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Abstract. We establish the asymptotic expansion of certain integrals of ψ

classes on moduli spaces of curves Mg,n when either the g or n goes to in-
finity. Our main tools are cut-join type recursion formulae from the Witten-

Kontsevich theorem as well as asymptotics of solutions to the first Painlevé

equation. We also raise a conjecture on large genus asymptotics for n-point
functions of ψ classes and partially verify the positivity of coefficients in gen-

eralized Mirzakhani’s formula of higher Weil-Petersson volumes.
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1. Introduction

Let Mg,n be the moduli space of stable n-pointed genus g complex algebraic
curves and π : Mg,n+1 →Mg,n the morphism that forgets the last marked point.
Denote by σ1, . . . , σn the canonical sections of π, and by D1, . . . , Dn the correspond-
ing divisors in Mg,n+1. Let ωπ be the relative dualizing sheaf, we shall consider
integrals of the following tautological classes:

ψi = c1(σ∗i (ωπ)), 1 ≤ i ≤ n,

κi = π∗

(
c1

(
ωπ

(∑
Di

))i+1
)

, i ≥ 0,

onMg,n, where κ0 = 2g−2+n. The κ classes were first defined onMg by Mumford
[35], its extension to Mg,n is due to Arbarello-Cornalba [1]. More background
material can be found in [44].

Wolpert [46] showed that κ1 = ωWP /(2π2), where ωWP is the Weil-Petersson
Kähler form. Thus Weil-Petersson volumes are equal to the intersection numbers

Vg,n =
1

(3g − 3 + n)!

∫

Mg,n

κ3g−3+n
1 .

MSC(2010) 14N35.

1



2 K. LIU, M. MULASE, AND H. XU

It is well-known that integrals of κ and ψ classes are equivalent to each other
through explicit combinatorial identities (cf. [1, 19]).

The celebrated Witten-Kontsevich theorem [20, 45] shows that integrals of ψ
classes on Mg,n are governed by the KdV hierarchy. By using a generalization of
McShane’s identity in hyperbolic geometry, Mirzakhani [28] obtained a remarkable
recursive integral formula of Weil-Petersson volumes of moduli spaces of bordered
hyperbolic surfaces. In [34], Mirzakhani’s formula was shown to be equivalent to
a more explicit Virasoro constraint condition for the mixed integral of ψ and κ1

classes, which was generalized in [21, 22] to higher degree κ classes. Eynard and
Orantin [12] showed that Mirzakhani’s recursion formula fits in with the Eynard-
Orantin recursion formalism whose spectral curve is the sine curve discovered in
[34].

Recently Mirzakhani and Zograf [31] made a breakthrough on large genus asymp-
totics of Weil-Petersson volumes. Their work is based on an earlier paper of Mirza-
khani [30], who brought new ideas to bear on the problem: (i) One should consider
the normalized intersection numbers involving both ψ and κ classes; (ii) The terms
corresponding to reducible boundary components ofMg,n in the cut-join recursions
are of lower order in g.

In this paper, we study asymptotics of integrals of pure ψ classes, which appear
naturally in the asymptotics of Weil-Petersson volumes, Hurwitz numbers, Gromov-
Witten invariants, graph enumerations and 2D gravity. Our main technique is the
manipulation of various recursion formulas arising from Witten-Kontsevich the-
orem, e.g., DVV recursion formula, recursion formula of n-point functions and
Mirzakhani recursion formula.

The paper is organized as follows: In §2, we raise a conjecture about large genus
asymptotics of the n-point function and give a proof when n = 2. In §3, we review
the recent work of asymptotics of Weil-Petersson volumes; we also partially verify
the positivity of coefficients αL in a recursion formula of higher Weil-Petersson vol-
umes. In §4, we discuss intersection numbers in the framework of Eynard-Orantin
theory and several identities involving αL. In §5, we apply asymptotics of solutions
to the first Painlevé equation to establish large genus asymptotic expansion of ψ

class integrals 〈τd1 · · · τdn
τ

3g−3+n−|d|
2 〉g. In §6, we apply DVV formula to establish

asymptotic expansion of ψ class integrals 〈τd1 · · · τdn
τk
0 τ3g−2+k+n−|d|〉g when k goes

to infinity.
Acknowledgements We thank B. Eynard, J. Li, M. Liu, M. Penkava, B. Safnuk,
R. Vakil, J. Zhou and S. Zhu for helpful conversations. The third author thanks the
organizers of the workshop “New Recursion Formulae and Integrablity for Calabi-
Yau Spaces” at Banff International Research Station, October 16–21, 2011.

2. Witten-Kontsevich theorem and integrals of ψ classes

We adopt Witten’s notation

(1) 〈τd1 · · · τdn
κa1 · · ·κam

〉g :=
∫

Mg,n

ψd1
1 · · ·ψdn

n κa1 · · ·κam
.
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For convenience, we denote the normalized tau function as

(2) 〈τd1 · · · τdn
〉wg :=

n∏

i=1

(2di + 1)!!〈τd1 · · · τdn
〉g.

The celebrated Witten-Kontsevich theorem [45, 20] can be equivalently formu-
lated as the following DVV formula [6].

(3) 〈τd1 · · · τdn
〉wg =

n∑

j=2

(2dj + 1)〈τd2 · · · τdj+d1−1 · · · τdn
〉wg

+
1
2

∑

r+s=d1−2

〈τrτsτd2 · · · τdn
〉wg−1+

1
2

∑

r+s=d1−2

∑

{2,··· ,n}=I
∐

J

〈τr

∏

i∈I

τdi
〉wg′〈τs

∏

i∈J

τdi
〉wg−g′ ,

which is equivalent to the Virasoro constraint.
When d1 = 0 or 1 in (3), we get the string and dilaton equations respectively

〈τ0τd2 · · · τdn〉wg =
n∑

j=2

(2dj + 1)〈τd2 · · · τdj−1 · · · τdn〉wg ,(4)

〈τ1τd2 · · · τdn〉wg = 3(2g − 3 + n)〈τd2 · · · τdn〉wg .(5)

Definition 2.1. The following generating function

F (x1, · · · , xn) =
∞∑

g=0

Fg(x1, · · · , xn) =
∞∑

g=0

∑
∑

di=3g−3+n

〈τd1 · · · τdn
〉g

n∏

i=1

xdi
i

is called the n-point function.

The following recursive formula was obtained by integrating the first KdV equa-
tion of the Witten-Kontsevich theorem.

(6) (2g + n− 1)〈τ0

n∏

j=1

τdj
〉g

=
1
12
〈τ4

0

n∏

j=1

τdj
〉g−1 +

1
2

∑

n=I
∐

J

〈τ2
0

∏

i∈I

τdi
〉g′〈τ2

0

∏

i∈J

τdi
〉g−g′ ,

which is equivalent to a recursive formula of n-point functions (cf. [25]),

(7) F (x1, . . . , xn) =
∑

r,s≥0

(2r + n− 3)!!
12s(2r + 2s + n− 1)!!

Sr(x1, . . . , xn)




n∑

j=1

xj




3s

,

where n ≥ 2 and Sr is a homogeneous symmetric polynomial of degree 3r + n− 3,

Sr(x1, . . . , xn) =


 1

2
∑n

j=1 xj

∑

n=I
∐

J

(
∑

i∈I

xi)2(
∑

i∈J

xi)2F (xI)F (xJ)




3r+n−3

=
1

2
∑n

j=1 xj

∑

n=I
∐

J

(
∑

i∈I

xi)2(
∑

i∈J

xi)2
r∑

r′=0

Fr′(xI)Fr−r′(xJ),

where n = {1, 2, . . . , n} and I, J 6= ∅.
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The following closed formulae of one and two-point functions are respectively
due to Witten and Dijkgraaf,

F (x) =
1
x2

exp
(

x3

24

)
,

F (x, y) =
1

x + y
exp

(
x3

24
+

y3

24

) ∞∑

k=0

k!
(2k + 1)!

(
1
2
xy(x + y)

)k

.

The usefulness of n-point functions was noticed by Faber in his pioneering work
[14] on tautological rings of moduli spaces of curves. In [47], Zagier obtained several
remarkable closed formulae for the three-point function. In [37], Okounkov proved
an analytic formula of the n-point function in terms of n-dimensional error-function-
type integrals. In [23, 25], the recursion formula (7) was used to give a direct proof
of Faber’s intersection number conjecture.

Lemma 2.2. Let E(x1, . . . , xn) =
∑∞

g=0 12g(2g + n− 1)!!Fg(x1, . . . , xn). Then

E(x) =
1

x2(1− x3)
,(8)

E(x, y) =
1

(x + y)(1− (x + y)3)
√

1− (x3 + y3)
.(9)

Proof. (8) follows easily from Fg(x) = x3g−2/(24gg!).
From (7) and

(10) Sr(x, y) =
(x3 + y3)r

(x + y)24rr!
,

we could get

E(x, y) =
∞∑

g=0

12g(2g + 1)!!Fg(x, y)

=
∑

r,s≥0

12r(2r − 1)!!Sr(x, y)(x + y)3s

=
1

(x + y)(1− (x + y)3)

∑

r≥0

12r(2r − 1)!! · (x3 + y3)r

24rr!

=
1

(x + y)((1− (x + y)3))
√

1− (x3 + y3)
,

which proves (9). ¤

Lemma 2.2 was inspired by the following remarkable formula of Zagier [47],

∞∑
g=0

4g(2g + 1)!!Fg(x, y, z) =
arctan

( √
(x+y+z)3xyz

1− 1
3 (x3+y3+z3)+xyz

√
1− 1

3 (x3+y3+z3)

1− 1
3 (x+y+z)3

)

√
(x + y + z)3xyz

(
1− 1

3 (x + y + z)3
) .

The reason that we used slightly different normalization coefficients in Lemma 2.2
is due to (7), which implies

(11) E(x1, . . . , xn) =
1

(1−∑n
j=1 xj)3

∞∑
r=0

12r(2r + n− 3)!!Sr(x1, . . . , xn).
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It is not clear whether one can write the above equation into a closed-form expres-
sion of E(x1, . . . , xn) for arbitrary n ≥ 3, maybe with different choices of normal-
ization coefficients.

The n-point function appears in several asymptotic formulae of enumerative
geometry, such as: the leading term of Mirzakhai’s volume polynomial of Weil-
Petersson volumes of moduli spaces of bordered Riemann surfaces [29], the highest
degree term of Gromov-Witten invariants of projective spaces [36], and the following
limit of Hurwitz numbers Hg,µ (cf. [38]):

Fg(µ1, . . . , µn) = lim
N→∞

(2π)n/2|Aut(µ)|∏n
i=1 µ

1/2
i

N3g−3+n/2

Hg,Nµ

eNµ(2g − 2 + |µ|+ n)!
,

where µ = (µ1, . . . , µn) is any given partition and |µ| = µ1 + · · ·+ µn.
In view of these connections, we formulate a conjectural large genus asymptotics

of Fg(x1, . . . , xn) shall be interesting. In fact, by (7), we have

12g(2g + n− 1)!!
(x1 + · · ·+ xn)3g−3+n

Fg(x1, . . . , xn)

=
12g(2g + n− 1)!!

(x1 + · · ·+ xn)3g−3+n

g∑
r=0

(2r + n− 3)!!
12g−r(2g + n− 1)!!

Sr(x1, . . . , xn)




n∑

j=1

xj




3s

=
g∑

r=0

12r(2r + n− 3)!!
Sr(x1, . . . , xn)

(
∑n

j=1 xj)3r−3+n
.

Now let

(12) C(x1, . . . , xn) =
∞∑

r=0

12r(2r + n− 3)!!
Sr(x1, . . . , xn)

(
∑n

j=1 xj)3r−3+n
.

We conjecture that the series in the right-hand side of the above equation is con-
vergent for any positive real numbers xj > 0, ∀1 ≤ j ≤ n.

Conjecture 2.3. Fix a set of positive real numbers xj > 0, ∀1 ≤ j ≤ n. Then
there exist functions C(x1, . . . , xn) > 0 independent of g such that as g →∞,

(13) Fg(x1, . . . , xn) ∼ C(x1, . . . , xn)
(x1 + · · ·+ xn)3g−3+n

12g(2g + n− 1)!!
,

where a1(g) ∼ a2(g) means limg→∞
a1(g)
a2(g) = 1.

The above conjecture holds trivially when n = 1. Now we prove it for n = 2.

Proposition 2.4. Let x, y > 0. Then as g →∞,

(14) Fg(x, y) ∼ x + y√
3xy

· (x + y)3g−1

12g(2g + 1)!!
.

Proof. Let

fg(x, y) =
12g(2g + 1)!!
(x + y)3g−1

Fg(x, y).

Then by (7) and (10), we get

fg(x, y) =
g∑

k=0

(2k − 1)!!
2kk!

(
x3 + y3

(x + y)3

)k

,
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which implies

lim
g→∞

fg(x, y) =
∞∑

k=0

(2k − 1)!!
2kk!

(
x3 + y3

(x + y)3

)k

=
1√

1− x3+y3

(x+y)3

=
x + y√

3xy
,

i.e. C(x, y) = x+y√
3xy

. ¤

Remark 2.5. In [24, §5], we observed that integrals of ψ classes satisfy multinomial-
type property, i.e. 〈τd1τd2 · · · τdn

〉g ≤ 〈τd1+1τd2−1 · · · τdn
〉g when d1 < d2. This is

consistent with Conjecture 2.3.

3. Weil-Petersson volumes

As mentioned above, the starting point of using recursion formulae to study large
genus asypmtotics of Weil-Petersson volumes is Mirzakhani’s insight [29, 30] that
one should consider normalized intersection numbers:

(15) [τd1 · · · τdn ]g,n =
∏n

i=1(2di + 1)!! 4|d|(2π2)d0

d0!

∫

Mg,n

ψd1
1 · · ·ψdn

n κd0
1 ,

where |d| = d1 + · · · + dn ≤ 3g − 3 + n and d0 = 3g − 3 + n − |d|. Note that
Vg,n = [τ0, · · · τ0]g,n is the Weil-Peterson volume of Mg,n.

Mirzakhani [28] proved a recursion formula for Weil-Peterson volumes of moduli
spaces of bordered Riemann surfaces. The following equivalent form of Mirzakhani’s
formula was derived by Mulase and Safnuk [34] (cf. also [41, 21, 12]).

(16) [τd1 , . . . , τdn
]g,n = 8

n∑

j=2

d0∑

L=0

(2dj + 1)aL[τd1+dj+L−1

∏

i 6=1,j

τdi
]g,n−1

+ 16
d0∑

L=0

∑

k1+k2=L+d1−2

aL[τk1τk2

∏

i 6=1

τdi
]g−1,n+1

+ 16
∑

IqJ={2,...,n}
0≤g′≤g

d0∑

L=0

∑

k1+k2=L+d1−2

aL [τk1

∏

i∈I

τdi ]g′,|I|+1 × [τk2

∏

i∈J

τdi ]g−g′,|J|+1.

Here aL = ζ(2L)(1− 21−2L).
Mulase and Safnuk [34] also proved the following inversion to the formula (16),

(17)
d0∑

L=0

(−π2)L

4(2L + 1)!
[τd1+L, . . . , τdn ]g,n =

n∑

j=2

(2dj + 1)[τd1+dj−1

∏

i 6=1,j

τdi ]g,n−1

+
∑

k1+k2=d1−2

[τk1τk2

∏

i 6=1

τdi ]g−1,n+1

+
∑

IqJ={2,...,n}
0≤g′≤g

∑

k1+k2=d1−2

[τk1

∏

i∈I

τdi ]g′,|I|+1 × [τk2

∏

i∈J

τdi ]g−g′,|J|+1.

Motivated by a question of Mirzakhani, Zograf [50] made the following conjecture
on large genus asymptotic expansion of Vg,n based on numerical data.
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Conjecture 3.1 (Zograf). For any fixed n ≥ 0, as g →∞,

(18) Vg,n = (4π2)2g+n−3(2g − 3 + n)!
1√
gπ

(
1 +

cn

g
+ O

(
1
g2

))
,

where cn is a constant independent of g.

Note that the asymptotic expansion of Vg,n for fixed g and large n has been
completely solved by Manin and Zograf [31]. Recently, Mirzakhani and Zograf [31]
proved the following complete asymptotic expansion of Weil-Petersson volumes as
n fixed and g →∞,

(19) Vg,n = C
(4π2)2g+n−3(2g − 3 + n)!√

g

(
1 +

c
(1)
n

g
+

c
(k)
n

gk
+ . . .

)
,

where 0 < C < ∞ is a universal constant and each term c
(i)
n is a polynomial in n

of degree 2i, which reduces the proof of Zograf’s conjecture (cf. (18)) to that of
C = 1/

√
π.

The following weaker estimate of Vg,n was originally proved with the joint effort
of Penner [39], Grushevsky [15], and Schumacher-Trapani [42].

Theorem 3.2. There is a constant C independent of g such that

(20)
(

1
C

)g

(2g)! < Vg,n < Cg(2g)!

for fixed n and large g.

A short proof of the above theorem was given in [26, §2], which used (16) and
some recursion formulae from [5, 21], together with a technical result on the asymp-
totics of solutions to the first Painlevé equation (cf. §5).

Now we introduce some notation from [19]. Consider the semigroup N∞ of
sequences m = (m(1),m(2), . . . ) where m(i) are nonnegative integers and m(i) = 0
for sufficiently large i. Denote by δa the sequence with 1 at the a-th place and zeros
elsewhere. Let m,L,a1, . . . ,an ∈ N∞. Then

|m| :=
∑

i≥1

im(i), ||m|| :=
∑

i≥1

m(i), m! :=
∏

i≥1

m(i)!, κ(b) :=
∏

i≥1

κ
b(i)
i ,

(
m
L

)
:=

∏

i≥1

(
m(i)
L(i)

)
,

(
m

a1, . . . ,an

)
:=

∏

i≥1

(
m(i)

a1(i), . . . , an(i)

)
.

Extensive studies of intersection numbers involving higher degree κ classes can
be found in [4, 19, 22, 40]. The following generalization of (16) was proved in
[21, 22]. It is equivalent to a recursion formula of generating functions proved by
Eynard [8] (cf. Prop. 4.4).

Theorem 3.3. Let b ∈ N∞ and dj ≥ 0. Then

(21) (2d1 + 1)!!〈κ(b)τd1 · · · τdn〉g

=
n∑

j=2

∑

L+L′=b

αL

(
b
L

)
(2(|L|+ d1 + dj)− 1)!!

(2dj − 1)!!
〈κ(L′)τ|L|+d1+dj−1

∏

i 6=1,j

τdi〉g

+
1
2

∑

L+L′=b

∑

r+s=|L|+d1−2

αL

(
b
L

)
(2r + 1)!!(2s + 1)!!〈κ(L′)τrτs

n∏

i=2

τdi
〉g−1
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+
1
2

∑
L+e+f=b

I
∐

J={2,...,n}

∑

r+s=|L|+d1−2

αL

(
b

L, e, f

)
(2r + 1)!!(2s + 1)!!

× 〈κ(e)τr

∏

i∈I

τdi
〉g′〈κ(f)τs

∏

i∈J

τdi
〉g−g′ ,

where the constants αL are determined recursively from the following formula

(22)
∑

L+L′=b

(−1)||L||αL

L!L′!(2|L′|+ 1)!!
= 0, b 6= 0

with the initial value α0 = 1.

We conjecture that αL is always positive, which is crucial if one want to study
the large genus asymptotics of higher Weil-Petersson volumes using (21).

Conjecture 3.4. For any L ∈ N∞, αL > 0.

Below we give a partial answer to the above conjecture.
A partition of a finite set X = {1, 2, . . . , `} into k parts is a collection π =

{A1, A2, . . . , Ak} of subsets of X such that (i) Ai 6= ∅ for each i; (ii) Ai ∩Aj = ∅ if
i 6= j; (iii) A1 ∪ · · · ∪Ak = X.

We denote by P(X, k) the set of all partitions of X into k parts. We know that
|P(X, k)| is given by S(`, k), the Stirling number of the second kind. In particular,
S(`, 1) = 1 and S(`, `− 1) =

(
`
2

)
.

By (22), we have for b 6= 0,

αb = b!
∑

L+L′=b
L′ 6=0

(−1)||L
′||−1αL

L!L′!(2|L′|+ 1)!!
(23)

=
||b||∑

k=1

∑
L1+···+Lk=b

Li 6=0

(
b

L1, . . . ,Lk

)
(−1)||b||−k

∏k
i=1(2|Li|+ 1)!!

.

Let b = δp1 +· · ·+δp`
∈ N∞ and π = {A1, . . . , Ak} be a partition of X = {1, . . . , `}

into k parts. Define p(π,b) =
∏k

j=1(2
∑

i∈Aj
pi + 1)!!. Then (23) implies

(24) αb =
∑̀

k=1

∑

π∈P(X,k)

(−1)`−kk!
p(π,b)

.

Proposition 3.5. For any b ∈ N∞ with ||b|| ≤ 4, we have αb > 0.

Proof. First note that for any i, j ≥ 1, we have (2i+2j +1)!! ≥ 5
3 (2i+1)!!(2j +1)!!.

(i) When b = δi, we have αb = 1/(2i + 1)!! > 0.
(ii) When b = δi + δj , we have

αb =
2

(2i + 1)!!(2j + 1)!!
− 1

(2i + 2j + 1)!!
> 0.

(iii) When b = δi + δj + δk, we have

αb =
6

(2i + 1)!!(2j + 1)!!(2k + 1)!!
− 2

(2i + 2j + 1)!!(2k + 1)!!

− 2
(2i + 2j + 1)!!(2k + 1)!!

− 2
(2i + 2j + 1)!!(2k + 1)!!

+
1

(2i + 2j + 2k + 1)!!
> 0.
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(iv) When ||b|| = 4 and X = {1, 2, 3, 4}, we have
∑

π∈P(X,3)

3!
p(π,b)

≤ 3
5

6 · S(4, 3)∏4
j=1(2pj + 1)!!

<
4!∏4

j=1(2pj + 1)!!
,

which obviously implies that αb > 0. ¤

From the above proof, it is easy to see that for any b ∈ N∞ with ||b|| = ` > 0,
there exists an integer C` > 0 such that αb > 0 whenever b(i) = 0, ∀i ≤ C`.

4. Eynard-Orantin theory

We will outline the mathematical definition for the Eynard-Orantin theory [11],
which provides a powerful unifying tool for many enumerative problems in geometry.
We refer the readers to [2, 3, 7, 32, 33] for more detailed expositions and recent
developments.

A spectral curve is a quadruple of data

S = (C, x, y,B),

where C is a plane curve of genus 0, x, y are two analytic function on C and B(z, z′)
is the Bergman kernel, i.e. a symmetric differential on C and behaves like

B(z, z′) ∼
z→z′

dz ⊗ dz′

(z − z′)2
+ O(1).

We require dx, dy have only simple zeros and (x, y) : C → C2 is an immersion. A
branch point is a zero of dx.

Given a spectral curve S = (C, x, y,B), the symmetric meromorphic n-differential
W

(g)
n (S, z1, . . . , zn) is defined by

W
(0)
1 (z) = y(z)dx(z), W

(0)
2 (z, z′) = B(z, z′)

and when 2g − 2 + n ≥ 0

(25) W (g)
n (z1, z2 . . . , zn) =

∑
a

Res
z→a

K(z1, z)
[
W

(g−1)
n+1 (z, z̄, z2 . . . , zn)

+
no W

(0)
1 terms∑

g1+g2=g

I
∐

J={2,...,n}

W
(g1)
1+|I|(z, zI)W

(g2)
1+|J|(z̄, zJ)

]
,

where a runs over all branch points of C, z̄ is determined by x(z̄) = x(z) around a
neighborhood of a and the recursion kernel is given by

K(z1, z) =

∫ z

z′=z̄
B(z1, z

′)
2(y(z)− y(z̄))dx(z)

.

The free energy invariants Fg(S) is given by the dilaton equation

Fg(S) = W
(g)
0 =

1
2− 2g

∑
a

Res
z→a

W
(g)
1 (z)Φ(z),

where Φ(z) is defined near the branch point a by dΦ = ydx.
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The free energy Fg,n(z1, . . . , zn) is defined to be the primitive of W
(g)
n :

d⊗nFg,n(z1, . . . , zn) = W (g)
n (z1, . . . , zn).

The following theorem is a key result used in Eynard’s proof [9, 10] that for arbitrary
spectral curves, W

(g)
n (z1, . . . , zn) can be explicitly expressed as a universal formula

involving intersection numbers of mixed ψ and κ classes, as well as Eyard-Orantin’s
proof [13] of the BKMP conjecture of a topological recursion for open Gromov-
Witten invariants of toric Calabi-Yau 3-folds.

Theorem 4.1 (Eynard [9]). If S is the deformed Airy curve y =
∑

k tk+2 xk/2, i.e.
more precisely S = (C, x(z) = z2, y(z) =

∑
k tk+2 zk, B(z, z′) = dz⊗ dz′/(z− z′)2),

one has for 2g − 2 + n > 0

(26) W (g)
n (z1, . . . , zn) = (−2)2−2g−n

×
∑

d1+···+dn≤3g−3+n

n∏

i=1

(2di + 1)!! dzi

z2di+2
i

〈
n∏

i=1

ψdi
i e

∑
k t̃kκk

〉

g,n

,

where the dual times t̃k are defined by

(27) e−
∑

k t̃k uk

=
∑

k

(2k + 1)!! t2k+3 uk.

In particular for g ≥ 2,

(28) Fg = 22−2g
〈
e
∑

k t̃kκk

〉
g,0

.

Without loss of generality, we may assume t3 = 1, hence t̃0 = 0. Given L ∈ N∞,
we denote t̃L =

∏
i≥1 t̃

L(i)
i .

Lemma 4.2. Let αL be the constant in Theorem 3.3. Then

(29)
1∑

k≥0 t2k+3
=

∑

L∈N∞

αL

L!
t̃L.

Proof. By (27), we have

t2k+3 =
∑

L′∈N∞
|L′|=k

(−1)||L
′|| t̃L′

(2|L′|+ 1)!!L′!
.

Then the lemma follows from the definition of αL. ¤

Remark 4.3. If we take

∑

k≥0

t̃kuk = ln(1− u) = −
∞∑

k=1

uk

k
, |u| < 1,

then we have t̃k = −1/k, t2k+3 = 1/(2k + 1)!!, k ≥ 1. So (29) becomes

∑

L∈N∞

(−1)||L||αL

L!

∏

j≥1

1
jL(j)

=
1∑∞

k=0
1

(2k+1)!!

=
1

√
2e

∫ √
2

2
0

e−t2dt
≈ 0.7088.
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Similarly, if we specify
∑

k≥0 t̃kuk to be the functions − ln(1− u),− ln(1 + u) and
ln(1 + u) respectively, we get the following series

∑

L∈N∞

αL

L!

∏

j≥1

1
jL(j)

=
3
2
,

∑

L∈N∞

(−1)|L|αL

L!

∏

j≥1

1
jL(j)

=
3
4
,

∑

L∈N∞

(−1)|L|+||L||αL

L!

∏

j≥1

1
jL(j)

=
1∑∞

k=0
(−1)k

(2k+1)!!

=
√

e
√

2
∫ √

2
2

0
et2dt

≈ 1.3797.

The following result is known to experts (cf. [2, 7, 48, 49]). We give a proof for
reader’s convenience.

Proposition 4.4. The Eynard-Orantin recursion formula (25) for the deformed
Airy curve {x(z) = z2, y(z) =

∑
k tk+2z

k} is equivalent to the recursion formula of
mixed ψ and κ classes in Theorem 3.3.

Proof. The unique branch point is z = 0 and the recursion kernel equals

K(z1, z) =
1

z1−z′
∣∣z
z′=−z

8
∑

k≥0 t2k+3z2k+2

dz1

dz
=

1
4(z1 − z)(z1 + z)

∑
k≥0 t2k+3z2k+1

dz1

dz
.

For any fixed set (d1, . . . , dn) of non-negative integers and b ∈ N∞ with |b| +∑n
j=1 dj = 3g − 3 + n, the coefficient of

(−2)2−2g−n 1
b!

n∏

i=1

(2di + 1)!! dzi

z2di+2
i

in W
(g)
n (z1, . . . , zn) equals 〈κ(b)τd1 · · · τdn〉g by (26). On the other hand side, the

right-hand side of (25) is the summation of the following three terms.

Res
z→0

K(z1, z)W (g−1)
n+1 (z,−z, z2 . . . , zn),(30)

Res
z→0

K(z1, z)
n∑

j=2

(
W

(0)
2 (z, zj)W (g)

n (−z, z2, . . . , ẑj , . . . , zn)(31)

+W
(0)
2 (−z, zj)W (g)

n (z, z2, . . . , ẑj , . . . , zn)
)

,

Res
z→0

K(z1, z)
stable∑

g1+g2=g

I
∐

J={2,...,n}

W
(g1)
1+|I|(z, zI)W

(g2)
1+|J|(−z, zJ).(32)

To prove that the coefficients of (30) give the second term in the right-hand side of
(21), we need only prove that for any given r, s ≥ 0,

Res
z→0

1
(z2

1 − z2)
∑

k≥0 t2k+3z2k+1 · z2r+2s+4
=

∑

L∈N∞

αL

L!
t̃L 1

z
2r+2s+6−2|L|
1

.

This identity follows from Lemma 4.2.
To prove that the coefficients of (31) give the first term in the right-hand side

of (21), we need only prove that for any given 1 ≤ j ≤ n and r ≥ 0, the coefficient
of 1/z

2dj+2
j in

Res
z→0

(
1

(zj − z)2
+

1
(zj + z)2

)
1

2(z2
1 − z2)

∑
k≥0 t2k+3z2k+1 · z2r+2
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= Res
z→0

z2
j + z2

z2
j

(
1− z

zj

)2

(z2
1 − z2)

∑
k≥0 t2k+3z2k+1 · z2r+2

is equal to ∑

L∈N∞

αL

L!
t̃L 1

z
2r+2−2|L|−2dj

1

,

which again follows from Lemma 4.2.
Finally it is easy to see that the coefficients of (32) give the third term in the

right-hand side of (21). ¤

5. Large g asymptotics of integrals of ψ classes

By Faber-Kauffmann-Manin-Zagier’s formula [19]

〈
n∏

j=1

τdj κ
m
1 〉g =

m∑
p=1

(−1)m−p

p!

∑
m1+···+mp=m

mi>0

(
m

m1, . . . , mp

)
〈

n∏

j=1

τdj

p∏

j=1

τmj+1〉g,

the asymptotics of integrals of ψ classes should be helpful in understanding the
asysmptotics of Weil-Petersson volumes. The following result was proved by an
induction argument using (3) and (6) (cf. [26, §3]).

Proposition 5.1 ([26]). For any fixed set d = (d1, . . . , dn) of non-negative integers,
we have the large g asymptotic expansion

(33)
24gg!

∏n
i=1(2di + 1)!!〈τd1 · · · τdn

τ3g−2+n−|d|〉g
(6g)|d|

= 1 +
C1(d1, . . . , dn)

g
+

C2(d1, . . . , dn)
g2

+ · · · ,

where the left-hand side is a polynomial in 1/g with degree no more than |d| and
each Cr(d1, . . . , dn) is a polynomial in |d| and n.

Consider the following recursion relation

(34) αk+1 = k2αk +
k−1∑
m=2

αmαk+1−m, k ≥ 2,

one may check directly (cf. [18]) that if we put α0 = − 1
2 , α1 = 1

50 , α2 = 49
2500 and

αk, k ≥ 3 are recursively given by (34), then the formal series

y = −
√

2
3

∞∑

k=0

(
25

8
√

6

)k

αkx
1−5k

2

is a solution of the first Painlevé equation: d2y/dx2 = 6y2 − x. The proof of the
following asymptotic expansion of αk is due to Joshi and Kitaev [18].

Theorem 5.2 ([18, 43]). When 0 < α2 ≤ 1
4 , the solution of the recursion relation

(34) has an asymptotic expansion

(35) αk = c(α2)(k − 1)!2 (1 + δk) ,
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where c(α2) > 0 is independent of k. In particular, we have

(36) c(49/2500) =
1

4π2

√
3
5
.

The correction term δk can be expanded as

(37) δk =
∞∑

l=2

ηl(k − γl)∏l
m=1(k −m)2

, k →∞.

In particular, η2 = − 2
3α2, γ2 = 3, η3 = − 32

15α2, γ3 = 9
2 + 5

48α2.

Proof. (sketch) Define pk = αk/((k − 1)!)2, then the recursion (34) becomes

(38) pk+1 = pk +
k−1∑
m=2

pmpk+1−m

(
(k −m)!(m− 1)!

k!

)2

.

It is obvious that the sequence pk is increasing. In fact, it is also upperbounded by
(see [18] for a proof)

1
2 ln 2− 1

−
√

1
(2 ln 2− 1)2

− 2p2

2 ln 2− 1
.

It follows that c(α2) = limk→∞ pk is finite.
The existence of the asymptotic expansion (37) follows from an estimate of the

quadratic term in (38). See [18] for details. For a proof of (36), see [43]. ¤

Remark 5.3. By work of [16], the condition α2 ≤ 1
4 in Theorem 5.2 can be

weakened. Equation (37) implies that δk = O(1/k3).

The following lemma gives a recursion formula for the coefficients of the asymp-
totic expansion of δk.

Lemma 5.4. Let α2 > 0. Then the coefficients in the asymptotic expansion

(39) αk = c(α2)(k − 1)!2
(

1 +
λ1

k
+

λ2

k2
+

λ3

k3
+ · · ·

)
, k →∞

satisfy the recursion

(40) − nλn =
n−1∑

i=3

(−1)n−i

(
n

i− 1

)
λi

+
bn+1

2 c∑

i=2

2αi

∑
m1+···+mi−1=n+1−2i

mp≥0

i−1∏

j=1

(mj + 1)jmj

+
bn−2

2 c∑

i=2

2αi

n+1−2i∑

j=3

∑
m1+···+mi−1
=n+1−2i−j

mp≥0

(
j + 1 + mi−1

j + 1

)
(i− 1)mi−1

i−2∏

l=1

(ml + 1)lmlλj .

In particular, λ0 = 1, λ1 = λ2 = 0, λ3 = − 2
3α2, λ4 = −2α2, λ5 = − 82

15α2.
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Proof. For any given m ≥ 1, substituting (39) into (34) and dividing by c(α2)k!2,
we get

1 +
∞∑

i=1

λi

(k + 1)i
= 1 +

∞∑

i=1

λi

ki
+

m∑

i=2

2αi

(
1 +

∑∞
j=1

λj

(k−i+1)j

)

k2(k − 1)2 · · · (k − i + 1)2
+ O

(
1

k2m+2

)
.

The remainder of the quadratic term in (34) can be estimated by using (55).
By comparing the coefficient of 1

k2 , we get −λ1 + λ2 = λ2, i.e. λ1 = 0.
By comparing the coefficient of 1

k3 , we get −2λ2 + λ3 = λ3, i.e. λ2 = 0.
In general, by comparing the coefficient of 1

kn+1 , n ≥ 3, we get

λn+1+
n∑

i=3

λi

[
1

(1 + 1/k)i

]

k−(n+1−i)

= λn+1+
bn+1

2 c∑

i=2

2αi




i−1∏

j=1

1
(1− j/k)2




k−(n+1−2i)

+
bn−2

2 c∑

i=2

2αi

n+1−2i∑

j=3

λj

[
1

(1− i−1
k )j+2

i−2∏

l=1

1
(1− l/k)2

]

k−(n+1−2i−j)

,

which can be further simplified by using the binomial identity
(−a− 1

b

)
=

(
a + b

b

)
(−1)b, a, b ≥ 0.

In particular, when i ≥ 1, b ≥ 0, we have
(−n

1

)
= −n,

( −i
n+1−i

)
= (−1)n+1−i

(
n

i−1

)
,

(−1)b
(−2

b

)
= b + 1, (−1)b

(−(j+2)
b

)
=

(
j+1+b

b

)
.

So (40) follows immediately. ¤

Corollary 5.5. Let n ≥ 0. Then λn is a polynomial in α2 of degree bn/3c.
Proof. It can be proved by an inductive argument using (40). Note that αk is a
polynomial in α2 of order bk/2c. ¤

It was proved by Itzykson and Zuber [17] that up to a normalization coefficient,
the intersection numbers 〈τ3g−3

2 〉g is a solution of the recursion relation (34). We
give a more direct proof using (6), which is essentially the same as [51, Prop. 4.2].

Lemma 5.6. ([17]) For g ≥ 2, define

(41) αg =
(

24
25

)g (5g − 5)(5g − 3)
(3g − 3)!2g+1

〈τ3g−3
2 〉g.

Then αg is a solution of the recursion relation (34) with α2 = 49/2500.

Proof. When g ≥ 2, we have

(42) 〈τk
0 τ3g−3+k

2 〉g = (3g − 3 + k)〈τ1τ
k−1
0 τ3g−4+k

2 〉g
= (3g − 3 + k)(5g + 2k − 7)〈τk−1

0 τ3g−4+k
2 〉g

=
k∏

i=1

(3g − 3 + i)
k∏

i=1

(5g − 7 + 2i)〈τ3g−3
2 〉g.
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When g = 1, we have 〈τk
0 τk

2 〉1 = 2k−1k!(k − 1)!/24. Taking all dj = 2 in (6) with
g ≥ 3 and using the above equations, we get

(3g − 2)(5g − 3)(5g − 5)〈τ3g−3
2 〉g

=
1
12

(3g − 2)(3g − 3)(3g − 4)(3g − 5)(5g − 4)(5g − 6)(5g − 8)(5g − 10)〈τ3g−6
2 〉g−1

+
1
6

(
3g − 2

2

)
(3g − 4)(3g − 5)(5g − 8)(5g − 10)〈τ3g−6

2 〉g−1

+
1
2

g−2∑

h=2

(
3g − 2
3h− 1

)
(3h− 1)(3h− 2)(5h− 3)(5h− 5)〈τ3h−3

2 〉h

× (3g − 3h− 1)(3g − 3h− 2)(5g − 5h− 3)(5g − 5h− 5)〈τ3g−3h−3
2 〉g−h.

Substituting tg = (5g − 5)(5g − 3)〈τ3g−3
2 〉g/(3g − 3)! to the above equation,

tg+1 =
1
12

(5g + 1)(5g − 1)tg +
1
12

tg +
1
2

g−1∑

h=2

thtg+1−h

=
25g2

12
tg +

1
2

g−1∑

h=2

thtg+1−h,

which implies that when setting αg = (24/25)gtg/2g+1, we get

(43) αg+1 = g2αg +
g−1∑

h=2

αhαg+1−h, g ≥ 2.

as claimed. ¤
Corollary 5.7. The large genus asymptotic expansion of 〈τ3g−3

2 〉g is given by

(44) 〈τ3g−3
2 〉g =

(
25
24

)g 2g−1
√

3/5(3g − 3)!((g − 1)!)2

π2(5g − 5)(5g − 3)

×
(

1− 49
3750g3

− 49
1250g4

+ · · ·
)

.

Proof. It follows from Theorem 5.2 and Lemma 5.6. ¤

Next we study the asymptotic expansion of 〈τd1 · · · τdn
τ

3g−3+n−|d|
2 〉g as g →∞.

Proposition 5.8. For any fixed set d = (d1, . . . , dn) of non-negative integers, let
t = |d| − 2n and p = 3g − 3 + n− |d|. Define

(45) Zg(d1, . . . , dn) = (15g)t
〈τd1 · · · τdn

τp
2 〉wg

〈τ3g−3
2 〉wg

.

Then limg→∞ Zg(d1, . . . , dn) = 1.

Proof. Equation (57) implies that

(46) Zg(0, d2, . . . , dn) =
1

15g

n∑

j=2

(2dj + 1)Zg(d2, . . . , dj − 1, . . . , dn)

+ Zg(d2, . . . , dn)
(

1 + O

(
1
g

))
.
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Equation (56) implies that

(47) Zg(1, d2, · · · , dn) = Zg(d2, · · · , dn)
(

1 + O

(
1
g

))
.

From (46) and (47), we see that both the string and dilaton equations are com-
patible with limg→∞ Zg(d1, . . . , dn) = 1, so we may assume dj ≥ 2. We will proceed
by induction on n and t. By the DVV formula,

(48) 〈τd1 · · · τdn
τp
2 〉wg =

n∑

i=2

(2di + 1)〈τdi+d1−1

∏

j 6=1,i

τdj
τp
2 〉wg

+ 5p · 〈τd1+1τd2 · · · τdn
τp−1
2 〉wg +

1
2

∑

r+s=d1−2

〈τrτsτd2 · · · τdn
τp
2 〉wg−1

+
1
2

∑
r+s=d1−2

{2,··· ,n}=I
∐

J

g∑

g′=0

(
p

p′

)
〈τr

∏

i∈I

τdiτ
p′
2 〉wg′〈τs

∏

i∈J

τdiτ
p−p′
2 〉wg−g′ ,

where p′ = 3g′ − 2 + |I| −∑
i∈I di − r.

Multiplying both sides of (48) by (15g)|d|−2n/〈τ3g−3
2 〉wg , we will prove that the

third and fourth terms in the right-hand side of (48) belong to o(1) when g goes to
infinity.

From (44), we have

(49) 〈τ3g−6
2 〉g−1 = O

(
〈τ3g−3

2 〉g
g5

)
.

For the third term in the right-hand side of (48), we have

(50) (15g)|d|−2n
〈τrτsτd2 · · · τdn

τp
2 〉wg−1

〈τ3g−3
2 〉wg

= O

(
(15g)4

g5
· (15g)|d|−2n−4

〈τrτsτd2 · · · τdn
τp
2 〉wg−1

〈τ3g−6
2 〉wg−1

)

= O

(
(15g)4

g5
Zg−1(r, s, d2, . . . , dn)

)
= o(1).

The last equation is obtained by induction, since r + s +
∑n

i=2 di − 2(n + 1) <∑n
i=1 di − 2n.
Let us estimate the fourth term in the right-hand side of (48). Take a =

(a1, . . . , am) with m < n or |a| − 2m < t, by induction we have

(51)
〈τa1 · · · τam

τ
3h−3+m−|a|
2 〉wh

(3h− 3 + m− |a|)! ∼ C(a)
(

25
12

)h

hm−2(h− 1)!2,

where C(a) is a constant independent of h. Take b = (b1, . . . , bm′) with m′ < n or
|b| − 2m′ < t, by induction we also have

(52)
〈τb1 · · · τbm′ τ

3h−3+m′−|b|
2 〉wh

(3h− 3 + m′ − |b|)! ∼ C(b)
(

25
12

)h

hm′−2(h− 1)!2
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Let d = (a1 + b1 + 2, a2, . . . , am, b2, . . . , bm′). Then

(53)
〈τ3g−3

2 〉wg
(15g)|d|−2n

∼ C(d)
(

25
12

)g

gm+m′−3(g − 1)!2(3g − 3 + n− |d|)!.

Thus in order to prove that the fourth term in the right hand-side of (48), after
multiplied by (15g)|d|−2n/〈τ3g−3

2 〉wg , belongs to o(1) when g goes to infinity, we need
only prove that when m,m′ ≥ 1,

(54)
g−1∑

h=1

hm−2(h− 1)!2(g − h)m′−2(g − h− 1)!2 = o
(
gm+m′−3(g − 1)!2

)
,

which in turn follows from

(55)
g−1∑

h=1

(h− 1)!2(g − h− 1)!2

(g − 1)!2
=

g−1∑

h=1

1

(g − 1)2
(

g−2
h−1

)2 ≤
1

g − 1
.

So we proved that only the first two terms in the right-hand side of (48) con-
tribute to the large genus limit of Zg(d1, . . . , dn).

Zg(d1, . . . , dn) =
1

15g

n∑

j=2

(2dj + 1)Zg(d2, . . . , dj + d1 − 1, . . . , dn)

+
5(3g − 3 + n− |d|)

15g
Zg(d1 + 1, d2, . . . , dn) + o(1).

Replacing d1 + 1 by d1 and leting g →∞, we obtain limg→∞ Zg(d1, . . . , dn) = 1 by
induction. ¤

Lemma 5.9. The dilaton and string equations for Zg(d1, . . . , dn) are

Zg(1, d2, . . . , dn) =
5g − 7 + 2n− |d|

5g
Zg(d2, . . . , dn),(56)

Zg(0, d2, . . . , dn) =
1

15g

n∑

j=2

(2dj + 1)Zg(d2, . . . , dj − 1, . . . , dn)(57)

+
(3g − 3 + n− |d|)(5g − 7 + 2n− |d|)

15g2
Zg(d2, . . . , dn),

where |d| = d2 + · · ·+ dn.

Proof. By (5), we have

Zg(1, d2, . . . , dn) = (15g)|d|+1−2n
〈τ1τd2 · · · τdnτp

2 〉wg
〈τ3g−3

2 〉wg
=

3(2g − 3 + n + p)
15g

(15g)|d|+2−2n
〈τd2 · · · τdn

τp
2 〉wg

〈τ3g−3
2 〉wg

,

where p = 3g − 4 + n− |d|, from which (56) follows.
By (4), we have

Zg(0, d2, . . . , dn) = (15g)|d|−2n
〈τ0τd2 · · · τdn

τp
2 〉wg

〈τ3g−3
2 〉wg
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=
1

15g

n∑

j=2

(2dj +1)Zg(d2, . . . , dj−1, . . . , dn)+
3g − 3 + n− |d|

3g
Zg(1, d2, . . . , dn),

which implies (57) through (56). ¤
Corollary 5.10. We have Zg(∅) = 1 and

Zg(0) = 1− 5
3g

+
2

3g2
, Zg(1) = 1− 1

g
,

Zg(2, d1, . . . , dn) = Zg(d1, . . . , dn).

Proof. It is obvious. ¤
Corollary 5.11. For any fixed set d = (d1, . . . , dn) of non-negative integers, we
have

(58) 〈τd1 · · · τdnτ
3g−3+n−|d|
2 〉g

∼ 15ng2n−|d|
∏n

i=1(2di + 1)!!

(
25
24

)g 2g−1
√

3/5(3g − 3)!((g − 1)!)2

π2(5g − 5)(5g − 3)
.

Proof. It follows from Proposition 5.8 and Corollary 5.7. ¤
Theorem 5.12. For any fixed set d = (d1, . . . , dn) of non-negative integers, the
coefficients in the asymptotic expansion

(59) Zg(d1, . . . , dn) = 1 +
β1(d1, . . . , dn)

g
+

β2(d1, . . . , dn)
g2

+ · · · , g →∞
satisfy the recursion

(60) βr(d1 + 1, . . . , dn)

= βr(d1, . . . , dn)− 1
15

n∑

j=2

(2dj + 1)βr−1(d2, . . . , dj + d1 − 1, . . . , dn)

− n− |d| − 3
3

βr−1(d1 + 1, d2 . . . , dn)

− 2
15

d1−2∑

j=0




(1− 1
g )2n+2−|d|(1− 3

5g )
∑∞

i=0
βi(j,d1−2−j,d2,...,dn)

gi(1− 1
g )i

∑∞
i=0

λi

gi(1− 1
g )i

(1− 4
3g )(1− 5

3g )(1− 2
g )(1− 8

5g )
∑∞

i=0
λi

gi




g−(r−1)

−
d1−2∑
j=0

{2,··· ,n}=I
∐

J

∑

h

3−2h−|I|4h5
∑

i∈I di+j+2−2|I|−5h 〈τj

∏
i∈I τdi

τp′
2 〉wh

p′!

·



(1− h
g )2|J|+4−d1+j−∑

i∈J di(1− 1
g )(1− 3

5g )
∑∞

i=0
βi(d1−2−j,dJ )

gi(1−h
g )i

∑∞
i=0

λi

gi(1−h
g )i

(1− h+1
g )(1− 5h+3

5g )
∏3h+2

i=3 (1− i
3g )

∏h
i=1(1− i

g )2
∑∞

i=0
λi

gi

×
−3+n−|d|∏

l=−3h+1+|J|−∑
i∈J di−d1+j

(1 +
l

3g
)




g−(r−2h−|I|)

,

where λi = λi( 49
2500 ), p′ = 3h − 2 + |I| −∑

i∈I di − j and the summation range of

h is max(0, d j+
∑

i∈I di−|I|+2

3 e) ≤ h ≤ b r−|I|
2 c. And β0(d1, . . . , dn) = 1, βr(∅) = 0

when r > 0.
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Proof. The proof is a tedious but straightforward computation using (48). We omit
the details. ¤

Corollary 5.13. The dilaton and string equations for β(d1, . . . , dn) are

βr(1, d2, . . . , dn) = βr(d2, . . . , dn) +
2n− |d| − 7

5
βr−1(d2, . . . , dn),(61)

βr(0, d2, . . . , dn) =
1
15

n∑

j=2

(2dj + 1)βr−1(d2, . . . , dj − 1, . . . , dn)(62)

+βr(d2, . . . , dn) +
11n− 8|d| − 36

15
βr−1(d2, . . . , dn)

+
(n− |d| − 3)(2n− |d| − 7)

15
βr−2(d2, . . . , dn),

where |d| = d2 + · · ·+ dn.

Proof. It follows from Lemma 5.9. ¤

Lemma 5.14. (i) Let s = #{i | di = 0}. Then

(63) β1(d1, . . . , dn) =
|d|2 + 11|d| − 4n|d|

10
+

2n2 − 11n

5
+

5s− s2

30
.

(ii) Let di ≥ 3, ∀1 ≤ i ≤ n. Then

β2(d1, . . . , dn) =
1

200
|d|4 +

(
− 1

25
n +

7
60

)
|d|3 +

(
3
25

n2 − 7
10

n +
143
200

)
|d|2

+
(
− 4

25
n3 +

7
5
n2 − 143

50
n +

169
300

)
|d|+ 2

25
n4 − 14

15
n3 +

143
50

n2 − 251
225

n.

Proof. For (i), first note that by (62),

β1(0n) = β1(0n−1) +
11n− 36

15
=

11n2 − 61n

30
.

Let q = #{i ≥ 2 | di = 0}. By (60), we have

β1(d1 + 1, . . . , dn) = β1(d1, . . . , dn)− 1
15

n∑

j=2

(2dj + 1) +
q

15
δd1,0

− n− |d| − 3
3

− 2
15

(d1 − 1)− 2
15

δd1,0

= β1(d1, . . . , dn) +
|d|
5
− 2n− 6

5
+

q − 2
15

δd1,0.

By iteration, we have

β1(d1, . . . , dn) = β1(0n) +
1
5

|d|−1∑

i=1

i− (2n− 6)|d|
5

+
n−1∑

i=s

i− 2
15

=
11n2 − 61n

30
+
|d|2 − |d|

10
− (2n− 6)|d|

5
+

(n + s− 5)(n− s)
30

=
|d|2 + 11|d| − 4n|d|

10
+

2n2 − 11n

5
+

5s− s2

30
,

The proof of (ii) is similar. We omit the details. ¤
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Remark 5.15. Let di ≥ 0 and r ≥ 1. One could prove from (60) inductively
that each βr(d1, . . . , dn) is a polynomial in |d| and n as long as min(d1, . . . , dn) is
sufficiently large.

From (60), we computed the first few terms of Zg(3),

(64) Zg(3) =
7g〈τ3τ

3g−5
2 〉g

〈τ3g−3
2 〉g

= 1 +
β1(3)

g
+

β2(3)
g2

+ · · ·

= 1 +
6
5g

+
127
90g2

+
2207

1350g3
+

94726
50625g4

+
3219853

1518750g5
+ · · · .

It would be interesting to see whether Zg(3) is a rational function of g.
For g ≥ 2, define

cg =
(5g − 4)(5g − 6)

(5g − 5)!
〈τ3τ

3g−5
2 〉g.

In particular, c2 = 29/240.
Let ag = 〈τ3g−3

2 〉g/(3g − 3)!. Similar to the proof of Lemma 5.6, we have the
following recursion formula which can be used to compute cg fastly,

(65) cg =
1
12

(25g2 − 60g + 36)cg−1 − (15g2 − 27g + 12)ag

+
(

125g4 − 750g3 +
13255

8
g2 − 19177

12
g +

1706
3

)
ag−1

+
g−2∑

h=2

(5g − 5h− 3)(5g − 5h− 5)
(

(30h2 − 52h + 22)ah + ch

)
ag−h,

for g ≥ 3. Denote by Qk,g the error term of order k approximation to Zg(3).

Qk,g = gk

(
Zg(3)−

k∑
r=0

βr(3)
gr

)
,

which should goes to 0 as g →∞ (see Table 1).

Table 1. Values of Qk,g (keep 6 decimal places)

k g = 600 g = 700 g = 800 g = 900 g = 1000
0 0.002003 0.001717 0.001502 0.001335 0.001201
1 0.002356 0.002019 0.001766 0.001569 0.001412
2 0.002729 0.002339 0.002046 0.001818 0.001636
3 0.003124 0.002677 0.002342 0.002081 0.001873
4 0.003540 0.003033 0.002653 0.002358 0.002122

6. Large n asymptotics of integrals of ψ classes

In this sectioin, we study the asymptotic expansion of integrals of ψ classes when
the number of marked points goes to infinity while the genus g is fixed.
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Theorem 6.1. For any fixed g ≥ 0 and a set d = (d1, . . . , dn) of non-negative
integers, we have

(66) lim
k→∞

〈τd1 · · · τdnτk
0 τ3g−2+k+n−|d|〉g,k+n+1

k|d|
=

1
24gg!

∏n
j=1 dj !

.

Proof. We use induction on |d|. When |d| = 0, (66) holds by the string equation.
We may also assume all dj ≥ 1. Then by the DVV formula (3), we have

(67) (2d1 + 1)!!〈τd1 · · · τdn
τk
0 τ3g−2+k+n−|d|〉g,k+n+1

=
n∑

j=2

(2d1 + 2dj − 1)!!
(2dj − 1)!!

〈τdj+d1−1

n∏
i=2
i6=j

τdi
τk
0 τ3g−2+k+n−|d|〉g,k+n

+ k(2d1 − 1)!!〈τd2 · · · τdn
τd1−1τ

k−1
0 τ3g−2+k+n−|d|〉g,k+n

+
(2d1 + 6g − 5 + 2k + 2n− 2|d|)!!

(6g − 5 + 2k + 2n− 2|d|)!! 〈τd2 · · · τdnτk
0 τ3g−3+k+n−|d|+d1〉g,k+n

+
1
2

∑

r+s=d1−2

(2r + 1)!!(2s + 1)!!〈τrτsτd2 · · · τdn
τk
0 τ3g−2+k+n−|d|〉g−1,k+n+2

+
∑

r+s=d1−2

(2r + 1)!!(2s + 1)!!
k∑

j=0

(
k

j

)

×
∑

{2,··· ,n}=I
∐

J

〈τsτ3g−2+k+n−|d|τ
k−j
0

∏

i∈J

τdi
〉g−g′〈τrτ

j
0

∏

i∈I

τdi
〉g′ .

By induction on |d|, the first and fourth terms in the right-hand side of (67)
are of orders O(k|d|−1) and O(k|d|−2) respectively, so they can be omitted. Let us
analyze the remaining three terms. For the second term,

k(2d1 − 1)!!〈
n∏

j=2

τdj τd1−1τ
k−1
0 τ3g−2+k+n−|d|〉g,k+n ∼ d1(2d1 − 1)!!k|d|

24gg!
∏n

j=1 dj !
.

For the third term,

(2d1 + 6g − 5 + 2k + 2n− 2|d|)!!
(6g − 5 + 2k + 2n− 2|d|)!! 〈

n∏

j=2

τdj
τk
0 τ3g−3+k+n−|d|+d1〉g,k+n ∼ 2d1d1!k|d|

24gg!
∏n

j=1 dj !
.

For the last term,

∑

r+s=d1−2

(2r + 1)!!(2s + 1)!!
k∑

j=0

(
k

j

)

×
∑

{2,··· ,n}=I
∐

J

〈τsτ3g−2+k+n−|d|τ
k−j
0

∏

i∈J

τdi
〉g−g′〈τrτ

j
0

∏

i∈I

τdi
〉g′

∼
d1−2∑
r=0

(2r+1)!!(2d1−3−2r)!!
(

k

r + 2

)
〈τd1−2−jτ3g−2+k+n−|d|τ

k−r−2
0

n∏

i=2

τdi
〉g〈τrτ

r+2
0 〉0

=
d1−2∑
r=0

(2d1 − 3− 2r)!!(2r + 1)!!d1!
(r + 2)!(d1 − 2− r)!

· k|d|

24gg!
∏n

j=1 dj !
.
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So (66) would follow if we can prove that

d1(2d1 − 1)!! + 2d1d1! +
d1−2∑
r=0

(2d1 − 3− 2r)!!(2r + 1)!!d1!
(r + 2)!(d1 − 2− r)!

= (2d1 + 1)!!.

Since (2n − 1)!! = 2nΓ(n + 1
2 )/

√
π and Γ(1

2 ) =
√

π, Γ(− 1
2 ) = −2

√
π, the above

equation is equivalent to

(68)
n∑

r=0

(
n

r

)
Γ

(
n− r +

3
2

)
Γ

(
r − 1

2

)
= −πΓ(n + 1), n ≥ 0.

To prove (68), we use
(
n
r

)
=

(
n−1

r

)
+

(
n−1
r−1

)
and check directly that both sides satisfy

the recursion f(n) = nf(n− 1). ¤

For any given g ≥ 0 and a set d = (d1, . . . , dn) of non-negative integers, define

(69) Yk,g(d1, . . . , dn) =
24gg!

∏n
j=1 dj !〈τd1 · · · τdn

τk
0 τ3g−2+k+n−|d|〉g,k+n+1

k|d|
.

Theorem 6.2. Yk,g(d1, . . . , dn) satisfies the following recursion formula

(70) (2d1 + 1)!!Yk,g(d1, . . . , dn)

=
1
k

n∑

j=2

(2d1 + 2dj − 1)!!d1!dj !
(2dj − 1)!!(dj + d1 − 1)!

Yk,g(d1, . . . , dj + d1 − 1 . . . , dn)

+ d1 · (2d1 − 1)!!
(

1− 1
k

)|d|−1

Yk−1,g(d1 − 1, d2 . . . , dn)

+ 2d1d1!
d1∏

i=1

(
1 +

2d1 + 6g + 2n− 2|d| − 2i− 3
2k

)
Yk,g(d2, . . . , dn)

+
1
k2

d1−2∑

i=0

(2i + 1)!!(2d1 − 2i− 3)!! 12g · d1!
i!(d1 − 2− i)!

Yk,g−1(i, d1 − 2− i, d2, . . . , dn)

+
d1−2∑
j=0

{2,··· ,n}=I
∐

J

(2j +1)!!(2d1−2j−3)!!
∑

h

〈τjτ
p
0

∏

i∈I

τdi
〉h

24hd1!
∏h−1

i=0 (g − i)
∏

i∈I di!
p!(d1 − 2− j)!

× 1
k3h+|I|

(
1− p

k

)d1−2−j+
∑

i∈J di
p−1∏

i=1

(
1− i

k

)
Yk−p,g−h(d1 − 2− j, dJ),

where p = j +
∑

i∈I di − 3h + 2 − |I| and the summation range of h is 0 ≤ h ≤
min(g, b j+

∑
i∈I di+2−|I|

3 c). Moreover, Yk,g(d1, . . . , dn) is a polynomial in 1/k.

Proof. The recursion follows by multiplying
24gg!

∏n
j=1 dj !

k|d| to Equation (67). The
last assertion follows from Lemma 6.5. ¤

Corollary 6.3. For any given g ≥ 0 and a set d = (d1, . . . , dn) of non-negative
integers, the coefficients in the asymptotic expansion

(71) Yk,g(d1, . . . , dn) = 1 +
η1,g(d1, . . . , dn)

k
+

η2,g(d1, . . . , dn)
k2

+ · · · , k →∞
satisfy the recursion
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(72) (2d1 + 1)!!ηr,g(d1, . . . , dn)

=
n∑

j=2

(2d1 + 2dj − 1)!!d1!dj !
(2dj − 1)!!(dj + d1 − 1)!

ηr−1,g(d1, . . . , dj + d1 − 1 . . . , dn)

+ d1 · (2d1 − 1)!!
r∑

j=0

(−1)r−j

(|d| − j − 1
r − j

)
ηj,g(d1 − 1, d2 . . . , dn)

+ 2d1d1!
min(d1,r)∑

j=0

[
d1∏

i=1

(
1 +

2d1 + 6g + 2n− 2|d| − 2i− 3
2k

)]

k−j

ηr−j,g(d2, . . . , dn)

+
d1−2∑

i=0

(2i + 1)!!(2d1 − 2i− 3)!! 12g · d1!
i!(d1 − 2− i)!

ηr−2,g−1(i, d1 − 2− i, d2, . . . , dn)

+
d1−2∑
j=0

{2,··· ,n}=I
∐

J

(2j +1)!!(2d1−2j−3)!!
∑

h

〈τjτ
p
0

∏

i∈I

τdi〉h
24hd1!

∏h−1
i=0 (g − i)

∏
i∈I di!

p!(d1 − 2− j)!

×
[(

1− p

k

)d1−2−j+
∑

i∈J di
p−1∏

i=1

(
1− i

k

) ∞∑

i=0

ηi,g−h(d1 − 2− j, dJ)
ki(1− p

k )i

]

k−(r−3h−|I|)

,

where p = j +
∑

i∈I di − 3h + 2 − |I| and the summation range of h is 0 ≤ h ≤
min(g, b j+

∑
i∈I di+2−|I|

3 c, b r−|I|
3 c).

Proof. It follows from Equation (70). ¤

Corollary 6.4. Let |d| = d2 + · · ·+ dn. Then

Yk,g(1, d2, . . . , dn) =
(

1 +
2g − 2 + n

k

)
Yk,g(d2, . . . , dn),(73)

Yk,g(0, d2, . . . , dn) =
(

1 +
1
k

)|d|
Yk+1,g(d2, . . . , dj − 1, . . . , dn),(74)

or equivalently in terms of coefficients of the asymptotic expansion,

ηr,g(1, d2, . . . , dn) = ηr,g(d2, . . . , dn) + (2g − 2 + n)ηr−1,g(d2, . . . , dn),

ηr,g(0, d2, . . . , dn) =
r∑

j=0

(|d| − j

r − j

)
ηj,g(d2, . . . , dn).

Proof. Equation (73) follows from the dilaton equation and (74) follows from the
definition. ¤

Lemma 6.5. Given di ≥ 0, then

yd1,...,dn(k, g) :=
k|d|

∏n
j=1(2dj + 1)!!∏n

j=1 dj !
Yk,g(d1, . . . , dn)

= 24gg!
n∏

j=1

(2dj + 1)!!〈τd1 · · · τdnτk
0 τ3g−2+k+n−|d|〉g,k+n+1

is an integer-valued polynomial in k and g with degree |d|, whose highest degree
terms in k and g are respectively

∏n
j=1(2dj+1)!!∏n

j=1 dj !
k|d| and (6g)|d|.
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Proof. We have y∅(k, g) = 1 and by (70),

(75) yd1,...,dn
(k, g) =

n∑

j=2

(2dj + 1)!!yd1,...,dj+d1−1...,dn
(k, g)

+ k yd1−1,d2...,dn
(k − 1, g) +

d1∏

i=1

(2k + 2d1 + 6g + 2n− 2|d| − 2i− 3)yd2,...,dn
(k, g)

+
d1−2∑

i=0

12g yi,d1−2−i,d2,...,dn
(k, g − 1) +

d1−2∑
j=0

{2,··· ,n}=I
∐

J

b j+
∑

i∈I di+2−|I|
3 c∑

h=0

〈τjτ
p
0

∏

i∈I

τdi
〉wh

× 24h
∏h−1

i=0 (g − i)
∏p−1

i=0 (k − i)
p!

yd1−2−j,dJ
(k − p, g − h),

where p = j +
∑

i∈I di − 3h + 2− |I|. From [24, Thm. 4.3 (iv) and Prop. 4.4], we
know

24hh! · 〈τjτ
p
0

∏

i∈I

τdi〉wh ∈ Z.

We can see inductively from (75) that yd1,...,dn
(k, g) is an integer-valued polynomial

in k and g.
For the degree of yd1,...,dn

(k, g), we need only check that in the last term

|d| −
(

p + h +
∑

i∈I

di + d1 − 2− j

)
= |d| − (|d| − 2h)

= 2h ≥ 0

The coefficient of k|d| is obvious. The coefficient of g|d| follows by induction. ¤

The above lemma generalized [26, Thm 4.1] (corresponding to the case k = 0).
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Stud. Appl. Math. 107 (2001), 253–291.
[19] R. Kaufmann, Yu. Manin, and D. Zagier, Higher Weil-Petersson volumes of moduli spaces

of stable n-pointed curves, Comm. Math. Phys. 181 (1996), 763-787.
[20] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy

function. Comm. Math. Phys. 147 (1992), no. 1, 1–23.
[21] K. Liu and H. Xu, Mirzakhani’s recursion formula is equivalent to the Witten-Kontsevich
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