper.

DEFINITION 2.1. A spectral curve of degree r is a complete smooth algebraic
curve � embedded in the cotangent bundle T ∗C such that its projection
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ι :� −−−−→ T ∗C
⏐
⏐
�π

C

onto C is a simply ramified covering of degree r . We denote by η∈H0
(

T ∗C, π∗�1
C

)

the tautological 1-form on T ∗C such that −dη is the canonical holomorphic sym-
plectic form on T ∗C . A spectral data is an element of a vector space

s= (s1, s2, . . . , sr )∈V ∗GL :=
r
⊕

i=1

H0(C, (�1
C )
⊗i ) (2.1)

of dimension r2(g−1)+1. We consider a spectral data generic if the characteristic
equation

η⊗r +
r
∑

i=1

siη
⊗(r−i)=0 (2.2)

defines a spectral curve � in our sense. Here, the characteristic polynomial is
viewed as a global section

η⊗r +
r
∑

i=1

π∗si ⊗η⊗(r−i) ∈H0(T ∗C, π∗(�1
C )
⊗r )

that defines � as its 0-locus. To indicate the s ∈ V ∗GL dependence of the spectral
curve, we use the notation �=�s .

Remark 2.2. The smoothness assumption of �s is crucial. The evaluation of the
residue integrations of (1.5) that is necessary for defining the free energies would
not go through if �s has singularities. The assumption of simple ramification is
imposed here only because of the simplicity of the formulation. We can generalize
the framework to arbitrarily ramified coverings in a similar way as developed in
[14], although it is restricted to the case when the spectral curve is a compact plane
curve.

Remark 2.3. Note that for every 1-form s1 ∈ H0(C,�1
C ), η+ π∗s1 determines the

same symplectic form, because

−dη=−d(η+π∗s1). (2.3)

The spectral curves are originally considered in the context of Abelianization of
the moduli space of stable vector bundles on C in terms of Hitchin integrable sys-
tems [8,29,58,59]. Recall that a Higgs pair (E, φ) of rank r and degree d con-
sists of a vector bundle E on C of rank r and degree d and a Higgs field φ ∈
H0
(

C,End(E)⊗�1
C

)

. Stability conditions are appropriately defined so that for the
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case of (r,d)= 1, the moduli space HC (r,d) of stable Higgs pairs form a smooth
quasi-projective variety of dimension 2(r2(g−1)+1). The space HC (r,d) contains
the cotangent bundle T ∗UC (r,d) of the moduli space UC (r,d) of stable vector bun-
dles of rank r and degree d on C as an open dense subset. We note that the char-
acter variety

Hom
(

π1(C),GL(r,C)
)//

GL(r,C)

has the same dimension 2(r2(g−1)+1). We refer to [55,56,60] for more detail on
the relation between the character variety and the Hitchin moduli spaces.

The Hitchin fibration

μH :H(r,d)� (E, φ) �−→det(y−φ)= yr +
r
∑

i=1

(−1)i trace(∧iφ)yr−1 ∈V ∗GL (2.4)

induces an algebraically completely integrable Hamiltonian system on HC (r,d). A
generic Higgs pair (E, φ) gives rise to a generic spectral data

s= (s1, s2, . . . , sr )=
(

(−1)i trace(∧iφ)
)r

i=1 ∈V ∗GL ,

and the fiber of the Hitchin fibration μH is isomorphic to the Jacobian variety of
the spectral curve:

μ−1
H (s)∼= Jac(�s).

In particular, the spectral curve has genus

ĝ= g(�s)= r2(g−1)+1. (2.5)

If we further assume that the projection π :�s −→C is simply ramified, then the
ramification divisor Rs⊂�s consists of 2r(r−1)(g−1) points. This shows that the
spectral curves we are dealing with form a very special class of ramified coverings
over C of a given degree r . If we were to consider the Givental formalism follow-
ing [34] or the corresponding Frobenius manifold [30,31], then for a fixed C , the
cardinality of Rs should represent the degrees of freedom of the theory. However,
we note that Rs is far from arbitrary as a divisor. Indeed the degrees of freedom of
our case is less than the expected value from the Frobenius manifold theory, since

dim V ∗GL −dim Jac(C)= (r2−1)(g−1)<(2r2−2r)(g−1)=deg Rs

for r ≥ 2. Here, we subtract the dimension of Jac(C) because changing the vector
bundle E to E⊗L with L∈Jac(C) does not change the spectral curve, because the
Higgs field φ remains the same. As noted in [60], the family of spectral curves is
effective only on the space

V ∗SL :=
r
⊕

i=2

H0(C, (�1
C )

i ), (2.6)

which has the dimension (r2−1)(g−1).
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This consideration also corresponds to the following. The application of a sym-
plectic transformation η �−→η+ 1

r π
∗s1 changes the characteristic equation

η⊗r +
r
∑

i=1

π∗si ⊗η⊗(r−i)=
(

η+ 1
r
π∗s1

)⊗r

+
r
∑

i=2

π∗s′i ⊗
(

η+ 1
r
π∗s1

)⊗(r−i)

, (2.7)

where s′i ∈ H0
(

C, (�1
C )
⊗i
)

is a polynomial in s1, . . . , si of the homogeneous degree
i . Thus, without loss of generality we can consider the traceless spectral data s=
(s2, . . . , sr )∈V ∗SL for the purpose of dealing with the spectral curve.

To introduce the Eynard–Orantin theory, we need a classical geometric ingre-
dient, the normalized fundamental differential of the second kind BX (z1, z2) on a
smooth complete algebraic curve X [44, Page 20], [74, Page 3.213]. This is a sym-
metric differential 2-form on X× X with second-order poles only along the diago-
nal. We identify the Jacobian variety of X as Jac(X)= Pic0(X), which is isomor-
phic to Picg−1(X). The theta divisor 
 of Picg−1(X) is defined by


={L ∈ Picg−1(X) | dim H1(X, L)>0}.
We use the same notation for the translate divisor on Jac(X), also called the theta
divisor. Consider the diagram

Jac(X)

X × X
pr1

����
��

��
��

�

δ

��

pr2

����
��

��
��

�

X X,

where pr j denotes the projection to the jth component, and

δ : X × X � (p,q) �−→ p−q ∈ Jac(X).

The prime form EX (z1, z2) [44, Page 16] is defined as a holomorphic section

EX (p,q)∈H0
(

X × X, pr∗1 (�
1
X )
− 1

2 ⊗ pr∗2 (�
1
X )
− 1

2 ⊗ δ∗(
)
)

,

where we choose Riemann’s spin structure (or the Szegö kernel) (�1
X )

1
2 , which has

a unique global section up to the constant multiplication (see [44, Theorem 1.1]).
We have

(1) EX (p,q) that vanishes only along the diagonal �⊂ X × X , and has simple
zeros along �.

(2) Let z be a local coordinate on X . Then dz(p) gives the local trivialization of
�1

X around p. When q is near at p, δ∗(
) is also trivialized around (p,q)∈
X × X , and we have a local expression

EX
(

z(p), z(q)
)= z(p)− z(q)√

dz(p) ·√dz(q)

(

1+O
(

(z(p)− z(q))2
)
)

. (2.8)
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(3) EX
(

z(p), z(q)
)=−EX

(

z(q), z(p)
)

.

The fundamental 2-form BX (p,q) is then defined by

BX (p,q)=d1⊗d2 log EX (p,q) (2.9)

(see [44, Page 20], [74, Page 3.213]). We note that dz(p) appears in (2.8) just as
the indicator of our choice of the local trivialization. With this local trivialization,
we have

BX
(

z(p), z(q)
)=d1⊗d2 log E

(

z(p), z(q)
)

= dz(p) ·dz(q)
(

z(p)− z(q)
)2
+O(1)dz(p) ·dz(q)

∈H0
(

X × X, pr∗1�
1
X ⊗ pr∗2�

1
X ⊗O(2�)

)

. (2.10)

As noted in the literature [44,74], the local expression (2.10) alone does not
uniquely determine the form. Riemann chose a symplectic basis 〈A1, . . . , Ag;
B1, . . . , Bg〉 for H1(X,Z), and normalized the fundamental form by

∮

A j

BX ( · ,q)=0 (2.11)

for every A-cycle A j , j = 1, . . . , g. Because of the symmetry BX (p,q)= BX (q, p),
the A-cycle normalization uniquely determines the fundamental form.

In the theory of complex analysis in one variable, the most fundamental object
is the Cauchy integration kernel. Ironically, we do not have a Cauchy kernel on
a compact Riemann surface X . The best we can do is the meromorphic 1-form
ωa−b(z) uniquely defined by the following conditions. Let a and b be two distinct
points of X .

(1) ωa−b(z) is holomorphic except for z=a and z=b.
(2) ωa−b(z) has a simple pole of residue 1 at z=a.
(3) ωa−b(z) has a simple pole of residue −1 at z=b.
(4) ωa−b(z) is A-cycle normalized:

∮

A j

ωa−b(z)=0

for every j =1, . . . , g.

The relation between ωa−b(z) and Riemann’s normalized second fundamental form
is

d1ω
z1−b(z2)= BX (z1, z2). (2.12)

This equation does not depend on the point b∈ X .
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Now let us go back to our spectral curve

ι :�s −−−−→ T ∗C
⏐
⏐
�π

C

. (2.13)

In what follows, we concentrate our attention to the case of r=2 traceless spectral
data. Thus, our spectral curve �=�s is a double sheeted ramified covering of C
defined by a characteristic equation

η⊗2+π∗s2=0, (2.14)

where the spectral data s consists of only one component s= s2 ∈ H0
(

C, (�1
C )
⊗2
)

,
which is a generic quadratic differential on C so that the characteristic equation
defines a smooth curve that is simply ramified over C . The genus of the spectral
curve, calculated by (2.5), gives ĝ= g(�s)=4g−3. The cotangent bundle T ∗C has
a natural involution

σ :T ∗C⊃T ∗x C � (x, y) �−→ (x,−y)∈T ∗x C⊂T ∗C. (2.15)

The spectral curve �s is invariant under σ , and it provides the deck transformation
of the ramified covering π :�s−→C .

Let Rs⊂�s denote the ramification divisor of this covering. Because of the sim-
ple covering assumption, Rs as a point set has 4g−4 distinct points that are deter-
mined by s2=0 on C . Since both C and �s are divisors of T ∗C , Rs is defined also
as C ∩�s . Note that η vanishes only along C⊂T ∗C . As a holomorphic 1-form on
�s , ι∗η has 2ĝ−2=8g−8 zeros on �s . Thus, it has a degree 2 zero at each point
of Rs .

As mentioned above, the Eynard–Orantin theory requires a normalized second
fundamental form of Riemann. To normalize differential forms, there are many
different choices. Here, we use the A-cycle normalization, following Riemann’s
original idea. The reason for this choice is its extendability to a family of smooth
spectral curves

�̃
∣
∣
V ={�s}s∈V

on a contractible open subset V ⊂H0
(

C, (�1
C )
⊗2
)

.
To explain our choice of the symplectic basis of the first homology group of the

family of spectral curves, let us start with choosing, once and for all, a symplectic
basis

〈A1, . . . , Ag; B1, . . . , Bg〉=H1(C,Z).

Let us label points of Rs and denote Rs = {p1, p2, . . . , p4g−4}. We can connect
p2i and p2i+1, i = 1, . . . ,2g− 3, with a simple path on �s that is mutually non-
intersecting so that π∗(p2i p2i+1), i = 1, . . . ,2g − 3, form a part of the basis for
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H1(�s,Z). We denote these cycles by α1, . . . , α2g−3. Since π is locally homeomor-
phic away from Rs , we have g cycles a1, . . . ,ag on �s so that π∗(a j )= A j for
j=1, . . . , g, where A j ’s are previously chosen A-cycles of C . We define the A-cycles
of �s to be the set

{a1, . . . ,ag, σ∗(a1), . . . , σ∗(ag), α1, . . . , α2g−3}⊂H1(�s,Z). (2.16)

Clearly, this set can be extended into a symplectic basis for H1(�s,Z). This choice
of the symplectic basis trivializes the homology bundle

{

H1(�s,Z)
}

s∈V −→V ⊂H0(C, (�1
C )
⊗2)

globally on a contractible V .
The monodromy of the choice of the symplectic basis on the family of all

smooth spectral curves leads us to consider the modular group action on the space
of solutions to the Eynard–Orantin theory (1.5). In this paper, we stay with the
family on a contractible base.

3. The Eynard–Orantin Integral Recursion on an Arbitrary Base Curve

The construction of the �-deformed D module over an arbitrary complete smooth
curve C is carried out in three stages.

(1) Construction of the Eynard–Orantin differentials W s
g,n on �n

s for all g≥0 and
n≥1 using the geometry of the spectral curve �s .

(2) Construction of the free energies Fs
g,n , which are meromorphic functions on

�n
s for 2g−2+n>0, and satisfies that d1 · · ·dn Fs

g,n=W s
g,n .

(3) Construction of the exponential generating function of Fs
g,n with � as the

expansion parameter, in the way the WKB approximation dictates us to do,
and take its principal specialization. The principal specialization then gives
the generator of the �-deformed D module.

Our point of departure is the spectral curve (1.4) defined by the characteris-
tic equation (1.3) for generic values of a spectral data s = V ∗GL so that �s is
smooth and the covering π is simply ramified along the divisor Rs . Since we do
not consider the monodromy transformation and the modular property of the
theory under the change of symplectic basis for H1(C,Z) in the current paper,
for simplicity we assume that s belongs to a contractible open subset V ⊂ V ∗SL =⊕r

i=2 H0
(

C, (�1
C )
⊗i
)

(2.6). What we call the Eynard–Orantin theory in this paper
is the following procedure of determining the Eynard–Orantin differentials.

DEFINITION 3.1 (Eynard–Orantin differentials). For every (g,n), g ≥ 0 and n ≥
1, the quantity Wg,n defined by one of the following formulas is what we call the
Eynad–Orantin differential of type (g,n). To avoid extra cumbersome notation, we
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suppress the s dependence of the Eynard–Orantin differentials. First, we define a
holomorphic 1-form on the spectral curve �s by

W0,1(z1)= ι∗η∈H0(�s, π
∗�1

C )⊂H0(�s,�
1
�s
). (3.1)

We define a symmetric 2-form W0,2 on �s ×�s using Riemann’s normalized sec-
ond fundamental form by

W0,2(z1, z2)= B�s (z1, z2), (3.2)

where (z1, z2)∈�s×�s . For this definition, we choose once and for all a symplec-
tic basis for H1(�s,Z) that is independent of s∈V and use the A-cycle-normalized
second fundamental forms of Section 2.

For each p∈ Rs , we choose a local neighborhood p∈Up⊂�s . Since the covering
is simple, there is a local Galois conjugation

σp :Up−→Up, (3.3)

which is an involution. We define the recursion kernel for each p∈ Rs by

K p(z, z1)=
∫ σp(z)

z B�s ( · , z1)

σ ∗p W0,1(z)−W0,1(z)

∈H0
(

Up×�s,
(

(�1
�s
)−1(2Rs)��1

�s

)⊗OUp×�s (�s + (σp× id)∗�s)
)

, (3.4)

where �s ⊂�s×�s is the diagonal. The reciprocal notation means

1
W0,1(z)

∈H0(�s, (�
1
�s
)−1⊗O�s (2Rs)

)

.

Using the recursion kernel, we define the first two Eynard–Orantin differentials in
the stable range 2g−2+n>0.

W1,1(z1)= 1
2

1
2π i

∑

p∈Rs

∮

γp

K p(z, z1)B�s (z, σp(z)), (3.5)

W0,3(z1, z2, z3)= 1
2

1
2π i

∑

p∈Rs

∮

γp

K p(z, z1)

×(B�s (z, z2)B�s (σp(z), z3)+ B�s (z, z3)B�s (σp(z), z2)
)

. (3.6)

Here, and in what follows, γq denotes a positively oriented simple closed loop
around a point q ∈�s , and the integration is taken with respect to the variable z
along the loop γp for each p∈ Rs . For a general value of (g,n) subject to 2g−2+
n≥2, the Eynard–Orantin differential is recursively defined by
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Wg,n(z1, . . . , zn)= 1
2

1
2π i

∑

p∈Rs

∮

γp

K p(z, z1)

×
[ n
∑

j=2

(

W0,2(z, z j )Wg,n−1(σp(z), z[1̂, ĵ])+W0,2(σp(z), z j )Wg,n−1(z, z[1̂, ĵ])
)

+Wg−1,n+1
(

z, σp(z), z[1̂]
)+

stable
∑

g1+g2=g,I�J={2,...,n}
Wg1,|I |+1(z, zI )Wg2,|J |+1(σp(z), z J )

]

.

(3.7)

Here, we use the index convention that [n]= {1, . . . ,n}, the hat notation [ ĵ] indi-
cates deletion of the index, and for every subset I ⊂[n], zI = (zi )i∈I , and |I | is the
cardinality of the subset. The sum in the third line is for indices in the stable range
only.

Remark 3.2. W0,1 is also known as the Seiberg–Witten differential, when we allow
prescribed poles of s on C . In this paper, we consider only holomorphic s. Spectral
data with poles will be dealt with in a forthcoming paper.

In this definition, we need to clarify the ambiguity of the integration in (3.4).
Since �s has genus r2(g−1)+1, the integration from z to σp(z) of any 1-form is
ambiguous. We use a systematic method to avoid this ambiguity. Let us recall the
unique A-cycle normalized meromorphic 1-form ωz−b

s (z1) on �s . Regardless of the
point b∈�s , we have dzω

z−b
s (z1)= B�s (z, z1). Therefore, we define the integral to

be
σp(z)∫

z

B�s ( · , z1)=ωσp(z)−b
s (z1)−ωz−b

s (z1)=ωσp(z)−z
s (z1). (3.8)

The recursion kernel is now calculated to be

K p(z, z1)= ω
σp(z)−z
s (z1)

σ ∗pη(z)−η(z)
. (3.9)

From now on we omit the pull-back sign ι∗ by the inclusion ι :�s−→T ∗C .

Remark 3.3. The existence of a canonical choice of the integral (3.8) for the fam-
ily of spectral curves �̃

∣
∣
V ={�s}s∈V is significant for the existence of the quantum

curve, starting from the recursion formula (3.7). Our choice of the trivialization of
the homology bundle {H1(�s,Z)}s∈V that we have made in the end of Section 2
assures this unique existence.

Remark 3.4. Recently many calculations have been performed to relate the Eynard–
Orantin differentials with intersection numbers of certain tautological classes on
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Mg,n [34,38]. All these calculations assume that the spectral curve is a ramified
covering over C, and that the curve itself is just the disjoint union of small disks
around each ramification point. The locations of these ramification points are arbi-
trarily chosen to represent the degree of freedom for deformations.

Here, we emphasize that the spectral curve �s is a global object, and that the
ramification divisor Rs on �s is not an arbitrary set of points. We view that the
heart of the Eynard–Orantin theory lies in the global structure of the spectral
curve, and hence the calculation of the residues appearing in the definition above
has to be carried out globally, not locally. In what follows, we perform this very
calculation.

The relation between the local and global considerations mentioned above gives
us a non-trivial formula of the result of our calculations in terms of tautologi-
cal intersection numbers on Mg,n . The identification of this formula is one of the
important questions that is not addressed in the current paper.

To actually compute integrals, it is convenient to consider the case when both z
and z1 are close to a ramification point p∈ Rs , but not quite equal. Then we have
local expressions

ω
σp(z)−z
s (z1)=

(
1

z1−σp(z)
− 1

z1− z
+O(1)

)

dz1, (3.10)

B�s (z, σp(z))=
(

1
(z−σp(z))2

+O(1)
)

dzdσp(z), (3.11)

η(z)=h(z)dz. (3.12)

We can also choose a small neighborhood of p such that

σp(z)=−z, (3.13)

if necessary. In this case z=0 is the point p∈ Rs . We also use formulas

K p(z, z1)= K p(σp(z), z1)=−K p(z, σp(z1)),

B�s (z1, σp(z2))= B�s (σp(z1), z2),

h(σp(z))=h(z).

(3.14)

PROPOSITION 3.5. For 2g − 2+ n > 0, the Eynard–Orantin differential Wg,n(z1,

. . . , zn) is a symmetric meromorphic n-form on �n
s with poles only at zi ∈ Rs , i =

1, . . . ,n. It satisfies the following balanced average property with respect to the deck
transformation:

∑

zi∈π−1(xi )

Wg,n(z1, . . . , zi , . . . , zn)=0, i =1, . . . ,n, (g,n) 
= (0,2). (3.15)

Here, we choose a non-branched point xi ∈C , and add Wg,n(z1, . . . , zi , . . . , zn) for all
r -points zi ∈π−1(xi ) on the fiber of xi . (This is commonly known as the integration
along the fiber.)
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Proof. Since the assertion of the Proposition is essentially a local statement, we
can take an affine covering of the base curve C , and prove the statement on each
affine piece. Although the proof is quite involved and requires many steps for an
affine curve, the idea and the technique are exactly the same as those in [41].

4. The Differential Recursion for Free Energies

The global property of the spectral curve we are emphasizing in this paper is that
we can actually integrate and evaluate the residue calculations appearing in the def-
inition of the Eynard–Orantin differentials. The purpose of this section is to con-
cretely perform this evaluation. We start with giving the definition of free energies.
It is worth mentioning that all our calculations are actually performed on the fam-
ily of spectral curves defined on a contractible base space V as explained in Sec-
tion 2. Again to avoid cumbersome notations, we suppress the s dependence in
what follows.

DEFINITION 4.1. The free energy of type (g,n) is a function Fg,n(z1, . . . , zn)

defined on �n
s subject to the following two conditions:

d1 · · ·dn Fg,n(z1, . . . , zn)=Wg,n(z1, . . . , zn), (4.1)
∑

zi∈π−1(xi )

Fg,n(z1, . . . , zi , . . . , zn)=0, i =1, . . . ,n, (g,n) 
= (0,2). (4.2)

Here, we choose a non-branched point xi ∈C , and consider the integration of Fg,n

along the fiber of xi with respect to the projection π :�−→C applied to the i th
component.

Remark 4.2. The primitive condition (4.1) alone does not determine Fg,n due to
constants of integration. For example, one can add any function in less than n
variables to Fg,n . It is obvious that the vanishing condition of the integration along
the fiber (4.2), reflecting (3.15), uniquely determines the free energies. The authors
are indebted to Paul Norbury and Brad Safnuk for the idea of imposing (4.2)
to define the unique free energies. In the examples considered in [32], we know
Fg,n from the beginning because we start with an A-model counting problem that
defines the free energies via the Laplace transform. In our current context, since
we start with the Eynard–Orantin theory, i.e., from the B-model side, we have no
knowledge of what the corresponding A-model is.

Remark 4.3. We exclude the case (g,n)= (0,2) from the balanced average condi-
tion (4.2). How to define F0,2 is an extremely subtle matter, and is also related to
the heart of the quantizability of the spectral curve �s . We discuss this issue in
detail in Section 6. It is important to note that our choice of F0,2(z, z) differs from
the definition given in [54].
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From now on, we restrict ourselves to the case of degree 2 covering π :�s−→C .
This restriction is necessary due to several technical reasons. Since the spectral
curve �s is a degree 2 covering, we have Rs =�s ∩C⊂ T ∗C , and the Galois con-
jugation σ is global on �s , which is the same as the (−1) involution

σ :T ∗C−→T ∗C.

In particular,

σ ∗η=−η. (4.3)

We denote σp = σ , and drop the reference point p from the recursion kernel,
because it does not depend on the ramification point any more. The following
lemma indicates how we calculate the residues in the integration formulas.

LEMMA 4.4. We calculate

W1,1(z1)= B�s (z1, σ (z1))

2η(z1)
∈H0(�s,�

1
�s
⊗O�s (4Rs)

)

. (4.4)

Remark 4.5. Since our geometric setting is exactly the same, it is not surprising
that the same formula appears in [63], though for a different purpose.

Proof. Taking the advantage of (3.9) and (4.3), let us first identify the poles of
the differential form

−ω
σ(z)−z
s (z1)

2η(z)
B�s (z, σ (z))

in z, where z1 ∈�s is a point arbitrarily chosen and fixed. We see that z= p for
every p∈ Rs is a pole, since η vanishes on Rs . The fundamental form B�s (z, z1) has
poles only along the diagonal, thus B�s (z, σ (z)) also has poles at Rs . Besides Rs ,
the form has simple poles at z= z1 and z=σ(z1). Since these are the only poles,
and remembering that the integration variable is z, we use the Cauchy integration
formula to calculate

W1,1(z1)= 1
2

1
2π i

∑

p∈Rs

∮

γp

K (z, z1)B�s (z, σ (z))

= 1
2

1
2π i

∮

γz1∪γσ(z1)

ω
σ(z)−z
s (z1)

2η(z)
B�s (z, σ (z))

= 1
2

(

− B�s (z1, σ (z1))

2η(σ (z1))
+ B�s (z1, σ (z1))

2η(z1)

)

= B�s (z1, σ (z1))

2η(z1)
.

It is important to note that W1,1(z1) has poles only at the ramification divisor
Rs .
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It is clear from the above example that integration against ωσ(z)−z
s (z1) is exactly

the Cauchy integration formula. Similarly, integration against B�s (z1, z2) is the dif-
ferentiation. Let f (z1) be a meromorphic function on �s . Then we have

1
2π i

∮

γz2

f (z1)B�s (z1, z2)=d2 f (z2), (4.5)

where the integration is taken with respect to the variable z1. We note that the
result is a meromorphic 1-form on �s .

LEMMA 4.6. We have

W0,3(z1, z2, z3)= 1
2η(z1)

(

B�s (z1, z2)B�s (z1, σ (z3))+ B�s (z1, z3)B�s (z1, σ (z2))

)

+d2

(

ω
σ(z2)−z2
s (z1)B�s (z2, σ (z3))

2η(z2)

)

+d3

(

ω
σ(z3)−z3
s (z1)B�s (z2, σ (z3))

2η(z3)

)

. (4.6)

Proof. This time the change of contour �p∈Rsγp to other poles picks up contri-
butions from z= zi and z=σ(zi ) for i = 1,2,3. As in the previous case, the con-
tributions from z= zi and z= σ(zi ) are always exactly the same, which are com-
pensated by the overall factor 1/2. Then the calculations are performed at each
pole. For simple poles, we use the Cauchy integration formula with respect to
ω
σ(z)−z
s (z1), which produces the first line of (4.6). The second line comes from the

double poles of the Riemann fundamental form, as explained in (4.5).

In terms of the local coordinate z of (3.10)–(3.13), we can approximate that
h(z)= z2. Then we have

W0,3(z1, z2, z3)=−dz1dz2dz3

z2
1z2

2z2
3

+O(1)dz1dz2dz3.

It is surprising that W0,3(z1, z2, z3) has poles only at zi = p∈ Rs for i=1,2,3, and
not along any diagonals.

THEOREM 4.7. For 2g− 2+ n≥ 2, the free energies satisfy the following differen-
tial recursion formula:

d1 Fg,n(z1, . . . , zn)

=−
n
∑

j=2

⎡

⎣
ω

z j−σ(z j )
s (z1)

2η(z1)
·d1 Fg,n−1

(

z[ ĵ]
)− ω

z j−σ(z j )
s (z1)

2η(z j )
·d j Fg,n−1

(

z[1̂]
)

⎤

⎦

− 1
2η(z1)

du1 du2

⎡

⎢
⎢
⎢
⎣

Fg−1,n+1
(

u1,u2, z[1̂]
)+

stable
∑

g1+g2=g
I�J=[1̂]

Fg1,|I |+1(u1, zI )Fg2,|J |+1(u2, z J )

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣u1=z1
u2=z1

.

(4.7)
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Remark 4.8. It has to be emphasized that (4.7) is given in terms of the exterior
differentiation and contraction operations so that the equation is indeed coordinate
independent. The labels z1, . . . , zn are simply indicating which factor of the product
�n

s the operation is taking place. They are not a coordinate of the spectral curve.

Remark 4.9. Although we do not specify the s ∈V dependence of Fg,n in the for-
mula, (4.7) holds for the family of functions {Fs

g,n}s∈V .

Proof. We wish to derive (3.7) from (4.7). We first recall the basic relations

dzω
z−b
s (z1)= B�s (z, z1) and ωz−b

s (z1)+ωb−a
s (z1)=ωz−a

s (z1).

Next let us apply the differentiation d2 · · ·dn everywhere in (4.7). The result is

Wg,n(z1, . . . , zn)

=−
n
∑

j=2

[
1

2η(z1)

(

W0,2(z1, z j )−W0,2
(

z1, σ (z j )
)
)

Wg,n−1
(

z[ ĵ]
)
]

−
n
∑

j=2

d j

[
1

2η(z j )
ω
σ(z j )−z j
s Wg,n−1

(

z[1̂]
)
]

− 1
2η(z1)

⎡

⎢
⎢
⎢
⎣

Wg−1,n+1
(

u1,u2, z[1̂]
)
∣
∣
∣
∣u1=z1
u2=z1

+
stable
∑

g1+g2=g
I�J=[1̂]

Wg1,|I |+1(z1, zI )Wg2,|J |+1(z1, z J )

⎤

⎥
⎥
⎥
⎦
.

(4.8)

It is time to evaluate the residue integration in (3.7) for 2g − 2+ n > 1. First,
we change the integration contour from

∑

p∈Rs

∮

γp
to the diagonals z = z j and

z=σ(z j ) for j =1,2, . . . ,n. We can do this, because of Proposition 3.5, we know
that Wg,n has poles only at Rs for 2g−2+n>0. As noted in the example calcu-
lations of Lemma 4.4 and Lemma 4.6 above, the residue contributions from z= zi

and z= σ(zi ) are always the same, and are compensated by the overall factor of
1/2 in the formula. Thus, we have

Wg,n(z1, . . . , zn)= 1

2π
√−1

n
∑

i=1

∮

γzi

ω
σ(z)−z
s (z1)

2η(z)

×
[ n
∑

j=2

(

W0,2(z, z j )Wg,n−1(σ (z), z[1̂, ĵ])+W0,2(σ (z), z j )Wg,n−1(z, z[1̂, ĵ])
)

+Wg−1,n+1
(

z, σ (z), z[1̂]
)+

stable
∑

g1+g2=gI�J={2,...,n}
Wg1,|I |+1(z, zI )Wg2,|J |+1(σ (z), z J )

]

.

(4.9)
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The contribution from the integration around z= z1 comes from the simple pole of
the differential form ω

σ(z)−z
s (z1). The integration is done by the Cauchy integration

formula, and the result is

− 1
2η(z1)

n
∑

j=2

(

W0,2(z1, z j )−W0,2
(

z1, σ (z j )
)
)

Wg,n−1(z[ ĵ])

− 1
2η(z1)

⎡

⎢
⎢
⎣

Wg−1,n+1
(

z1, z1, z[1̂]
)+

stable
∑

g1+g2=g
I�J={2,...,n}

Wg1,|I |+1(z1, zI )Wg2,|J |+1
(

σ(z1), z J
)

⎤

⎥
⎥
⎦
.

Here, we have used (3.15). We have thus recovered the first and the third lines of
the right-hand side of (4.8).

The contribution in (4.9) from the integration around z= z j , j ≥2, comes from
the diagonal double poles of W0,2(z, z j ). Since W0,2= B�s acts as the differentia-
tion kernel (4.5), it is easy to see that the result is exactly the same as the second
line of the right-hand side of (4.8). This completes the proof.

5. The λ-Connections and the WKB Method

The precise notion we need to describe our quantum curve is Deligne’s
λ-connection, where λ is a formal parameter. In physics, the notation λ=� is com-
monly used. Since the literature on quantum curves consistently use the Planck
constant notation, we adopt it here as well. In this section, we review the mate-
rials on λ-connections that we need in this paper, following the excellent article of
Arinkin [7]. In what follows, when we say an �-connection, we are indeed referring
to a λ-connection with λ=�. The most important feature of the �-connections is
that the WKB approximation method can be applied to this type of connections.

DEFINITION 5.1 (�-connection). Let (E, φ) be a Higgs pair defined on C . An �-
connection on E associated with the pair (E, φ) is a C-linear homomorphism

∇� : E−→ E⊗�1
C

subject to the following two conditions:

∇�( f ·v)= f ·∇�(v)+v⊗ (� d f ) (5.1)

for f ∈OC and v∈ E , and

φ=∇�
∣
∣
�=0. (5.2)

For every tangent vector X ∈Tx C at x ∈C , the C-linear �-covariant derivative

∇�

X : E−→ E
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is defined by the derivation equation

∇�

X ( f ·v)= f ·∇�

X (v)+�X ( f ) ·v. (5.3)

If � 
= 0, then 1
�
∇� is a holomorphic connection in E . Hence E is flat, and it

necessarily has deg(E)=0.
We consider the variable � as a deformation parameter. First, we extend the base

curve C to a formal family

C[[�]] := lim−→
n

C×Spec
(

C[�]/(�n)
)

. (5.4)

A C[[�]]-linear �-connection on a vector bundle E over C[[�]] is defined in the
same way as above. As a flat connection on a vector bundle makes the bundle a D
module, an �-connection on C[[�]] gives E a D module structure. Since we do not
consider differentiations with respect to �, we call a vector bundle with a C[[�]]-
linear �-connection a D�-module.

A D module on a complex manifold M gives rise to a characteristic variety
in T ∗M . When the D module is holonomic, the characteristic variety becomes a
Lagrangian in T ∗M . For our case, any D module over a complete algebraic curve
C is holonomic, and defines a Lagrangian subvariety in T ∗C . These Lagrangians
are either the 0-section of the cotangent bundle T ∗C , or a union of finite num-
ber of fibers. They satisfy the C

∗-invariance with respect to the C
∗-action on T ∗C .

The spectral curves we consider (1.4) are not those Lagrangians as the character-
istic variety of a D module. They do not satisfy the C

∗-invariance.
The sheaf of �-differential operators D� on C[[�]] is constructed by gluing

D�
∣
∣
U [[�]] =OU [[�]]

[

�
d

dx

]

, (5.5)

where x is a coordinate of an affine open subscheme U of C . The classical limit of
a D� module is the mod �-reduction, which simply is an OC module. The passage
between the spectral curves of Hitchin fibrations and D modules is not the classi-
cal limit, or the characteristic variety. It is the semi-classical limit, and it requires
the WKB method (see for example, [10]) to define.

Let (E,∇�) be a C[[�]]-linear �-connection on a vector bundle E over C[[�]].
As a D� module, it is easy to show that on an affine open U ⊂C we have a dif-
ferential operator P(x,�)∈D�

∣
∣
U [[�]] such that

E |U [[�]] ∼=
(

D�
/D� P

)∣
∣
∣
U [[�]] . (5.6)

Usually we consider a solution of

P(x,�)�(x,�)=0 (5.7)

as an element

�(x,�)∈Hom
(

EU [[�]],OU [[�]]
)

.
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The WKB method is a mechanism to construct the solution of (5.7) that does not
have a convergent limit as �→0, by the singular perturbation method

�(x,�)= exp

( ∞
∑

m=0

�
m−1Sm(x)

)

. (5.8)

Here, Sm(x) is a holomorphic function defined on an open subset U ⊂C , but has
poles at certain points of C . The parameter � is considered to be small, so the
m=0 contribution is singular. The equation (5.7) is interpreted as

(

e−
1
�

S0(x)P(x,�)e
1
�

S0(x)
)

exp

( ∞
∑

m=1

�
m−1Sm(x)

)

=0. (5.9)

Since

P(x,�)∈OU [[�]]
[

�
d

dx

]

,

both the operator and the solution of (5.9) are defined over U [[�]].

DEFINITION 5.2. Consider an operator P(x,�) defined on an open subset U⊂C
that is in the normal ordering expression

P(x,�)=
n
∑

k=0

ak(x,�)

(

�
d

dx

)n−k

, (5.10)

where ak(x,�)∈OU [[�]]. Then we have

e−
1
�

S0(x)P(x,�)e
1
�

S0(x)
∣
∣
∣
∣
�=0
=

n
∑

k=0

ak(x,0)
(

S′0(x)
)n−k

, (5.11)

where ′ indicates the x derivative. The semi-classical limit of the differential equa-
tion (5.7) at �=0 is the formula (5.11). If we use an indeterminate y= S′0(x), then
the semi-classical limit is the mod �-reduction

n
∑

k=0

ak(x,0)yn−k (5.12)

of the total symbol of the normal ordered operator (5.10).

Note that the semi-classical limit (5.12) is neither the symbol nor the character-
istic variety of the operator P(x,�). The passage from (5.12) to (5.10) is the quan-
tization we are discussing in this paper. In an abstract setting, of course there is
no way determining a differential operator from its total symbol (5.12) at �= 0.
In the next section, we show that a SL(2,C)-Hitchin spectral curve has a unique
quantization.

6. The WKB Approximation and Quantum Curves

We are now ready to state and prove the main theorem of this paper.
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THEOREM 6.1. Let HC (2,0)0 denote the moduli stack of rank 2 Higgs pairs
of degree 0 vector bundles with a fixed determinant line bundle, and consider the
SL(2,C)-Hitchin fibration

μH :HC (2,0)0−→V ∗SL :=H0(C, (�1
C )
⊗2). (6.1)

For a generic spectral data s∈V ∗SL , there is a contractible open neighborhood s∈V ⊂
V ∗SL such that the family of smooth spectral curves

�̃
∣
∣
V ={�s}s∈V

is quantizable via the WKB method.

Remark 6.2. The most involved technical part of this paper is the reduction of the
differential recursion (4.7) into an ordinary differential equation via the principal
specialization

z1= z2=· · ·= zn= z. (6.2)

We note that for the case of simple and double Hurwitz numbers and related top-
ics discussed in [15,71,72,82], the principal specialization corresponds to the reduc-
tion of a summation over all Young diagrams (or partitions) into a sum over 1-
row Young diagrams. Thus, the formulas dramatically simplify, and this is the key
to constructing the quantum curves. For the case of Hitchin fibrations, we do not
have an interpretation as a sum over partitions, and the process of principal spe-
cialization becomes technically more difficult.

Remark 6.3. The s ∈ V dependence does not pose any difficulty, because the only
consideration we need is the consistent integration we have taken care of in Sec-
tion 4 for the choice of the subset V with a consistent symplectic basis for
H1(�s,Z). The calculations in this section are thus all carried out over this family.

We first recall a trivial lemma from [72]:

LEMMA 6.4. Let f (z1, . . . , zn) be a symmetric function in n variables. Then

d
dz

f (z, z, . . . , z)=n

[
∂

∂u
f (u, z, . . . , z)

]∣
∣
∣
∣
u=z
;

d2

dz2
f (z, z, . . . , z)=n

[

∂2

∂u2
f (u, z, . . . , z)

]∣
∣
∣
∣
∣
u=z

+n(n−1)

[

∂2

∂u1∂u2
f (u1,u2, z, . . . , z)

]∣
∣
∣
∣
∣
u1=u2=z

.

(6.3)
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For a function in one variable f (z), we have

lim
z2→z1

[

ωz2−b(z1)
(

f (z1)− f (z2)
)
]

=d1 f (z1), (6.4)

where ωz2−b(z1) is the 1-form of (2.12).

The rest of the section is devoted to proving Theorem 6.1.

Proof of Theorem 6.1. For the purpose of calculation, let us choose one of the
ramification points p ∈ R of the covering π :�s −→C for a generic spectral data
s = s2 ∈ H0

(

C, (�1
C )
⊗2
)

, and assume that all points z1, . . . , zn are close to p, but
not quite equal. As a consequence, their Galois conjugates σ(z j )’s are also close
to p. On a neighborhood we choose a local coordinate z around p such that z=0
defines p and that σ(z)=−z. We use the local expressions (3.10), (3.11), (3.12),
and the relations (3.14). Using the notation ∂z = ∂/∂z, we have a local formula
equivalent to (4.7) that is valid for 2g−2+n≥2:

∂z1 Fg,n(z1, . . . , zn)

=−
n
∑

j=2

[

ω
z j−σ(z j )
s (z1)

2h(z1)dz1
·∂z1 Fg,n−1

(

z[ ĵ]
)− ω

z j−σ(z j )
s (z1)

dz1 ·2h(z j )
·∂z j Fg,n−1

(

z[1̂]
)

]

− 1
2h(z1)

∂2

∂u1∂u2

⎡

⎢
⎢
⎣

Fg−1,n+1
(

u1,u2, z[1̂]
)+

stable
∑

g1+g2=g
I�J=[1̂]

Fg1,|I |+1(u1, zI )Fg2,|J |+1(u2, z J )

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
u1=z1
u2=z1

.

(6.5)

Let us apply (6.2). The left-hand side becomes 1
n ∂z Fg,n(z, . . . , z). To calculate the

contributions from the first line of the right-hand side of (6.5), we choose j > 1
and set zi = z for all i except for i = 1, j . Then take the limit z j → z1. In this
procedure, we note that the contributions from the simple pole of ω

z j−σ(z j )
s (z1) at

z1=σ(z j ) cancel at z1= z j . Thus, we obtain

−
n
∑

j=2

1
z1− z j

(
1

2h(z1)
∂z1 Fg,n−1(z1, z, . . . , z)− 1

2h(z j )
∂z j Fg,n−1(z j , z, . . . , z)

)
∣
∣
∣
∣
∣
∣
z1=z j

=−
n
∑

j=2

∂z1

(
1

2h(z1)
∂z1 Fg,n−1(z1, z, . . . , z)

)

=−(n−1)∂z1

(
1

2h(z1)
∂z1 Fg,n−1(z1, z, . . . , z)

)

=−(n−1)∂z1

(
1

2h(z1)

)

∂z1 Fg,n−1(z1, z, . . . , z)− n−1
2h(z1)

∂2
z1

Fg,n−1(z1, z, . . . , z).
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The limit z1→ z then produces

−∂z
1

2h(z)
·∂z Fg,n−1(z, . . . , z)− 1

2h(z)
∂2

z Fg,n−1(z . . . , z)

+ (n−1)(n−2)
2h(z)

∂2

∂u1∂u2
Fg,n−1(u1,u2, z . . . , z)

∣
∣
∣
∣
∣
u1=u2=z

. (6.6)

To calculate the principal specialization of the second line of the right-hand side of
(6.5), we note that since all points zi ’s for i ≥2 are set to be equal, a set partition
by index sets I and J becomes a partition of n− 1 with a combinatorial factor
that counts the redundancy. The result is

− 1
2h(z)

∂2

∂u1∂u2
Fg−1,n+1(u1,u2, z . . . , z)

∣
∣
∣
∣
∣
u1=u2=z

− 1
2h(z)

stable
∑

g1+g2=g
n1+n2=n−1

∂z Fg1,n1+1(z, . . . , z) ·∂z Fg2,n2+1(z, . . . , z). (6.7)

Assembling (6.6) and (6.7) together, we obtain

1
2h(z)

⎡

⎢
⎢
⎣

∂2
z Fg,n−1(z . . . , z)+

stable
∑

g1+g2=g
n1+n2=n−1

∂z Fg1,n1+1(z, . . . , z) ·∂z Fg2,n2+1(z, . . . , z)

⎤

⎥
⎥
⎦

+1
n
∂z Fg,n(z, . . . , z)+∂z

1
2h(z)

·∂z Fg,n−1(z, . . . , z)

= (n−1)(n−2)
2h(z)

∂2

∂u1∂u2
Fg,n−1(u1,u2, z . . . , z)

∣
∣
∣
∣
∣
u1=u2=z

− 1
2h(z)

∂2

∂u1∂u2
Fg−1,n+1(u1,u2, z . . . , z)

∣
∣
∣
∣
∣
u1=u2=z

. (6.8)

Following the construction of the quantum curves of [54,72], we now apply the
operation

∑

2g−2+n=m
1

(n−1)! to (6.8) above, and write the result in terms of

Sm(z) :=
∑

2g−2+n=m−1

1
n! Fg,n(z, . . . , z), (6.9)

to fit into the WKB formalism. For m ≥ 2, Sm(z) is a meromorphic function on
�s with a pole at each ramification point (Lagrangian singularity) p∈ Rs of order
3m−3. This can be easily seen by the fact that Fg,n(z, . . . , z) has a pole of order
6g−6+3n at each p∈ Rs . This fact follows by induction from the integral recur-
sion (4.7) on Fg,n , and the initial conditions (3.5) and (3.6).

Our first remark is that summing over all possibilities of (g,n) with the fixed
value of 2g− 2+ n, the right-hand side of (6.8) becomes 0. Thus, we have estab-
lished
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THEOREM 6.5. The functions Sm(z) of (6.9) for m≥2 satisfy the recursion formula

1
2h(z)

⎛

⎜
⎜
⎝

d2Sm

dz2
+

∑

a+b=m+1
a,b≥2

dSa

dz

dSb

dz

⎞

⎟
⎟
⎠
+ dSm+1

dz
+ d

dz

(
1

2h(z)

)
dSm

dz
=0. (6.10)

It can also be written as a coordinate-free manner as an equation for meromorphic
1-forms on �s:

dSm+1+ 1
2η

∑

a+b=m+1
a,b≥2

dSa ·dSb+d
(

1
2η

dSm

)

=0, (6.11)

where 1/η is again the contraction operator with respect to the 1-form η.

Recall the local geometry of the spectral curve

p∈�s ⊂T ∗C,

and that p∈C is also on the 0-section of the cotangent bundle T ∗C . We trivialize
the cotangent bundle near x = p, where x is a local coordinate on C , and let y
be the fiber coordinate of T ∗x C . The relation between (x, y)∈ T ∗C and the local
coordinate z of �s around p∈�s is given by the formula

η=h(z)dz= y dx . (6.12)

Let the local expression of the spectral data s = s2 be s2 = s2(x)(dx)2. Then the
equation for the spectral curve �s near p∈�s is given by

y2+ s2(x)=0. (6.13)

The local expression of the quantum curve, which is an �-differential operator,
becomes

P(x,�) :=�
2
(

d
dx

)2

+ s2(x). (6.14)

Following the method of Bergère–Eynard [11] and the WKB formalism of Gukov–
Sułkowski [54], we define

F(z,�)=
∞
∑

m=0

�
m−1Sm(z)=

∑

g≥0

∑

n≥1

�
2g−2+n 1

n! Fg,n(z, . . . , z), (6.15)

�(z,�)= exp F(z,�). (6.16)

The truncated summation for m ≥ 2 in (6.15), and the corresponding portion of
(6.16), are functions on C[[�]] with essential singularities at each Lagrangian sin-
gularity of the spectral curve π :�s −→C . The factor e

1
�

S0 in � plays the role of
determining the semi-classical limit, as explained in Section 5.
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Using (6.12) we identify the derivation

d
dx
= y

h(z)

d
dz
, (6.17)

which comes from the push-forward π∗(d/dz). The transformation (6.17) is singu-
lar at every ramification point. The Schrödinger equation is calculated as

P(x,�)�(z,�)=0 (6.18)

⇐⇒ �
2

(

d2 F

dx2
+ dF

dx
· dF

dx

)

+ s2(x)=0 (6.19)

⇐⇒
∞
∑

m=0

�
m+1 d2Sm

dx2
+
∑

a,b≥0

�
a+b dSa

dx
· dSb

dx
+ s2(x)=0. (6.20)

Collecting the coefficient of the �
0 terms in (6.20), we obtain the semi-classical

limit
(

dS0

dx

)2

+ s2(x)=0. (6.21)

From (6.13) and (6.21) we conclude that

dS0

dx
= y=√−s2(x). (6.22)

This is consistent with our choice of W0,1 of the Eynard–Orantin theory (3.1):

dS0=dF0,1=W0,1=η= y dx .

Moreover, if we allow terms a=0 or b=0 in (6.10), then what we have in addition
is

1
2h(z)

2
dS0

dz

dSm+1

dz
= 1

h(z)

h(z)

y

dS0

dx

dSm+1

dz
= dSm+1

dz
.

In other words, the dSm+1
dz term already there in (6.10) is absorbed in the split dif-

ferentiation for a=0 and b=0.
Here, we comment that S0=

∫

η is not a function on �s . Since η is a holomor-
phic 1-form on �s , its integral is defined only on the universal covering of �s .
From (6.21), we calculate the conjugated operator (5.9)

e−
1
�

S0 P(x,�)e
1
�

S0 =�
2 d2

dx2
+2�

dS0

dx

d
dx
+�

d2S0

dx2
. (6.23)

The �
1 terms of (6.20) give what we call the consistency condition

d2S0

dx2
+2

dS0

dx
· dS1

dx
=0, (6.24)
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which also follows from (6.23). We recall that until now we have never defined
what we want to use as F0,2(z1, z2). The defining equation d1d2 F0,2=W0,2 alone
does not determine F0,2 because we can add terms

F0,2(z1, z2)+ f (z1)+ f (z2)

using an arbitrary function f (z). The principal specialization then becomes
F0,2(z, z)+2 f (z), which makes

S1= 1
2

F0,2(z, z)+ f (z).

This situation allows us to define the quantity S1 by a solution of the consistency
condition (6.24). Thus, we define,

S1=
x∫

dS1

dx
dx=−1

2
log

dS0

dx
. (6.25)

This makes

eS1 = 1√
y
. (6.26)

Remark 6.6. We note that the choice we need to make for S1, the formula given
in (6.25), is different from the choice of the torsion term of [54].

More importantly for our purpose, we read off from (6.24) that

dS1

dx
=−1

2

d
dx

√−s2(x)√−s2(x)
. (6.27)

Note that s2(x) has a simple zero at each branch point p∈C . If x is chosen as a
local coordinate centered at p, then (6.27) is a meromorphic function with a simple
pole at p. The conjugation of (6.23) by eS1 is calculated as

e−S1 e−
1
�

S0 P(x,�)e
1
�

S0eS1 =�
2 d2

dx2
+2

(

�
dS1

dx
+ dS0

dx

)

�
d

dx
∈D�(U ), (6.28)

where U ⊂C is an open subset that does not contain any branch point of the cov-
ering π .

Finally, we have

LEMMA 6.7. The consistency condition (6.24) makes (6.10) and (6.20) equivalent
on any open subset U ⊂C that is away from the caustics.

Proof. First, we calculate the second differential operator, from (6.17) and (6.22):

d2

dx2
= d

dx

(
S′0
h

d
dz

)

= (S
′
0)

2

h2

d2

dz2
+ S′0

h

d
dz

(
S′0
h

)

· d
dz
,
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denoting by S′0=d S0/dx . The �
m+1-terms of (6.20) then produce

(S′0)
2

h2

⎛

⎝
d2

dz2
Sm+

∑

a+b=m+1

dSa

dz

dSb

dz

⎞

⎠+ S′0
h

d
dz

(
S′0
h

)

· dSm

dz
=0. (6.29)

The coefficients of dSm/dz in (6.29) are

2
(S′0)

2

h2

dS1

dz
+ S′0

h

d
dz

(
S′0
h

)

=2
(S′0)

2

h2

h

S′0
S′1+

d
dx

(
S′0
h

)

= 1
h

(

2S′0S′1+ S′′0
)+ S′0

d
dx

(
1
h

)

= S′0
d

dx

(
1
h

)

= (S
′
0)

2

h2
·2h

d
dz

(
1

2h

)

.

This is exactly what the last term of (6.10) has, after adjusting the overall coeffi-

cient of
(S′0)

2

h2 ·2h. This completes the proof of Lemma.

With the above lemma, we have competed the proof of the main theorem.

Remark 6.8. The Schrödinger equation (6.18) has a holomorphic coefficient s2(x).
Therefore, the solution is also holomorphic. The expression (6.16) is therefore valid
only for points away from the caustics. In other words, the WKB method is not
valid at the caustics. The local behavior of �(z,�) at every Lagrangian singularity
is universal, because s2(x) has a simple zero at each point p ∈ Rs of the caustics.
Here, recall that Rs =�s ∩C , so Rs is also the branch divisor in C . If we have
chosen a local coordinate x of C at p∈ Rs so that x=0 gives the point p, then on
a small neighborhood of p we have an expression s2(x)=−x . Since the differential
equation becomes

(

�
2 d2

dx2
− x

)

�(x,�)=0,

it is obvious that the local solution is given by the Airy function (see for example,
[1]). This calculation has been carried out in [7,11]. The spectral curve in this case
is locally x= y2, for which the Eynard–Orantin theory produces the cotangent ψ-
class intersection numbers considered by Witten [80] and Kontsevich [62]. See for
example, [32], on this connection.
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