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0. Introduction

The 1980s were the decade of unification in mathematics. The research activities
influenced by mathematical physics revealed many unexpected relations between
disciplines of mathematics. Such activities include gauge theory, conformal field
theory and knot theory. We can also include theories of integrable partial differential
equations among them. In this paper, we study a typical example of integrable
systems—the Kadomtsev-Petviashvili equation.

The simpler forms of the KP equation such as the Korteweg-de Vries equation
and the Boussinesq equation have been known since the last century. These equa-
tions were originally proposed to analyze solitary wave propagation observed in a
British canal. About the same time in Italy, Pincherle was investigating a ring of
pseudo-differential operators in one variable. The formal expansion of the inverse
of a linear ordinary differential operator in terms of pseudo-differential operators
seems to have been well known before 1900. Schur used this technique in 1905
to study Wallenberg’s problem of finding commuting ordinary differential opera-
tors. Schur proved that a set of differential operators which commute with a given
operator is itself commutative.

These three roots, namely, integrable nonlinear partial differential equations,
the theory of pseudo-differential operators in one variable and commuting ordinary
differential operators, were put together by the Russian school in the mid 1970s.

*Published in Perspectives in Mathematical Physics, R. Penner and S. T. Yau, Editors, (1994)
151–218.
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This movement includes Krichever’s (re)discovery of a deep relation between the
KP theory and algebraic curves. The slow and steady progress is a thing of the
past. After 1980, the KP theory has developed at an enormous rate. Let us just
enumerate some of the mathematical subjects known to be related with the KP
equations: algebraic curves, theta functions, commuting ordinary differential op-
erators, Schur polynomials, infinite-dimensional Grassmannians, affine Kac-Moody
algebras, vertex operators, loop groups, Jacobian varieties, the determinant of the
Cauchy-Riemann operators, symplectic geometry, string theory, conformal field the-
ory, determinant line bundles on moduli spaces of algebraic curves and their co-
homology, vector bundles on curves, Prym varieties, commuting partial differential
operators, 2-dimensional quantum gravity, matrix models and intersection theory
of cohomology classes of moduli spaces of stable algebraic curves. To make this list
complete, we have to add an even larger number of subjects from applied mathe-
matics.

The KP equations are thus as ubiquitous as elliptic functions. Every time people
discovered the relation between the KP theory and each of the above mentioned
subjects, it was greeted with great surprise by the researchers in the field.

The purpose of this paper is to give a systematic theory of the KP equations
and to give some new results including the treatment of spectral curves (Section 2),
geometric inverse scattering (Section 3), a construction of commuting partial dif-
ferential operators (Section 6), and theorems on matrix integrals (Section 8). We
also intend to give a short review of the algebraic theory of the KP system because,
as far as I know, it does not seem to be really covered in any existing articles and
books.

We begin this paper by observing that the Weierstrass elliptic function solves the
KP equation. We then ask: why do algebraic curves have something to do with the
KP equations? The explanation we have is the following: First of all, the KP equa-
tions govern all possible iso-spectral deformations of an arbitrary linear ordinary
differential operator. On the other hand, every ordinary differential operator de-
fines a unique algebraic curve as a set of eigenvalues with resolved multiplicity. The
eigenspace of the operator defines a vector bundle on this curve. Since iso-spectral
deformations preserve the eigenvalues, they should correspond to deformations of
vector bundles on the curve. In particular, these deformations generate Jacobian
varieties, and even arbitrary Prym varieties in a more general setting.

These are the topics of Sections 2–6. In Section 2, we define spectral curves
as a set of resolved eigenvalues. In order to make the spectral curves compact,
we need pseudo-differential operators, which appear as a local coordinate of the
spectral curve around the point at infinity. The Grassmannians are introduced in
Section 3 as a tool for determining all the geometric information that a differential
operator possesses. To a set of geometric data consisting of an algebraic curve
and a vector bundle on it, we can associate a point of the Grassmannian, which
is indeed a cohomology group of the vector bundle. By the theory of pseudo-
differential operators of Section 2, this cohomology changes holomorphic functions
on the curve into ordinary differential operators.

The iso-spectral deformations are defined in Section 4. The KP system is de-
rived as a master equation for all such deformations. In order to establish unique
solvability of the KP system, we use infinite-dimensional geometry and a general-
ization of the Birkhoff decomposition. The geometric counterparts of iso-spectral
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deformations are studied in Section 5. We prove that a finite-dimensional moduli
space of iso-spectral deformations is canonically isomorphic to a Jacobian variety.
An algebro-geometric interpretation of this theorem gives a complete characteriza-
tion of Jacobian varieties (a contribution to the Schottky problem). Section 6 is
devoted to generalizing the setting to include matrix coefficients. We see that ar-
bitrary Prym varieties appear naturally in lieu of Jacobian varieties in the original
setting. We can finally establish a long-awaited characterization of Prym varieties
in terms of the multi-component KP systems. This theory has another byproduct:
we give a new construction of commuting partial differential operators that are
globally defined on Prym varieties.

We define τ -functions of the KP system in Section 7, and observe its two-fold
connections with infinite-determinants. In the final section, we prove that the
Hermitian matrix integral is a τ -function of the KP system. The nature of this
solution is still unclear to us. Unlike the solutions studied earlier, this solution
does not give commuting differential operators. Instead, it defines an embedding
of sl(2,C) into the ring of differential operators. The fact that the presentation of
Section 8 is computational rather than conceptual shows the current stage of our
understanding of this topic.

Some of the material of Section 3, 4, 5 and 6 is taken from [35] [32] [31] and
[27] respectively. We do not deal with anything concerning supersymmetry in this
paper. We refer to [46] and [36] for this topic.

By the nature of the subject, the bibliography of the KP theory is tremendously
large. It is thus impossible to list all the important contributions. I apologize to the
authors for any omission of their works in this paper. My intention of the current
article is not to give a complete review of the entire KP theory, which is at any
rate totally beyond my ability, but to give a systematic presentation of algebraic
structure of the KP theory. References are therefore restricted to those which have
direct relation to the topics covered in this paper.

1. The KP equation and elliptic functions

The KP equation is the following nonlinear partial differential equation

(1.1)
3
4
uyy −

(
ut −

1
4
uxxx − 3uux

)
x

= 0

for the unknown function u = u(x, y, t), where the subscripts denote partial deriva-
tives: ut = ∂u/∂t, etc. One can see immediately that every solution of the KdV
equation

(1.2) ut −
1
4
uxxx − 3uux = 0

gives a solution to the KP equation by giving u trivial y-dependence. In 1895,
Korteweg and de Vries [18] derived Eq.(1.2) from the Navier–Stokes equation of
fluid dynamics as a special limit to give a model of nonlinear wave motions of
shallow water observed in a canal. They showed that the KdV equation admits a
solitary wave solution, or a one-soliton solution, which we will derive shortly. The
motivation in the 1970 paper of Kadomtsev and Petviashvili [22] for introducing
the three dimensional nonlinear equation Eq.(1.1) was to study transversal stability
of the soliton solutions of the KdV equation.
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In a sense, these equations do not describe the real world, because they are
derived from a real physical equation by taking a natural but rather unphysical
limit. Thus none of the exact solutions of these equations can be seen in a real
canal. The exact solutions live only in the ideal world, i.e. in the mathematical
world. In what follows, we do not study Eqs.(1.1) and (1.2) in their historical
settings. We believe that these equations are important not because they represent
the shallow water wave motion approximately, but because they have rich structures
in exact mathematics such as in the algebraic geometry of curves, vector bundles,
infinite-dimensional Grassmannians, and matrix integrals. For this reason, we will
not pay much attention to the water waves any longer, and consider u, x, y and t
as complex variables.

In the world of complex numbers, the individual coefficients of the KdV equation
(1.2) are no longer important. In fact, a suitable re-scaling

u 7−→ αu

x 7−→ βx

t 7−→ γt

makes (1.2) equivalent to

aut + buxxx + cuux = 0

as long as abc 6= 0. The reason for our choice of the form of (1.2) will soon become
clear.

Let us find a simple exact solution of the KdV equation. We put

(1.3) u(x, t) = − f(x+ ct) +
c

3
to find a wave-like solution that propagates with a constant velocity −c. The func-
tion f determines the shape of the wave, which is invariant under time evolution.
By a simple calculation, one obtains

f ′′′ = 12ff ′

from the KdV equation, where f = f(z) = f(x+ ct) and f ′ denote the z-derivative
of f . This equation has an integral

2f ′′ = 12f2 − g2

with a constant of integration g2. Multiplying both sides by f ′, we obtain

2f ′′f ′ = 12f2f ′ − g2f
′ ,

which we can integrate again:

(1.4) (f ′)2 = 4f3 − g2f − g3 ,

where g3 is another integration constant. Eq.(1.4) is a rather famous equation called
the Weierstrass differential equation. We have chosen the coefficients of Eq.(1.2)
so that we obtain the canonical form of the Weierstrass differential equation. It is
obvious from the equation that the inverse function of a solution of (1.4) has an
integral expression

z =
∫

df√
4f3 − g2f − g3
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which is just the elliptic integral. Thus, the Weierstrass elliptic function

(1.5) ℘(z) =
1
z2

+
g2

20
z2 +

g3

28
z4 +

g2
2

1200
z6 +

3g2g3

6160
z8 + · · ·

gives a solution of (1.4). The corresponding solution of the KdV equation

(1.6) u(x, t) = − ℘(x+ ct) +
c

3
is called a periodic solution. For generic values of g2 and g3, the periodic solution
(1.6) corresponds to an elliptic curve

(1.7) C◦ =
{

(X,Y ) | Y 2 = 4X3 − g2X − g3

}
.

Let us see what happens if we set the parameters g2 and g3 to special values. The
elliptic curve Y 2 = 4X3 − g2X − g3 becomes singular when g2 and g3 satisfy

(1.8) g3
2 − 27g2

3 = 0 .

In terms of the speed c of (1.3), the special values of g2 and g3 satisfying (1.8) are
represented by {

g2 = 4
3c

2

g3 = − 8
27c

3.

Then the elliptic function ℘(z) degenerates to a trigonometric function

f(z) =
1
z2

+
c2

15
z2 − 2c3

189
z4 +

c4

675
z6 − 2c5

10395
z8 + · · ·

= c(csch
√
cz)2 +

c

3
,

where we define

csch z =
2

ez − e−z
.

The corresponding solution to the KdV equation becomes

(1.9) u(x, t) = − c
(
csch

√
c(x+ ct)

)2
.

Unfortunately, we have obtained a solution with a singularity at x + ct = 0. But
if we set x′ = x − π

2 i and consider x′ and t as real variables, then the resulting
solution

(1.10) u(x′, t) = c
(
sech

√
c(x′ + ct)

)2
gives the famous one-soliton solution that is nonsingular for all real values of x′

and t which satisfies

|u(x′, t)| → 0 as |x′| → ∞.

Finally, if we let c→ 0, then the elliptic function reduces to

f(z) =
1
z2

and the elliptic curve degenerates to a rational curve with a cubic cusp singularity:
Y 2 = 4X3. The corresponding solution

u(x, t) = − 1
x2

is known as a rational solution.
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Therefore, we obtain the following dictionary:
periodic solutions = nonsingular curves

soliton solutions = curves with rational double points
rational solutions = rational curves with more complicated

singularities.

Thus the exact solutions of the KdV equation correspond to algebraic curves, with
or without singularities. Now one can ask: why does the KdV (and hence the
KP) equation have something to do with algebraic curves? How can we utilize our
knowledge of these equations to study algebraic curves? Conversely, can we use
algebro-geometric techniques to study these equations?

In the mid 1970s, Krichever [23] produced many exact solutions of the KP equa-
tions by using the geometry of algebraic curves. Then in the 1980s, the KP equation
was effectively used to study the algebraic geometry of Jacobian varieties. In the
following sections, we give an explanation of this (then) mysterious connection be-
tween the KP equation and algebraic curves.

2. The spectral curve of a differential operator

In this section, we define a spectral curve associated with a linear ordinary
differential operator. This curve emerges as the set of eigenvalues of the differential
operator.

Let P be a linear ordinary differential operator. If P is globally defined and acts
on a space of functions with global conditions (such as boundary conditions), then
the eigenvalues are localized—they may be discrete. Therefore, we do not expect
any geometric structures in the set of eigenvalues. For example, take

P = −
(
d

dx

)2

+
x2

4
− 1

2
and consider the eigenvalue problem

(2.1) Pψ = λψ

for L2 functions ψ defined on R1. Then the set Spec P of eigenvalues of P coincides
with the set of nonnegative integers. But if we think of P as an operator defined on
an infinitesimal neighborhood of the origin 0 ∈ C and acting on the vector space of
all formal power series in x with complex coefficients, then every complex number
is an eigenvalue of P . Thus, localizing P and ψ makes Spec P global:

Spec P = C .

The asymptotic expansion of (2.1) as λ tends to infinity makes it possible to consider
∞ as an eigenvalue of P . Thus we can compactify the space of eigenvalues to obtain
P1 = Spec P ∪ {∞}. No matter how simple it is, we thus have a geometric object.

Let us study another example. This time we take the Schrödinger operator with
the Weierstrass elliptic function as its potential:

(2.2) P =
(
d

dx

)2

− 2℘(x+ ε) ,

where ε is a small constant to make P regular at x = 0 ∈ C. If we consider the
eigenvalue problem (2.1) for formal power series, then again we have P1 as the set
of eigenvalues. Note that every eigenvalue of P has multiplicity 2. What kind of
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geometric object do we get if we resolve the multiplicity of P? Since there are
two “points” sitting above every eigenvalue, we should get a double covering of the
complex projective line with some ramification points. Therefore, we can expect
a compact Riemann surface to show up as the set of resolved eigenvalues of an
ordinary differential operator.

In order to see the ramified double covering associated with (2.2), we have to
actually resolve the multiplicity. The standard way of doing so is to take the set of
all differential operators that commute with the given one. So we define

BP = {P ′ a differential operator | [P, P ′] = 0} ,
where the commutator means the difference of the operator products:

[P, P ′] = P · P ′ − P ′ · P .

Note that BP forms an associative C-algebra. The problem of determining BP for
a given operator P was studied by G. Wallenberg [57] as early as 1903. He showed
that for the operator P of (2.2), BP is equal to the polynomial ring

(2.3) BP = C[P, Q]

in two variables P and Q, where

Q =
(
d

dx

)3

− 3℘(x+ ε)
d

dx
− 3

2
℘′(x+ ε) .

A simple computation shows that

[P, Q] =
1
2
℘′′′ − 6℘℘′.

Since ℘ satisfies the Weierstrass differential equation (1.4), Q commutes with P . To
establish (2.3), let us assume that C[P, Q] contains all operators of order n or less
that commute with P . Note that every operator commuting with P has constant
leading coefficient. Take R ∈ BP of order n + 1 > 1. Since 2 and 3 are coprime,
there are nonnegative integers i and j such that 2i + 3j = n + 1. Thus there is a
constant c ∈ C such that the operator

R− cP iQj

has order strictly less than n + 1. Since this operator commutes with P , it must
be in C[P, Q] by the induction hypothesis. Thus R is an element of C[P, Q]. Be
careful: this argument is not an induction! Actually, BP has no element of order
1 (the Weierstrass gap), from which it results that the curve (2.4) below has genus
1. We refer to [35] Section 3 for a more general statement.

By a straightforward computation, we can show that P and Q satisfy a polyno-
mial relation

(2.4) Q2 = P 3 − g2

4
P − g3

4
,

where g2 and g3 are the coefficients of the Weierstrass differential equation (1.4)
that our ℘ satisfies. Therefore, as an abstract ring, we have

BP ∼= C[X, Y ]/(Y 2 −X3 +
g2

4
X +

g3

4
) ,

where (f) denotes the ideal of C[X, Y ] generated by a polynomial f . In particular,
BP is a commutative ring! Certainly the commutativity of BP is not obvious from
its definition. We will come back to this point later.
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Now let us resolve the multiplicity of eigenvalues of P . Since BP is commutative,
the simultaneous eigenvalue problem for all the operators in BP makes sense, and
by (2.3), it is equivalent to

(2.5)

{
Pψ = λψ

Qψ = µψ .

Because of the polynomial relation (2.4), the eigenvalues of (2.5) satisfy the same
relation

µ2 = λ3 − g2

4
λ− g3

4
.

Conversely, for every (λ, µ) satisfying the above relation, there is a formal power
series solution ψ of (2.5). To see this, let Vλ be the two-dimensional eigenspace of
P belonging to the eigenvalue λ. Since QP = PQ, Vλ is a Q-invariant subspace,
hence Q : Vλ → Vλ is represented by a two-by-two matrix whose eigenvalues are

µ±λ = ±
√
λ3 − g2

4
λ− g3

4
.

From the Jordan canonical form of Q restricted to Vλ, we know that there is a
solution ψ ∈ Vλ of (2.5) for each (λ, µ±λ ).

This means that the eigenvalue λ of P is labeled by the eigenvalue µ±λ of Q. So
we define a complete elliptic curve

(2.6) C =
{

(X : Y : Z) ∈ P2
∣∣ Y 2Z = X3 − g2

4
XZ2 − g3

4
Z3
}

as an algebraic subvariety of P2. This is the natural one-point completion of the
affine elliptic curve C◦ of (1.7). Indeed, we can recover the affine curve by

C◦ =

{(
X

Z
,
Y

Z

)
∈ C2

∣∣∣∣ (YZ
)2

=
(
X

Z

)3

− g2

4
X

Z
− g3

4

}
.

The attached point C \C◦ is the point (0 : 1 : 0) ∈ P2 at infinity. There is a natural
holomorphic map

(2.7) π : C −→ P1.

Let us define P1 as the union of Uo ∼= C and U∞ ∼= C by the identification

Uo 3 λ←→
1
λ

= ξ ∈ U∞.

Then for
(
X
Z ,

Y
Z

)
∈ C◦ we assign π

(
X
Z ,

Y
Z

)
= X

Z = λ. For the point (0 : 1 : 0) ∈ C
at infinity, we assign π(0 : 1 : 0) = ξ = 0 ∈ U∞. Certainly, π is holomorphic on the
affine part C◦. For the points of

C ∩ {Y 6= 0} =

{(
X

Y
,
Z

Y

) ∣∣∣∣ ZY =
(
X

Y

)3

− g2

4
X

Y

(
Z

Y

)2

− g3

4

(
Z

Y

)3
}
,

the map π is defined by

π

(
X

Y
,
Z

Y

)
=
Z

X
= ξ ∈ U∞ .
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In terms of a local parameter z of C around (0 : 1 : 0), the embedding C ↪→ P2 is
given by X = ℘(z), Y = ℘′(z)/2 and Z = 1. Hence

π

(
X

Y
,
Z

Y

)
=
Z

X
=

1
℘(z)

= z2 − g2

20
z6 − g3

28
z8 +

g2
2

600
z10 + · · · ,

which is holomorphic in z. Therefore, π is holomorphic everywhere on C.
Except for the point λ =∞ and the three zeroes of λ3− g2

4 λ−
g3
4 = 0, the inverse

image of λ by π : C → P1 consists of two points
{

(λ, µ+
λ ), (λ, µ−λ )

}
. Thus we have

obtained the desired double sheeted covering. To every simultaneous eigenvalue
(λ, µ) of (2.5), π assigns the eigenvalue λ of P . Therefore, the covering map π is
indeed the resolution of the multiplicity of eigenvalues of P .

This is an ideal place to explain the relation between the scheme theory of
Grothendieck and the set of spectra of ordinary differential operators. Let us con-
sider the polynomial ring C[P ]. The set of all prime ideals of C[P ] is denoted by
Spec C[P ]. (As a convention, by a prime ideal we mean a proper prime ideal.)
Every prime ideal of this ring other than the zero ideal is of the form

C[P ](P − λ) = {f(P ) · (P − λ) | f(P ) ∈ C[P ]}
for some λ ∈ C. Now let ψ be a nontrivial solution of (2.1) and let Iλ be the set
of all differential operators in C[P ] that annihilate ψ. Obviously, Iλ is an ideal of
C[P ] and we have

Iλ = C[P ] · (P − λ) ,
hence it is a prime ideal independent of the choice of the eigenfunction ψ. There-
fore, we have

Spec P = Spec C[P ] .
Next, let us consider the commutative ring BP = C[P, Q] of (2.3). We choose a
nontrivial solution ψλ,µ of (2.5) for (λ, µ) ∈ C◦ and define

Iλ,µ = {R ∈ BP | Rψλ,µ = 0} .
We claim that Iλ,µ is a prime ideal of BP . To see this, suppose Q1Q2 ∈ Iλ,µ. Since
ψλ,µ is a simultaneous eigenfunction for all elements of BP , there are complex
numbers α and β such that {

Q1ψλ,µ = αψλ,µ

Q2ψλ,µ = βψλ,µ.

Therefore,
0 = Q1Q2ψλ,µ = αβψλ,µ,

hence α = 0 or β = 0. This means that either Q1 or Q2 must be an element of
Iλ,µ. In particular, this prime ideal has the form

Iλ,µ = BP · (P − λ) +BP · (Q− µ) .

Conversely, every prime ideal I of BP other than the zero ideal and the ideals of
the form BP · (P −λ) or BP · (Q−µ) must be one of the Iλ,µs for some (λ, µ) ∈ C◦.
To establish this fact, first we note that I ∩ C[P ] is a prime ideal of C[P ]. Thus

I ∩ C[P ] = C[P ] · (P − λ)

for some λ ∈ C, or if the intersection is 0, then

I ∩ C[Q] = C[Q] · (Q− µ)
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for some µ ∈ C. Since the argument is symmetric with respect to P and Q, we
consider only the former situation. Therefore, (P−λ) ∈ I, and hence BP ·(P−λ) ⊂
I. Since I is not equal to this ideal, there is a nonzero element f(P − λ,Q) ∈
I \BP · (P − λ). Expand the element as

f(P − λ,Q) = f0(Q) + f1(Q) · (P − λ) + f2(Q) · (P − λ)2 + · · · .

Then f0(Q) ∈ I. Since I is prime, one of the factors of f0(Q), say (Q − µ), must
be in I. Therefore, we have

I = BP · (P − λ) +BP · (Q− µ) .

This ideal is proper (i.e., I 6= BP ) if and only if (λ, µ) satisfies the polynomial
relation (2.4).

Thus a pair of simultaneous eigenvalues (λ, µ) of the generators P and Q of BP
corresponds injectively to a prime ideal of the ring BP . If we denote by S̃pec P the
resolution

{
(λ, µ±λ ) | λ ∈ Spec P

}
of the multiplicity of the spectra of P , then we

have
S̃pec P ⊂ Spec BP ,

justifying the notation Spec of Grothendieck. Even though the prime ideals of the
form BP · (P − λ) and BP · (Q − µ) do not have corresponding geometric points
on the affine curve C◦, we define the affine algebraic scheme by C◦ = Spec BP
following Grothendieck’s philosophy. The immediate advantage of using the new
language is that we do not have to know the generators of BP to define the curve
corresponding to P . In 1905, I. Schur [50] proved that BP is a commutative ring
if P is an arbitrary ordinary differential operator of positive order (Theorem 2.2
below). Thus P gives rise to a canonically defined affine curve Spec BP . The reason
Spec BP has dimension 1 is that we can always choose an element Q ∈ BP such
that {

dimC BP /C[P, Q] < +∞ and
P and Q satisfy a nontrivial polynomial relation f(P,Q) = 0 .

Thus Spec BP is a finite cover of the plane curve defined by the polynomial f(X,Y ).
The existence of a polynomial relation in the general case is due to Burchnall and
Chaundy [3]. Let us illustrate their argument here. So let P be a second order
monic differential operator and Q be of order three. Note that every operator
that commutes with a monic operator of positive order must have constant leading
coefficient. Thus the leading coefficient of Q is a constant. Therefore, we can choose
a constant c1 ∈ C such that Q2 − c1P 3 has order less than 6. Since Q2 − c1P 3

commutes with P , its leading coefficient is again a constant. So we can find another
constant c2 so that Q2 − c1P 3 − c2PQ becomes an operator of order less than 5.
We can continue this procedure until we obtain an operator

R = Q2 − c1P 3 − c2PQ− c3P 2 − c4Q− c5P

of order less than 2. If ordR < 1, then R must be a constant because it commutes
with P . If ordR = 1, then we can choose constants c6 and c7 such that P − c6R2−
c7R becomes a constant. In any case, we have obtained a non-trivial polynomial
relation between P and Q.

In the previous example of Wallenberg, the affine curve Spec BP has a natural
one-point completion by a smooth point. Remarkably, This is always true for
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arbitrary P . To define the canonical completion of Spec BP , we need the language
of pseudo-differential operators. For the elliptic curve of (2.6), we can use√

1
X

=

√
1

℘(z)
= z − g2

40
z5 − g3

56
z7 +

g2
2

1920
z9 + · · ·

as a local coordinate around the point at infinity. Since X = P is a differential oper-
ator in our case, the local parameter P−1/2 becomes a pseudo-differential operator.
So let E(n) denote the set of all formal expressions

a0(x)∂n + a1(x)∂n−1 + · · ·+ an(x) + an+1(x)∂−1 + · · ·
with coefficients in the ring of formal power series in x, where we use the abbrevi-
ation ∂ = d/dx throughout this paper. The above expression is called a pseudo-
differential operator of order n if a0(x) 6= 0, monic if a0(x) = 1 and normalized if
it is monic and a1(x) = 0. Define

(2.8) E =
⋃
n∈Z

E(n).

This is the set of all formal ordinary pseudo-differential operators. The Leibniz rule

(2.9) ∂n · f =
∞∑
i=0

(
n

i

)
f (i)∂n−i

holds for all integers n ∈ Z if we define(
n

i

)
=
n · (n− 1) · (n− 2) · · · (n− i+ 1)

i!
.

(Note that we need
(
n
i

)
for only nonnegative i in (2.9).) In particular, we have

∂−1 · f = f∂−1 − f ′∂−2 + f ′′∂−3 − · · · ,
which is just integration by parts! Though we don’t teach it in our calculus courses
in this form, one has to note that integration by parts is merely a special case of
the Leibniz rule. Applying ∂−1 · f to a function g = g(x), we have∫

f · gdx = f

∫
gdx−

∫
f ′
(∫

gdx

)
dx

= f

∫
gdx− f ′

∫ (∫
gdx

)
dx+

∫
f ′′
(∫ (∫

gdx

)
dx

)
dx

= f

∫
gdx− f ′

∫ (∫
gdx

)
dx+ f ′′

∫ (∫ (∫
gdx

)
dx

)
dx

−
∫
f ′′′
(∫ (∫ (∫

gdx

)
dx

)
dx

)
dx

= · · · .
The filtered set E has the structure of an associative algebra satisfying

E(m) · E(n) ⊂ E(m+n) .

Let P ∈ E be a monic pseudo-differential operator of order n. Then there is a
unique inverse of P that is a monic operator of order −n, and a unique monic n-th
root of P that is an operator of order 1. The reason for introducing E is this larger
class of algebraic operations we can do in E. Thus we can imagine E as something
like an algebraically closed field and the set D of differential operators as its integer
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ring. This analogy also suggests that we should not look for the geometric meaning
of a general element of E. Only integers (i.e., differential operators) have interesting
geometric structures.

Lemma 2.1. For every normalized first order pseudo-differential operator L, there
is a monic zeroth order operator

S = 1 + s1(x)∂−1 + s2(x)∂−2 + · · ·

such that
S−1 · L · S = ∂ .

The proof is just a computation applying the Leibniz rule. By this Lemma, we have
the following:

Theorem 2.2 (I. Schur). For every monic differential operator P of positive order,
there is an invertible zeroth order operator T such that the set AP = T−1 · BP · T
consists of pseudo-differential operators with constant coefficients:

T−1 ·BP · T = AP ⊂ C((∂−1)) ,

where C((∂−1)) = C[∂] + C[[∂−1]] denotes the ring of pseudo-differential operators
with constant coefficients. Consequently,

BP ⊂ T · C((∂−1)) · T−1 = C
((
P−1/n

))
,

and hence BP is a commutative C-algebra.

Proof. Let n > 0 be the order of P . Since P is monic, it has a unique n-th root L
that is a monic first order operator. If we write

P
1
n = L = ∂ + a1(x) + a2(x)∂−1 + a3(x)∂−2 + · · · ,

then ea(x) · L · e−a(x) is a normalized operator, where

a(x) =
∫ x

0

a1(x)dx ∈ C[[x]] .

Then by Lemma 2.1, there is a monic zeroth order operator S such that

S−1 · ea(x) · L · e−a(x) · S = ∂ .

Define T = e−a(x) ·S. Since every element Q ∈ BP commutes with L, T−1 ·Q ·T ∈
T−1 ·BP · T commutes with ∂. Note that[

∂,
∑

fn(x)∂n
]

=
∑

fn(x)′∂n.

Therefore, every element of AP = T−1 ·BP · T is an operator with constant coeffi-
cients. This completes the proof. �

If we define the commutant of P in the larger ring E, then we have

B̃P = {P ′ ∈ E | [P, P ′] = 0} = C((L−1)) .

Certainly this ring, which is actually a field, does not carry any geometric informa-
tion on P . This is why we work in the subring BP ⊂ D of differential operators.
However, the fact that the larger commutant B̃P is always isomorphic to a field
of formal Laurent series suggests that the behavior of the algebraic curve Spec P
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around the point at infinity is the same for all P . The example of Wallenberg indi-
cates that the operator L−1 = P−1/n gives a local coordinate at infinity. Therefore,
we can complete the affine curve Spec P by attaching a “point” defined by L−1 = 0.

In order to make the completion algebraically, let us introduce a new variable

(2.10) z = ∂−1 .

Since the adjoint map

ad(T ) : E 3 R 7−→ T ·R · T−1 ∈ E
preserves the order of R, every element of AP = T−1 · BP · T has non-negative
order. This means that the leading term of any element of AP is equal to c · z−m
for some m ≥ 0. Since AP is a C-algebra with identity element, we conclude that

(2.11) AP ∩ C[[z]] = C .

Recall that C◦ = Spec BP = Spec AP is an algebraic variety such that the set of all
regular functions on it coincides with the algebra AP . So let us define a complete
algebraic curve CP , which we call the spectral curve of P , by

(2.12) CP = Spec AP ∪ Spec C[[z]] = Spec AP ∪ {z = 0} .
The relation (2.11) implies that every regular function on Spec AP that is also
regular at z = 0 is a constant. Therefore, CP must be a complete algebraic curve
(because it cannot have any missing point), and the attached point p = {z = 0} is a
nonsingular point of CP (because it is defined by a local coordinate z). This is the
complete algebraic curve we wanted to construct from P . The above construction
is lengthy, but it is easily defined as a projective scheme

CP = Proj
(
gr(BP )

)
,

where the graded algebra gr(BP ) of BP is defined by the natural filtration of
BP ⊂ D by the order of operators [38].

The resolution of the multiplicity of eigenvalues of P is a holomorphic map

π : CP −→ P1

which assigns the point at infinity ∞ ∈ P1 to p ∈ CP and an eigenvalue without
label to an eigenvalue with label. On the affine part, the inclusion map C[P ] ⊂ BP
induces the map

π : Spec BP −→ Spec C[P ] ,
which assigns a prime ideal I ∩ C[P ] of C[P ] to a prime ideal I of BP . If BP
contains sufficiently many elements so that we can resolve the multiplicity of P
completely, then π is an n-sheeted ramified covering, where n is the order of P .
Generically, however, we have always BP = C[P ]. For example, the differential
operator we started with in this section (the harmonic oscillator) has this property.
Thus by using differential operators alone, we can never resolve the multiplicity of
a harmonic oscillator. This is why we have to apply a magnetic field to separate
the degeneracy of the spectrum of a hydrogen atom!

The correspondence

(2.13) P 7−→ CP

is therefore not one-to-one. Actually, every generic operator corresponds to the
projective line P1. There are two different directions we can go now. One is to
study the inverse image of the map (2.13). Since the curve CP contains information
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about the spectrum of P , the inverse image should give isospectral deformations
of P . Section 4 will be devoted to this topic. There, we will define the KP system
as the equation for the “universal” family of isospectral deformations of arbitrary
linear ordinary differential operators. The solutions of this system will tell us more
about the correspondence (2.13).

The other direction that (2.13) suggests is to find all geometric information we
are missing now to make this correspondence one-to-one. Since the spectral curve
CP does not determine the operator P , we need more structure on the curve to
construct a unique differential operator out of it. This is the topic we deal with
in the next section. Since our goal is to identify an operator from its spectral
structure, we may call this inverse correspondence the geometric inverse scattering
method.

3. Grassmannians and the geometric inverse scattering

In the previous section, we defined the spectral curve CP for each differential
operator P . The fact that the correspondence P 7−→ CP is not one-to-one suggests
that we are still missing some geometric information that P possesses. Our goal in
this section is to identify the missing information of P .

Recall that the curve CP is the set of “resolved” eigenvalues of P . The second
natural geometric object we can assign to P is the eigenvector bundle

F =
⋃
λ∈CP

{ψ | Pψ = λψ}

on CP . We can indeed define a vector bundle F on the affine part C◦P of the
spectral curve by this procedure. However, this bundle is trivial (isomorphic to
the product bundle) because every complex holomorphic vector bundle on an affine
curve is trivial. Therefore, the global information carried by eigenfunctions of P
is concentrated around the point at infinity. In other words, we have to solve the
eigenvalue problem (2.1) asymptotically at λ = ∞ to obtain more information of
P .

This is the path Krichever [24] took to define his algebraic spectral data. There
are infinitely many different ways of extending the trivial bundle on the affine part
to a vector bundle on the whole spectral curve. Therefore, one has to be careful
to choose a correct interpretation of the eigenvalue problem at infinity. What we
see in [24] is a beautiful treatment of the asymptotic behavior of the operator P at
infinity, λ =∞.

In this section, however, we will take a totally different, purely algebraic ap-
proach to this problem. The advantage of our method is that we can generalize
the classification theorem of Krichever. The main theorem of [24] is the geometric
classification of commutative algebras of ordinary differential operators in generic
position. By introducing the algebraic method, we can establish a classification
theorem for all commutative algebras of ordinary differential operators [34] [35].
In our treatment, what corresponds to the asymptotic expansion of Krichever is a
functor between certain categories.

Although it must sound like a deus ex machina, let us start by defining the
Sato Grassmannian. This Grassmannian appears as a cohomological key in the
connection between the geometry of algebraic curves and the asymptotic behavior
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of ordinary differential operators. We introduced in Section 2 the ring E of pseudo-
differential operators to study the completion of spectral curves. The ring E has
two important subalgebras: the algebra D of differential operators and the algebra
E(−1) of pseudo-differential operators of order at most −1, i.e., integral operators.
We have a natural direct sum decomposition

(3.1) E = D ⊕ E(−1)

as a module. Now we define

Definition 3.1. The Sato Grassmannian SG+ is the set of right D-submodules
J ⊂ E of E such that

E = J ⊕ E(−1) .

LetBP = {Q ∈ D | [P, Q] = 0} be the commutant of P ∈ D in the ringD. There
is a zeroth order operator T ∈ E such that the ring T−1 · BP · T = AP consists
of operators with constant coefficients, by Theorem 2.2. Certainly, T−1D = J is a
point of the Sato Grassmannian SG+. Since BP ⊂ D, D is a left BP -module, and
hence T−1D is a left AP -module.

In order to see the connection between this Grassmannian and algebraic curves,
let us introduce a representation of the algebra E. We take a maximal left ideal
Ex of E generated by x ∈ E. Define

(3.2) V = E/Ex .

It is obvious from the definition that V is isomorphic as a vector space to the set
C((∂−1)) of pseudo-differential operators with constant coefficients. As in (2.10),
we use the variable z. Then

V = E/Ex ∼= C((z)) .

The algebra E acts on V from the left by the natural multiplication. We have a
direct sum decomposition

(3.3) V = V+ ⊕ V−
coming from (3.1), which is just

C((z)) = C[z−1]⊕ C[[z]]z .

For every vector subspace W of V , we define a map

(3.4) γW : W −→ V/V− ∼= V+

by composing the inclusion W ↪→ V and the natural projection V → V/V−. This
map gives us a way of comparing W with a fixed subspace V+ = C[z−1] of V . For
example, if γW has no kernel nor cokernel, then we can say that W and V+ have
the same dimension. If γW is Fredholm, i.e., if it has finite-dimensional kernel
and cokernel, then W and V+ differ by some finite dimension. This motivates us to
define the Grassmannian in this algebraic setting.

Definition 3.2. The Grassmannian Gr(µ) of index µ is the set of all vector
subspaces W of V such that the natural map γW is Fredholm of index µ:

dim Ker γW − dim Coker γW = µ .
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The big-cell of the index zero Grassmannian Gr(0) is defined by

Gr+(0) = {W ⊂ V | Ker γW = Coker γW = 0} .

The natural projection
ρ : E −→ V = E/Ex

induces a map

(3.5) SG+ 3 J 7−→ ρ(J) ∈ Gr+(0)

in an obvious way. The following theorem is due to Sato [48] [49].

Theorem 3.3. The natural map (3.5) is a bijection between the Sato Grassmannian
and the big-cell of the index zero Grassmannian. Moreover, there is a bijection
between the group G− of monic zeroth order pseudo-differential operators and the
Sato Grassmannian given by

σ : G− 3 S 7−→ S−1D = J ∈ SG+.

For a proof, we refer to Appendix of [35]. If we choose a zeroth order operator
T ∈ E for every given P ∈ D such that T−1 ·P ·T ∈ C((∂−1)), then we have a pair
(AP ,WT ) of vector subspaces of V that are defined by

(3.6)

{
AP = T−1 ·BP · T
WT = ρ(T−1D) = T−1ρ(D) = T−1V+ .

This pair satisfies the following conditions: WT satisfies the Fredholm condition;
i.e., there is a µ ∈ Z such that

(3.7) WT ∈ Gr(µ) .

AP is a C-subalgebra of C((z)) stabilizing WT ; i.e.,

(3.8) AP ·WT ⊂WT .

AP is nontrivial in the sense that

(3.9) AP \ C 6= ∅ .

From the construction of (3.6), WT is actually a point of the big-cell of the Grass-
mannian of index zero. We call a pair (A,W ) satisfying the above three conditions
a Schur pair. The pair (AP ,WT ) is not uniquely determined by the operator P .
It really depends on the choice of T . But it is easy to analyze the ambiguity we
have here. Let us call an invertible zeroth order operator T ∈ E admissible if
it preserves operators with constant coefficients C((∂−1)) in E under conjugation;
i.e., if

(3.10) T · ∂ · T−1 ∈ C((∂−1)) .

We denote by Ga the group of all admissible operators. This group acts on the set
of all Schur pairs by

T · (A,W ) = (T ·A · T−1, TW ) , Ga 3 T .

We say that (A,W ) and (A′,W ′) are isomorphic if there is an admissible operator
T ∈ Ga such that T · (A,W ) = (A′,W ′). From these definitions, it is obvious that
a monic linear differential operator P determines a unique isomorphism class of
Schur pairs.
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For a Schur pair (A,W ), W is an A-module because of condition (3.8). Since it
is torsion-free, we can define the rank of W as an A-module. We call it the rank
of (A,W ). It can be computed from A alone by

rank(A,W ) = G.C.D.{ord a | a ∈ A} ,

where the order of an element a ∈ A ⊂ C((∂−1)) means the order of a as a pseudo-
differential operator, or equivalently, the pole order of the corresponding formal
Laurent series a = a(z) ∈ C((z)) at the origin z = 0.

Definition 3.4. The set of objects of the category S of Schur pairs consists of
all pairs (A,W ) satisfying the conditions (3.7)–(3.9). A morphism T : (A,W ) →
(A′,W ′) is a pair of twisted inclusions{

T ·A · T−1 ↪→ A′

T−1W ′ ↪→W

defined by an admissible operator T ∈ Ga.

Our task is to find a category of geometric data and to construct a faithful functor
from the category S to this geometric category. Since a differential operator P gives
rise to an isomorphism class of Schur pairs, it corresponds to an isomorphism class
of the geometric data through this functor.

Definition 3.5. The set of objects of the category Q of quintuples consists of
geometric data (C, p, π,F , φ) of rank r for an arbitrary positive integer r, where

(1) C is a reduced irreducible complete algebraic curve, which may be singular.
(2) p ∈ C is a smooth point of C.
(3) π : Uo → Up is a local r-sheeted covering ramified at p, where Uo is an

open disk of C centered at the origin 0 and Up is an open neighborhood of
C around p. To be precise, Uo is the formal completion of the affine line
A1

C at the origin and Up is the formal completion of the curve C along the
divisor p.

(4) F is a torsion-free sheaf of OC-modules on C of rank r satisfying

dimH0(C,F)− dimH1(C,F) = µ

for some integer µ, which we call the index of the quintuple. If C is a
nonsingular curve of genus g, then this simply means that F is a vector
bundle on C of rank r and degree µ+ r(g − 1).

(5) φ : F|Up

∼−→ π∗OUo(−1) is an OUp -module isomorphism between the re-
stricted vector bundle F|Up of F on Up and the direct image π∗OUo(−1)
of the twisted structure sheaf OUo

(−1) of the disk Uo via the holomorphic
map π. Since π is an r-sheeted covering, π∗OUo

(−1) is the trivial vector
bundle of rank r on Up. Therefore, φ gives a local trivialization of the
vector bundle F near the distinguished point p.

A morphism between quintuples

(α, h) : (C ′, p′, π′,F ′, φ′) −→ (C, p, π,F , φ)

is a pair (α, h) consisting of a holomorphic mapping α : C ′ −→ C of degree n ∈ N
and a sheaf homomorphism h : α∗F ′ −→ F such that α−1(p) = n · p′, π = α ◦ π′
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and
α∗F ′|Up′

h−−−−→ F|Up

α(φ′)

yo o
yφ

α∗π
′
∗OUo(−1) π∗OUo(−1)

locally around p ∈ C.

Remark. We allow arbitrary algebraic curves and torsion-free sheaves on them as
objects of the category. However, the morphism α : C ′ −→ C of algebraic curves
in a morphism of quintuples (α, h) is not arbitrary. We are requiring that there be
a point p ∈ C such that α−1(p) = n · p′ for some p′ ∈ C ′. This is indeed a strong
restriction on α. This asymmetry motivates us to generalize the entire theory in
Section 6.

Theorem 3.6 ([35]). There is a fully faithful contravariant functor

χ : Q ∼−→ S
which makes these categories anti-equivalent. Under this functor, a quintuple of
rank r and index µ corresponds to a Schur pair of the same rank and index.

Since the functor χ recovers the original construction of Krichever [23] for the
generic rank one case, we call it the Krichever Functor. The functor is described
as follows: let z be a coordinate of Uo. We can represent any meromorphic function
on C as a Laurent series in z by pulling it back to Uo via the holomorphic map
π. Similarly, the local trivialization φ translates a meromorphic section of F into a
Laurent series in z. For example, let us assume that the map π is given by y = zr

in terms of a local coordinate y of Up. Every meromorphic function f on C has a
local expansion f = f(y) and hence it gives a Laurent series

π∗f = π∗ (f(y)) = f(zr)

in z. For a meromorphic section s of F , we can choose a basis for F|Up
such that

it has a local expansion s = (s1(y), · · · , sr(y)) in terms of meromorphic functions
on Up. Let us choose φ as follows:

π∗(1) = φ(1, 0, 0, · · · , 0)

π∗(z) = φ(0, 1, 0, · · · , 0)
· · ·

π∗(zr−1) = φ(0, 0, · · · , 0, 1) .

Then s becomes a Laurent series in z by

φ(s) = φ (s1(y), · · · , sr(y)) = π∗
(
s1(zr) + s2(zr)z + · · ·+ sr(zr)zr−1

)
.

So we can define a Schur pair (A,W ) from a quintuple (C, p, π,F , φ) by setting
(3.11){

A = π∗ ({holomorphic functions on C \ {p} }) = π∗
(
H0(C \ {p},OC)

)
W = φ ({holomorphic sections of F on C \ {p} }) = φ

(
H0(C \ {p},F)

)
.

Now our functor χ is defined by
χ(C, p, π,F , φ) = (A,W ) ,
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which is essentially the zeroth cohomology functor H0(C \ {p}, •). Note that both
A and W of (3.11) are subspaces of V = C((z)). Since there are more holomorphic
functions than the constants on a punctured curve C \ {p}, A satisfies (3.9). The
condition (3.8) simply says that the product of a holomorphic function and a holo-
morphic section of a vector bundle is another holomorphic section of the bundle.
Thus we have A ·W ⊂W . The Fredholm condition of W comes from the following:

Lemma 3.7 ([35]). Under the correspondence of (3.11), we have canonical isomor-
phisms {

Ker γW ∼= H0(C,F)
Coker γW ∼= H1(C,F) .

Since C is a complete curve, the cohomology groups have finite dimension, hence
W satisfies (3.7). To see Lemma 3.7, we use the Čech cohomology associated with
the Stein covering (to be precise, the formal covering)

C = (C \ {p}) ∪ Up

of the curve C. Then

Ker γW = W ∩ V−
is the set of holomorphic sections of F on C \ {p} that are also holomorphic on Up,
because of the identification

φ
(
H0(Up,F)

) ∼= H0(Up, π∗OUo
(−1))

∼= H0(Uo,OUo
(−1))

= C[[z]]z
= V− .

Thus we have Ker γW ∼= H0(C,F). Similarly, let U ⊂ C be an affine open subset
of C containing p such that F is locally free on U . Then we have (see [35])

H1(C,F) ' H0(U \ {p},F)
/(
H0(C \ {p},F) +H0(U,F)

)
' H0(Up \ {p},FUp

)
/(
H0(C \ {p},F) +H0(Up,FUp

)
)

' φ
(
H0(Up \ {p},FUp)

)/
φ
(
H0(C \ {p},F) +H0(Up,FUp)

)
= C((z))

/
(W + V−

)
' Coker γW .

The construction of a geometric quintuple from a Schur pair is more technical.
So we refer to [35] for details. Roughly speaking, we define C as the one-point
completion of Spec(A) and F as an extension of the vector bundle W∼ on Spec(A)
to the entire curve C. This is done by using a natural filtration on V = C((z)).
The inclusion maps A ⊂ V and W ⊂ V determine π and φ, respectively.

As an application of the equivalence of the categories, one can establish the com-
plete solution to the classification problem of all commutative algebras of ordinary
differential operators, which has been open since the time of Wallenberg and Schur:
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Theorem 3.8 ([35]). There is a bijective correspondence between commutative al-
gebras consisting of ordinary differential operators (containing a monic operator)
and isomorphism classes of geometric quintuples (C, p, π,F , φ) such that

H0(C,F) = H1(C,F) = 0 .

Remark. In this correspondence, we identify a commutative algebra B ⊂ D and
fBf−1 for an arbitrary invertible function f .

Proof. Let B be a commutative subalgebra of D with a monic element P of order
n > 0. Take an operator T of Theorem 2.2. Then (3.6) gives a Schur pair (AP ,WT ).
A different choice of P ∈ B results in an isomorphic Schur pair. Since WT is a point
of the big-cell, the quintuple (C, p, π,F , φ) corresponding to (AP ,WT ) satisfies the
cohomology vanishing condition.

Conversely, let us start with a quintuple with vanishing cohomology groups. It
corresponds to a Schur pair (A,W ) with W ∈ Gr+(0). Thus by Theorem 3.3, there
is a monic zeroth order operator S such that

W = S−1V+ .

Consider A as a subring of C((∂−1)) and let B = S ·A · S−1. Since the Schur pair
satisfies A ·W ⊂W , we have

B · V+ = S ·A · S−1 · S ·W = S ·A ·W ⊂ S ·W = V+ .

Then B is a commutative subalgebra of D because of the following: �

Lemma 3.9 (Sato). A pseudo-differential operator P ∈ E is a differential operator
if and only if it preserves the base point V+ of the Grassmannian; i.e.,

P · V+ ⊂ V+ .

For a proof, see Appendix of [35].
We started with an operator P ∈ D. It defines a commutative subalgebra

BP ⊂ D. The above theorem tells us that we can recover the algebra BP completely
from its geometric spectral data (C, p, π,F , φ).

To pinpoint the initial operator P from the geometric data, we need to consider
a morphism between quintuples. The operator P determines another commuta-
tive algebra C[P ], which corresponds to a quintuple (P1,∞, π′,F ′, φ′) through the
inverse of the Krichever functor. The natural inclusion

C[P ] ↪→ BP

defines a morphism

(C, p, π,F , φ) −→ (P1,∞, π′,F ′, φ′) ,
which is essentially the resolution of the multiplicity of the eigenvalues of P we have
discussed in Section 2. Thus a particular operator in a commutative subalgebra
B ⊂ D corresponds to a choice of a holomorphic map of C onto P1. This is the
geometric information that a single ordinary differential operator has—it is far
richer than what we ever expected!

In the above theory, which we call geometric inverse scattering theory, we do
not need any genericity assumption on the curve C that was necessary in [24]. This
is one of the advantages of using a functorial method rather than looking for only
a set-theoretical bijection.
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4. Iso-spectral deformations and the KP system

In this section, we define iso-spectral deformations of arbitrary ordinary differ-
ential operators and introduce the KP system as a defining equation for a universal
family of iso-spectral deformations. We then establish the unique solvability of the
KP system by using infinite-dimensional geometric techniques.

Since we are not imposing any boundary conditions on the eigenvalue problem
Pψ = λψ, P has continuous spectrum. Therefore, we have to be more specific when
we say deformations ‘preserving’ the spectrum. Consider an analytic family

{P (t) | t ∈M}
of operators, where the parameter space M is an open domain of CN and P (t) is
an ordinary differential operator of the form

P (t) = ∂n + a1(x, t)∂n−1 + · · ·+ an(x, t)

depending on both x ∈ C and t = (t1, t2, · · · , tN ) ∈M ⊂ CN analytically.

Definition 4.1. We say {P (t) | t ∈M} is a family of iso-spectral deformations if
there exist ordinary differential operators Q1(t), Q2(t), · · · , QN (t) depending on
the parameter t ∈ M analytically such that the following system of equations has
a nontrivial solution ψ(x, t;λ) for every eigenvalue λ of P (t):

(4.1)



P (t)ψ(x, t;λ) = λψ(x, t;λ)
∂
∂t1
ψ(x, t;λ) = Q1(t)ψ(x, t;λ)

∂
∂t2
ψ(x, t;λ) = Q2(t)ψ(x, t;λ)
· · ·

∂
∂tN

ψ(x, t;λ) = QN (t)ψ(x, t;λ) .

The point here is that the eigenvalue λ in the first equation does not depend on
the parameter t, i.e., it is preserved.

Let us compute the compatibility conditions of the system (4.1):

0 =
∂

∂ti
(P (t)ψ(x, t;λ)− λψ(x, t;λ))

=
∂

∂ti
(P (t)ψ(x, t;λ))− λ ∂

∂ti
ψ(x, t;λ)

=
∂

∂ti
P (t) · ψ(x, t;λ) + P (t)

∂

∂ti
ψ(x, t;λ)− λQi(t)ψ(x, t;λ)

=
∂

∂ti
P (t) · ψ(x, t;λ) + P (t)Qi(t)ψ(x, t;λ)−Qi(t)λψ(x, t;λ)

=
∂

∂ti
P (t) · ψ(x, t;λ) + P (t)Qi(t)ψ(x, t;λ)−Qi(t)P (t)ψ(x, t;λ)

=
(
∂

∂ti
P (t)− [Qi(t), P (t)]

)
ψ(x, t;λ) .

For every fixed t ∈ M , the eigenfunctions ψ(x, t;λ) are linearly independent for
distinct eigenvalues λ ∈ C. Since ∂

∂ti
P (t)− [Qi(t), P (t)] is an ordinary differential

operator of finite order, it has only finitely many independent solutions. Therefore,

(4.2)
∂

∂ti
P (t) = [Qi(t), P (t)] .
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Similarly, ∂
∂ti

∂
∂tj
ψ = ∂

∂tj
∂
∂ti
ψ gives

(4.3)
∂

∂ti
Qj(t)−

∂

∂tj
Qi(t) = [Qi(t), Qj(t)] .

Eq.(4.2) is called the Lax equation [26]. The system of equations (4.2) and (4.3) is
equivalent to the condition that Eq.(4.1) has a nontrivial solution for every λ ∈ C.
Therefore, finding a family P (t) of iso-spectral deformations of a given operator
P (0) is equivalent to finding a solution of the Lax equation (4.2) for differential
operators Qi(t) satisfying (4.3) together with the initial condition P (t)|t=0 = P (0).

The simplest example of an iso-spectral deformation is the spatial translation
P (x, t1) = P (x+ t1). Since

∂

∂t1
P (x+ t1) = [∂, P (x+ t1)] ,

we have Q1(t) = ∂ in this case.
For simplicity, let us assume that P (t) is normalized from now on. (It is well

known that every ordinary differential operator can be normalized by a suitable
coordinate change and conjugation by an invertible function.) We have noted in
Section 2 that P (t) has a normalized n-th root

(4.4) L(t) = ∂ + u2(x, t)∂−1 + u3(x, t)∂−2 + · · · .
Since L(t)n = P (t), Eq.(4.2) is equivalent to

(4.5)
∂

∂ti
L(t) = [Qi(t), L(t)] .

Here the left hand side of (4.5) is a pseudo-differential operator of order at most
−1. Therefore, the differential operator Qi(t) must satisfy

[Qi(t), L(t)] ∈ E(−1) .

Lemma 4.2 ([12]). Let

L = ∂ + u2(x)∂−1 + u3(x)∂−2 + · · ·
be an arbitrary normalized pseudo-differential operator of order 1. Then

FL =
{
Q ∈ D

∣∣ [Q,L] ∈ E(−1)
}

coincides with the C-linear space generated by the operators (Lm)+, m ≥ 0. Here,
we decompose Lm into the sum

Lm = (Lm)+ + (Lm)−

of a differential operator (Lm)+ ∈ D and an integral operator (Lm)− ∈ E(−1)

according to the direct sum decomposition of (3.1).

Since [Lm, L] =
[
Lm+ + Lm− , L

]
= 0, we have[

Lm+ , L
]

= −
[
Lm− , L

]
∈ E(−1) .

Conversely, let Q ∈ FL be an element of order m. The condition [Q,L] ∈ E(−1)

implies that the leading coefficient of Q is a constant, say c ∈ C. Since Lm+ is monic,
the linear combination Q− cLm+ has order less than m. Since [Q− cLm+ , L] ∈ E(−1),
the lemma follows by induction on m.
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Definition 4.3. The following system of nonlinear partial differential equations on
the coefficients of an operator

L(t) = ∂ + u2(x, t)∂−1 + u3(x, t)∂−2 + · · ·
is called the total hierarchy of the Kadomtsev-Petviashvili equations, or simply the
KP system:

∂

∂ti
L(t) =

[
Li(t)+, L(t)

]
, i = 1, 2, 3, · · · .

Note that the KP system corresponds to the first condition (4.2) for the compat-
ibility of the system (4.1). In order for L(t) to give an iso-spectral deformation,
we have to check the other condition (4.3). Remarkably, this follows automatically
from the KP system:

Lemma 4.4 ([60]). If L(t) satisfies the KP system (Definition 4.3), then Li(t)+

and Li(t)− satisfy{
∂
∂ti
Lj(t)+ − ∂

∂tj
Li(t)+ =

[
Li(t)+, L

j(t)+

]
∂
∂ti
Lj(t)− − ∂

∂tj
Li(t)− = −

[
Li(t)−, Lj(t)−

]
.

These equations are called the Zakharov-Shabat system.

To prove this, we note that the KP system gives
∂

∂ti
Lj(t) =

[
Li(t)+, L

j(t)
]

= −
[
Li(t)−, Lj(t)

]
for every i and j. Decompose Lj = Lj+ + Lj− to obtain:

∂Lj

∂ti
= [Li+, L

j
+] + [Li+, L

j
−]

= −[Li−, L
j
+]− [Li−, L

j
−]

=
1
2

[Li+, L
j
+]− 1

2
[Li−, L

j
−] +

1
2
(
[Li+, L

j
−]− [Li−, L

j
+]
)
.

The third line is the average of the first two lines. Interchanging i and j, we have

∂Li

∂tj
=

1
2

[Lj+, L
i
+]− 1

2
[Lj−, L

i
−] +

1
2
(
[Lj+, L

i
−]− [Lj−, L

j
+]
)
.

Decomposing these equations with respect to (3.1), we obtain Lemma 4.4.
Thus the KP system is the master equation for the largest possible family of

iso-spectral deformations of arbitrary ordinary differential operators. If one wants
to determine all possible iso-spectral deformations of a given n-th order differential
operator P ∈ D, then first bring it to the normal form and compute its n-th root.
Next, solve the KP system (Definition 4.3) with the initial datum

L(0) = n
√
P .

The operator P (t) = Ln(t) then gives the desired largest family of iso-spectral
deformations.

Of course we have to establish two things here: the one thing is to show the
unique solvability of the Cauchy problem of the KP system, and the other is to
show that P (t) thus defined is a differential operator:
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Theorem 4.5 ([30], [32]). The KP system (Definition 4.3) is uniquely solvable for
any initial datum L(0). Moreover, if Ln(0) is a differential operator, then so is
Ln(t) for the solution L(t) of the KP system.

This theorem is obtained as a corollary of a purely algebraic theorem [32] on the
factorization of infinite-dimensional groups consisting of infinite-order pseudo-diffe-
rential operators generalizing the celebrated Birkhoff decomposition of loop groups.
Suppose we have a solution L(t) of the KP system with initial datum L(0) =
L(t)|t=0. Let us introduce two 1-forms

(4.6) Z±L (t) = ±
∞∑
n=1

Ln(t)± ⊗ dtn

with values in E defined on the space

(4.7) T = lim
N→∞

CN

of deformation parameters t = (t1, t2, t3, · · · ). We regard Z±L (t) as connections on
the trivial bundle E×T on which the Lie algebra E acts by the commutator. Then
the KP system

(4.8) dL(t) =
[
Z+
L (t), L(t)

]
=
[
Z−L (t), L(t)

]
implies that the solution L(t) is a horizontal section of the Lie algebra bundle E×T
with respect to the connections Z±L (t), where d denotes exterior differentiation on
T . The difficulty in solving the KP system lies in the fact that the connections
Z±L (t) depend on the solution L(t). The Zakharov-Shabat equations

(4.9) dZ±L (t)− 1
2
[
Z±L (t), Z±L (t)

]
= 0

mean that these connections have zero curvature. Since the flat connection Z−L (t)
on the trivial bundle E × T takes values in E(−1) and its Lie group is exactly the
group

G− = exp E(−1) = 1 + E(−1)

of monic zeroth order pseudo-differential operators, there is a gauge transformation

S(t) ∈ Γ(T,G− × T )

that brings Z−L (t) to the trivial connection:

(4.10) S(t)−1 · Z−L (t) · S(t)− S(t)−1 · dS(t) = 0 .

Let us consider the trivial solution L = ∂ of the KP system. For this solution, we
have Z−∂ (t) = 0 and

(4.11) Z+
∂ (t) =

∞∑
n=1

∂n ⊗ dtn .

Our ∂ is indeed a solution because

(4.12) d(∂) =
[
Z+
∂ , ∂

]
=
[
Z−∂ , ∂

]
= 0 .

Observe that the connection (4.11) satisfies the zero curvature condition (4.9) triv-
ially because

dZ+
∂ (t) = [Z+

∂ (t), Z+
∂ (t)] = 0 .
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Since the gauge transformation S(t) brings Z−L (t) to the trivial connection 0 =
Z−∂ (t), ∂ must be the gauge transform of the starting solution L(t):

S(t)−1 · L(t) · S(t) = ∂ .

Similarly, Z+
∂ (t) is the gauge transform of Z+

L (t) by S(t):

Z+
∂ (t) =

∞∑
n=1

∂n ⊗ dtn

= S(t)−1 ·

( ∞∑
n=1

Ln(t)⊗ dtn

)
· S(t)

= S(t)−1 ·
(
Z+
L (t)− Z−L (t)

)
· S(t)

= S(t)−1 · Z+
L (t) · S(t)− S(t)−1 · dS(t) .

Let us pretend for a moment that the Lie algebras D and E have corresponding Lie
groups G+ and GE , respectively, as E(−1) does. Then the direct sum decomposition
E = D ⊕ E(−1) corresponds to a group factorization

(4.13)

{
GE = G− ·G+

G− ∩G+ = {1}

that decomposes an element U ∈ GE uniquely as

U = S−1 · Y, S ∈ G−, Y ∈ G+ .

Since Z+
L (t) is a flat connection on E × T with values in D, we can find a gauge

transformation {
Y (t) ∈ Γ(T,GD × T )
Y (0) = 1

such that Y (t) brings Z+
L (t) to the 0-connection:

Y (t)−1 · Z+
L (t) · Y (t)− Y (t)−1 · dY (t) = 0 .

Therefore, the consecutive application of the gauge transformations S(t)−1 and
Y (t) should change the connection Z+

∂ (t) to 0:(
S(t)−1Y (t)

)−1 · Z+
∂ (t) ·

(
S(t)−1Y (t)

)
−
(
S(t)−1Y (t)

)−1 · d
(
S(t)−1Y (t)

)
= 0 .

Note that any gauge transformation U(t) ∈ Γ(T,GE × T ) that satisfies

U(t)−1 · Z+
∂ (t) · U(t)− U(t)−1 · dU(t) = 0 ,

i.e., dU(t) = Z+
∂ (t) · U(t), is given by

U(t) = exp

( ∞∑
n=1

tn∂
n

)
· U(0) ,

because

Z+
∂ (t) = d

( ∞∑
n=1

tn∂
n

)
.

Therefore, we have

S(t)−1 · Y (t) = exp

( ∞∑
n=1

tn∂
n

)
· S(0)−1 .
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Following the above argument backwards, we can solve the initial value problem of
the KP system. We start with an initial datum L(0). Compute an S(0) ∈ G− such
that

S(0)−1 · L(0) · S(0) = ∂ .

It will turn out shortly that the solution of the problem does not depend on the
choice of S(0). Let U(t) ∈ Γ(T,GE × T ) be defined by

(4.14) U(t) = exp

( ∞∑
n=1

tn∂
n

)
· S(0)−1

and
U(t) = S(t)−1 · Y (t)

the decomposition according to (4.13). We choose the initial value Y (0) = 1. Using
the G−-factor of U(t) of (4.14), we define

(4.15)


L(t) = S(t) · ∂ · S(t)−1

Z+(t) = S(t) · Z+
∂ (t) · S(t)−1 + dS(t) · S(t)−1

Z−(t) = S(t) · 0 · S(t)−1 + dS(t) · S(t)−1

as the gauge transform of the trivial solution and the trivial connections. Note that
Z±(t) satisfy the zero curvature condition automatically. It is obvious from (4.15)
that Z−(t) has values in E(−1). Since

0 = U(t)−1 · Z+
∂ (t) · U(t)− U(t)−1 · dU(t)

= Y (t)−1 ·
(
S(t) · Z+

∂ (t) · S(t)−1 + dS(t) · S(t)−1
)
· Y (t)− Y (t)−1 · dY (t) ,

we have
Z+(t) = Y (t) · 0 · Y (t)−1 + dY (t) · Y (t)−1 ,

which has values in D. Therefore,

Z+(t)− Z−(t) = S(t) · Z+
∂ (t) · S(t)−1 =

∞∑
n=1

Ln(t)⊗ dtn

coincides with our previous definition (4.9):

Z±(t) = Z±L (t) = ±
∞∑
n=1

Ln(t)± ⊗ dtn .

The KP equations (4.8) then follow from the trivial equation (4.12) and (4.15).
Thus the operator S(t) plays an important role in establishing the solvability of

the KP system. Then what role does Y (t) play? Since

S(t)−1 · Y (t) = exp

( ∞∑
n=1

tn∂
n

)
· S(0)−1 ,

we have
L(t) = S(t) · ∂ · S(t)−1

= Y (t) · S(0)−1 · exp

(
−
∞∑
n=1

tn∂
n

)
· ∂ · exp

( ∞∑
n=1

tn∂
n

)
· S(0) · Y (t)−1

= Y (t) · S(0)−1 · ∂ · S(0) · Y (t)−1

= Y (t) · L(0) · Y (t)−1 .
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Therefore, the gauge transformation Y (t) is the propagation operator

(4.16) L(0) 7−→ L(t) = Y (t) · L(0) · Y (t)−1 .

This also shows that the solution L(t) does not depend of the choice of S(0) satisfy-
ing L(0) = S(0) ·∂ ·S(0)−1. Finally, (4.16) implies that if Ln(0) = P is a differential
operator, then

P (t) = Ln(t) = Y (t) · P · Y (t)−1

is also a differential operator, because Y (t) has no negative order terms.
The above considerations reduce the proof of Theorem 4.5 to establishing (4.13)

with the right definition of the infinite-dimensional groups GD and GE . This was
done in the papers [30] and [32]. Since things become more technical, we refer to
the original papers.

Let us compute the first non-trivial equation of the KP system as a nonlinear
partial differential equation. The first two terms of the KP system (Definition 4.3)
for i = 2 give

∂u2

∂t2
= u2,xx + u3,x

∂u3

∂t3
= u3,xx + 2u4,x + 2u2u2,x

and the initial term for i = 3 gives

∂u2

∂t2
= u2,xxx + 3u3,xx + 3u4,x + 6u2u2,x .

Eliminating u3 and u4 from the above, we recover the KP equation (1.1) for u = u2,
y = t2 and t = t3.

The KdV system is the set of nonlinear partial differential equations for a single
unknown function u = u(x, t3, t5, t7, · · · ) defined as follows:

(4.17)
∂u

∂t2n+1
=

∂

∂x
Res(L2n+1) ,

where
L =

√
∂2 + 2u ,

and Res P denotes the coefficient of ∂−1 in the expansion of a pseudo-differential
operator P . By definition, the square of our pseudo-differential operator L is a
differential operator. Hence

∂L

∂t2n
=
[
L2n, L

]
= 0

for all n ≥ 1 in the KP system. The nontrivial KP equations become

2
∂u

∂t2n+1
=

∂L2

∂t2n+1

=
[
(L2n+1)+, L

2
]

= −
[
(L2n+1)−, L2

]
= −

[
Res(L2n+1)∂−1, ∂2

]
= 2

∂

∂x
Res(L2n+1) ,
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because the quantity represented in each line of the above expression is a function
rather than an operator. The case n = 1 in (4.17) is precisely the original KdV
equation (1.2). For the differential operator P = ∂2 + 2u, we have always

BP = C [P, Q]

for some operator Q of order 2m+1 provided that BP is larger than C [P ]. Certainly
P and Q satisfy a polynomial equation of the form

Q2 = P 2m+1 + lower degree terms

and this is why the KdV system is related to hyperelliptic curves. On the other
hand, we have always BP = C[P ] for a generic potential u. Algebraic geometry
does not help much in studying such generic operators.

In this section, we derived the KP system as an equation for the largest possible
compatible family of iso-spectral deformations of an arbitrary differential operator.
Since we used the Gelfand-Dickey Lemma to define the KP system, our equations
depend on a coordinate. We used this coordinate to establish its unique solvability.
Once we know the solvability, it is better to have a coordinate-free formulation of
the KP system. In the next section, we will give a geometric definition of the KP
system on the Grassmannian Gr(0).

5. Jacobian varieties as moduli of iso-spectral deformations

We identified the spectrum of a linear ordinary differential operator P ∈ D with
the spectral curve CP in Section 2. In Section 3, we went further to obtain all
geometric spectral information that P has, and saw how to recover the original op-
erator from the geometric data. The iso-spectral deformation defined in Section 4
is a deformation of an operator P that preserves its spectrum. Since it preserves
the spectral curve CP , an iso-spectral deformation naturally corresponds to a de-
formation of the vector bundle F under the Krichever functor. In this section, we
see how these deformations are interrelated, and how simply they can be described
in the language of the Grassmannian. Using this language, we establish that the
moduli space of iso-spectral deformations is canonically isomorphic to a Jacobian
variety. As a consequence, a characterization of Jacobian varieties follows.

In Section 2, we have seen that the key idea of the connection between differential
operators and algebraic curves is the commutant BP = {Q ∈ D | [Q, P ] = 0} of a
given normalized operator P of order n, say. Note that BP is a subset of

FP = FL =
{
Q ∈ D

∣∣ [Q,L] ∈ E(−1)
}
,

where L = n
√
P as in Section 4. From the Lax equation (4.2), BP corresponds to

the trivial deformations of P . Since FP represents all possible deformations by
Lemma 4.2, the quotient space FP /BP must represent the tangent space to the
moduli space of the iso-spectral family of P . Usually, the tangent space of any
kind of moduli space is given by a cohomology group. Moreover, every cohomology
group is defined by

(5.1) cohomology =
interesting objects

trivial objects
,

assuming that ‘trivial’ is not really the antonym of ‘interesting.’ Therefore, our
FP /BP must be a cohomology.
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From Lemma 4.2, we have a basis
{

(Lm)+

}
0≤m for FP . Assigning ∂m to (Lm)+

for every m ≥ 0, we have a C-linear isomorphism

FP ∼= C[∂] ∼=
C((∂−1))

C[[∂−1]] · ∂−1
.

On the other hand, the Theorem of Schur (Theorem 2.2) tells us that there is a
monic zeroth order operator S ∈ G− such that

AP = S−1 ·BP · S ⊂ C((∂−1)) .

Therefore, as a vector space, we have

(5.2) FP /BP ∼=
C((∂−1))

AP ⊕ C[[∂−1]] · ∂−1
=

C((z))
AP + C[[z]]

,

where we have used the variable z of (2.10) and the relation (2.11). Recall that we
defined the spectral curve CP in (2.12) as

CP = Spec AP ∪ Spec C[[z]] = Spec AP ∪ {z = 0} .
From now on, let us assume that the rank of BP is one, i.e., the greatest common
divisor of the orders of elements of BP is equal to 1. This exactly means that
the quotient space FP /BP has finite dimension. Consequently, the parameter z
gives a local coordinate of the curve CP at p. (For the rank r case, zr gives a
local coordinate, instead.) Then the Čech cohomology associated with the covering
(2.12) gives a canonical isomorphism

(5.3) FP /BP ∼=
C((z))

AP + C[[z]]
= H1(CP ,OCP

) ,

which justifies (5.1)!
The above consideration gives only the local structure of solutions of the KP

system. In order to study the global behavior of solutions, we have to use the
language of the Grassmannian. In the previous section, we rewrote the KP system
in terms of a monic operator S of order 1 as in (4.10):

S(t)−1 · Z−L (t) · S(t)− S(t)−1 · dS(t) = 0 .

This equation is equivalent to the system of partial differential equations

(5.4)
∂S(t)
∂tm

· S(t)−1 = −
(
S(t) · ∂m · S(t)−1

)
−

for all m ≥ 0. Since the operator S(t) ∈ G− gives a point W (t) = S(t)−1 · V+ ∈
Gr(0) for every t ∈ T by Theorem 3.3, we can interpret the KP system as a
dynamical system on the Grassmannian. Recall that our Grassmannian Gr(0) is
a set of vector subspaces W of V = C((z)). Every element v of V acts on V by
multiplication. Thus it induces an element of Hom(W,V/W ) by

W ↪→ V
v×−→ V → V/W .

Since this homomorphism group is canonically identified with the tangent space of
the Grassmannian at the point W ,

Hom(W,V/W ) = TWGr(0) ,

every v ∈ V induces a vector field on the Grassmannian. We use the notation Ψ(v)
for this vector field, and denote the tangent vector at W by ΨW (v).
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Theorem 5.1. The KP system is equivalent to the collection of commuting vector
fields Ψ

(
C[z−1]

)
defined on the Grassmannian.

Proof. The identification ∂m = z−m gives a tangent vector ΨW (z−m) at each W ∈
Gr(0). Pulling it back to the base point C[z−1] = V+ of the Grassmannian via the
action of S(t)−1, we obtain a tangent vector S(t) · z−m · S(t)−1 at V+:

(5.5)

C[z−1] −−−−→ V
S·z−m·S−1

−−−−−−−→ V −−−−→ V
/
C[z−1]

S−1

y S−1

y yS−1

yS−1

W (t) −−−−→ V −−−−→
z−m

V −−−−→ V/W (t) ,

where S = S(t). Since differential operators stabilize V+ by Lemma 3.9, the tangent
vector S(t) · z−m · S(t)−1 at V+ is indeed equal to(

S(t) · ∂m · S(t)−1
)
− = −∂S(t)

∂tm
· S(t)−1

= S(t) · ∂S(t)−1

∂tm

∈ E−1

by (5.4). Going back to W (t) following (5.5), the KP system gives a tangent vector

∂W (t)
∂tm

=
∂S(t)−1

∂tm

at W (t). Since this is equal to the action of z−m at W (t), we obtain the KP system
in terms of the Grassmannian language:

(5.6)
∂W (t)
∂tm

= z−m ·W (t) .

Thus the KP system is the commutative Lie algebra Ψ
(
C[z−1]

)
of vector fields on

the Grassmannian Gr(0). �

The formal integration of (5.6) is given by

(5.7) W (t) = exp

( ∞∑
m=1

tmz
−m

)
·W (0) .

It is of course no coincidence that (5.7) has exactly the same form as (4.14). Let
us denote the exponential factor by

e(t) = exp

( ∞∑
m=1

tmz
−m

)
.

Although (5.7) does not make sense as a point of Gr(0) because our Grassmannian
is modeled on C((z)) which does not contain e(t), it makes perfect sense in algebraic
geometry. To see this, let (AP ,W ) be the Schur pair defined by{

AP = S(0)−1 ·BP · S(0)
W = S(0)−1 · C[z−1] ∈ Gr(0)

and (C, p, π,F , φ) the corresponding quintuple. Since we are assuming that BP has
rank one, the rank of the Schur pair (AP ,W ) is also 1. Thus the local morphism π
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is the identity map and F is a line bundle, by which we mean a torsion-free rank
one sheaf over C. (If C is nonsingular, then F is indeed locally free.) We use the
exact sequence

0 −−−−→ 2π
√
−1Z −−−−→ OC

exp−−−−→ O∗C −−−−→ 0 .

Note that every z−m gives an element of H1(C,OC) by (5.3). Therefore, we have

(5.8) exp : H1(C,OC) 3

[ ∞∑
m=1

tmz
−m

]
7−→ [e(t)] = L(t) ∈ H1(C,O∗C) ,

where L(t) is the line bundle of degree 0 corresponding to the cohomology class
[e(t)]. Therefore, we can interpret the Schur pair

(
AP ,W (t)

)
as the algebraic

counterpart of the quintuple

(5.9)
(
C, p, π,F ⊗ L(t), φ · e(t)

)
.

Thus the iso-spectral deformation P 7−→ P (t) corresponds to the deformation

F 7−→ F ⊗ L(t)

of line bundles defined on the fixed spectral curve C. Because of the Riemann-Roch
formula

dimH0(C,F)− dimH1(C,F) = degF − g + 1 = index γW ,

the line bundle F has degree g− 1, where g is the genus of C. Since we can recover
the solution (i.e., the isospectral deformation)

P (t) = S(t) · ∂n · S(t)−1

starting at P (0) from the quintuple (5.9) uniquely, and since the image of (5.8) is
by definition the Jacobian variety

Jac(C) = H1(C,OC)
/
H1(C,Z)

of C, we conclude that the moduli space of iso-spectral families is indeed isomorphic
to the Jacobian variety [31] [35]:

{P (t)|t ∈ T} =
{(
C, p, π,F ⊗ L(t), φ · e(t)

)∣∣∣∣t ∈ T}
= Picg−1(C)
∼= Jac(C) .

In other words, every finite-dimensional orbit (= integral manifold) of the KP
system defined on the Grassmannian is canonically isomorphic to the Jacobian
variety of an algebraic curve. This is one of the main results established in [31]
which led to a characterization of Jacobian varieties of arbitrary genera (a solution
to the Schottky problem) in terms of the KP system (see also [2] [8] [51]).

Still, we do not know much about infinite-dimensional orbits of the KP sys-
tem. Even though our functor χ of Theorem 3.6 is fully faithful, we need to add
more geometric information, such as a connection, to a quintuple to study infinite-
dimensional orbits. However, it is not our intention to go into this subject here.
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6. Morphisms of curves, Prym varieties and commuting partial
differential operators

The categorical equivalence Theorem 3.6 is the key step in establishing a geo-
metric classification Theorem 3.8 of commutative algebras of ordinary differential
operators. It is quite natural to ask if we can generalize the whole machinery to find
a classification of commutative algebras consisting of partial differential operators.
Unfortunately, it is clear that most of the techniques we have used in the classifica-
tion of Theorem 3.8 do not generalize to the case of partial differential operators.
Schur’s Theorem (Theorem 2.2) depends essentially on properties of ordinary dif-
ferential operators, such as the ellipticity of monic operators. The Grassmannians
of Section 3 are also hard to generalize for partial differential operators.

I’m not sure if there can possibly be any general theory of commuting partial
differential operators. At the least, we do not have enough examples to construct
such a theory. Probably, it is better for us to examine what has already been given
to us and how much has been done than to look for hopeless generalizations. Is the
theory we now have 100% satisfactory? Is there any possibility for more natural
generalizations? We enumerate some points from the previous sections.

(1) In the definition of the category of geometric quintuples (Definition 3.5),
we allowed an arbitrary algebraic curve and a vector bundle on it as an
object of the category; however, we did not allow arbitrary morphisms of
algebraic curves to form a morphism between quintuples. There must be a
larger category in which arbitrary morphisms of curves are allowed.

(2) The theory of Section 4 should have a natural extension to operators with
matrix coefficients.

(3) The Grassmannian of Definition 3.2 should be generalized to a Grassman-
nian modeled on vector-valued functions C((z))⊕n.

In this section, we give these natural generalizations. Surprisingly, as a byproduct
we will encounter a large class of commuting partial differential operators, and more
remarkably, we will establish a characterization of arbitrary Prym varieties. It will
turn out that the three different directions of generalization listed above are in fact
exactly the same.

Let
f : C −→ Co

be an arbitrary morphism of smooth algebraic curves. For a point p ∈ Co, f−1(p) ⊂
C is a divisor of C. Its degree, n, say, is called the degree of the morphism f . Take
an arbitrary vector bundle F of rank r on C. The direct image sheaf f∗F is a
vector bundle of rank r · n on Co. Supplying a local covering

Uo −→ (Co)p

of degree r · n ramified at p and a local trivialization

(f∗F)|Uo

∼−→ π∗OUo(−1)

as in Definition 3.5, we have a geometric quintuple. We have seen in Section 3 that
we can encode all geometric information of Co and p in an algebra embedding

H0
(
Co \ {p},OCo

) ∼= Ao ⊂ C((z)) .

This suggests that the algebraic information of C and f should be encoded in an
embedding of the cohomology H0

(
C \ f−1(p),OC

)
to somewhere—but where?
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Let y be a local coordinate of Co around p, and f−1(p) = {p1, · · · , p`}. We can
choose a local coordinate yi of C around pi so that the morphism f is given by

(6.1) f : yi 7−→ y = yni
i

on a neighborhood of pi. To be precise, we use the formal completion Ui of C at pi
and Up of Co at p. The morphism f induces a ramified covering

fi : Ui −→ Up

of degree ni defined by (6.1). Since f has degree n,

(6.2) n1 + n2 + · · ·+ n` = n .

Using these local coordinates, we can embed the cohomology

H0
(
C \ f−1(p),OC

) ∼= A ⊂
⊕̀
i=1

C((yi)) .

How can we represent the natural map

f∗ : H0
(
Co \ {p},OCo

)
−→ H0

(
C \ f−1(p),OC

)
in terms of these coordinates? Since there is no canonical embedding of C((y)) into⊕`

i=1 C((yi)), we have to construct one. Note that the relation of (6.1) is satisfied
by defining

(6.3) yi = hni
(y) =



0 0 y
1 0 0

1
. . .
. . . 0

1 0
1 0


,

which is a square matrix of size ni × ni. Let n = (n1, n2, · · · , n`) be the integral
vector of the ramification degree of f at the divisor f−1(p). We can represent the
algebra

Hn(y) def=
⊕̀
i=1

C
((
hni

(y)
)) ∼= ⊕̀

i=1

C((y1/ni))

as a commutative Lie subalgebra of gl
(
n,C((y))

)
by embedding each

Hni = C
((
hni(y)

))
as a disjoint principal diagonal block:

(6.4) Hn(y) =


Hn1

Hn2

. . .
Hn`

 .

This algebra is known as the maximal commutative subalgebra of type n of the
formal loop algebra gl

(
n,C((y))

)
, which contains C((y)) as the scalar diagonal
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subalgebra. Now, we have a desired commutative diagram of injective maps:

H0
(
Co \ {p},OCo

) f∗−−−−→ H0
(
C \ f−1(p),OC

)y y
C((y)) −−−−→ Hn(y) ,

where the right column is an extension of the left column of degree n, and the
inclusion map of the right column is defined by expanding meromorphic functions
of C in the local parameter yi at each pi. In order to deal with vector bundles on
C, we further need ` local coverings πi at each pi. This motivates us to give the
following Definition 6.2. First we need:

Definition 6.1. A morphism Spec C[[z]] −→ Spec C[[y]] is said to be a cyclic
covering of degree r if it is induced by a ring homomorphism

C[[y]] 3 y 7−→ zr ∈ C[[z]] .

The function ring of the domain of a cyclic covering is a degree r cyclic extension of
the function ring of its image. This is why we call this morphism a cyclic covering.
We need to supply cyclic coverings in order to represent sections of vector bundles
in terms of formal Laurent series in one variable (see Section 3).

Definition 6.2. A set of geometric data of a covering morphism of algebraic curves
of type n, index µ and rank r is a collection〈

f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
consisting of the following objects:

(1) n = (n1, n2, · · · , n`) is an integral vector of positive integers nj such that
n = n1 + n2 + · · ·+ n`.

(2) Cn is a reduced algebraic curve, which is not necessarily irreducible, and
∆ = {p1, p2, · · · , p`} is a set of ` smooth points of Cn.

(3) Co is an irreducible curve with a smooth marked point p.
(4) f : Cn −→ Co is a finite morphism of degree n of Cn onto Co such that

f−1(p) = {p1, · · · , p`} with ramification index nj at each point pj .
(5) Π = (π1, · · · , π`) consists of a cyclic covering πj : Uoj −→ Uj of degree r

which maps the formal completion Uoj = Spec C[[zj ]] of the affine line C
at the origin onto the formal completion Uj of the curve Cn at pj .

(6) F is a torsion-free sheaf of rank r defined over Cn whose Euler characteristic
is

µ = dim H0(Cn,F)− dim H1(Cn,F) .

(7) Φ = (φ1, · · · , φ`) consists of OUj
-module isomorphisms

φj : FUj

∼−→ πj∗
(
OUoj (−1)

)
,

where FUj
is the formal completion of F at pj .

(8) π : Uo −→ Up is a cyclic covering of degree r which maps the formal
completion Uo = Spec C[[z]] of the affine line C at the origin onto the
formal completion Up of the curve Co at p.
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(9) πj : Uoj −→ Uj and the formal completion fj : Uj −→ Up of f at pj satisfy

Uoj
πj−−−−→ Uj

ψj

y yfj

Uo −−−−→
π

Up,

where ψj : Uoj −→ Uo is a cyclic covering of degree nj defined by zj 7−→ znj .

(10) φ : (f∗F)Up

∼−→ π∗

(⊕`
j=1 ψj∗

(
OUoj

(−1)
))

is an
(
f∗OCn

)
Up

-module iso-

morphism of sheaves on the formal scheme Up which is compatible with the
data Φ on Cn.

In order to define the algebraic counterpart of the geometric data, let us introduce
the Grassmannian Grn(µ) of vector-valued functions consisting of vector subspaces
W of C((z))⊕n such that the natural map

γW : W −→ C((z))⊕n(
C[[z]]z

)⊕n ∼= C[z−1]⊕n

is Fredholm of index µ.

Definition 6.3. A set of algebraic data〈
i : Ao ↪→ An,W

〉
of type n, index µ, and rank r is a collection of objects satisfying the following:

(1) W is a point of the Grassmannian Grn(µ) of index µ of the vector-valued
functions of size n.

(2) The type n is an integral vector (n1, · · · , n`) consisting of positive integers
such that n = n1 + · · ·+ n`.

(3) There is an element

y = zr + c1z
r+1 + c2z

r+2 + · · · ∈ C((z))

such that Ao is a C-subalgebra of C((y)) containing the identity 1 ∈ C.
(4) The cokernel of the projection γAo

: Ao −→ C((y))/C[[y]] has finite dimen-
sion.

(5) An is a subalgebra of the maximal commutative algebra

Hn(y) ⊂ gl
(
n,C((y))

)
of type n such that the projection

γAn : An −→
Hn(y)

Hn(y) ∩ gl
(
n,C[[y]]

)
has finite-dimensional cokernel.

(6) As an Ao-module (which is automatically torsion-free), An has rank n over
Ao. The inclusion i is a restriction of the scalar diagonal embedding

C((y)) −−−−→ gl
(
n,C((y))

)x x
Ao −−−−→

i
An .
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(7) The algebra An ⊂ gl
(
n,C((y))

)
stabilizes W , i.e., An · W ⊂ W . Since

C((y)) ⊂ C((z)), gl
(
n,C((y))

)
acts on C((z))⊕n by the matrix multiplica-

tion.

We can make the sets of Definition 6.2 and Definition 6.3 into categories by sup-
plying suitable morphisms. It is established in [27] that these categories are anti-
equivalent by a fully faithful contravariant functor generalizing the Krichever func-
tor (see also [1]).

Recall that the KP system is the action of the commutative Lie algebra C[z−1]
on the Grassmannian Gr(0). The natural map

(6.5) C[z−1] −→ C((z))
AW ⊕ C[[z]] · z

describes the tangent space of the orbit of the KP system at a point W of Gr(0),
where

AW = {a ∈ C((z)) | a ·W ⊂W}

is the maximal commutative stabilizer of W ∈ Gr(0). In Section 5, we have seen
that if AW has rank one, then the quotient module of (6.5) is canonically isomorphic
to the cohomology H1(C,OC) of the algebraic curve

C = Proj
(
gr(Ao)

)
.

On the new Grassmannian Grn(µ) of vector-valued functions, we have a natural
action of

Hn(z)+ = Hn(z) ∩ gl
(
n,C[z−1]

)
.

Let us call this action the Heisenberg KP system of type n. We use this name
because a central extension of the commutative algebra Hn(z) is the Heisenberg
algebra associated with the conjugacy class of the Weyl group of gl(n,C) defined
by the integral vector n. Every finite-dimensional orbit of the KP system is a (gen-
eralized) Jacobian variety. What is a finite-dimensional orbit of the Heisenberg KP
system? To investigate an orbit, let us define the maximal commutative stabilizer
algebra of type n of W ∈ Grn(µ) by

(An)W =
{
a ∈ Hn(z)

∣∣ a ·W ⊂W} .
We also define

(Ao)W =
{
v ∈ C((z))

∣∣ v ·W ⊂W} ,
where v ∈ C((z)) acts on W as a scalar. The tangent space of the orbit of the
Heisenberg KP system at W is described by

Hn(z)+ −→
Hn(z)

(An)W +Hn(z) ∩ gl
(
n,C[[z]]

) .
Now, let us assume that the above quotient module has finite dimension. Then the
set

〈
i : (Ao)W ↪→ (An)W ,W

〉
of algebraic data satisfies the condition of Defini-

tion 6.3 with y = z in the definition. Therefore, by the categorical equivalence of
[27], it corresponds to a set of geometric data〈

f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉



ALGEBRAIC THEORY OF THE KP EQUATIONS 37

of rank r = 1. In particular, the sheaf F is a line bundle on Cn. By an argument
similar to that of Section 5, we can show that

Hn(z)
(An)W +Hn(z) ∩ gl

(
n,C[[z]]

) ∼= H1(Cn,OCn) .

Moreover, the orbit is canonically isomorphic to the Jacobian variety Jac(Cn).
Let us define the traceless Heisenberg flows on the Grassmannian Grn(µ) by

the actions of
Hn(z)o+ = Hn(z) ∩ sl

(
n,C[z−1]

)
.

This is the traceless commutative Lie subalgebra of Hn(z)+. When we deform the
line bundle F on Cn by the actions of Hn(z)+, the vector bundle f∗F on Co is
deformed by the action of the trace part of the algebra Hn(z)+. Therefore, the
traceless Heisenberg flows keep the determinant det(f∗F) fixed. The line bundles
on Cn that have a fixed determinant on Co form the Prym variety associated with
the morphism f : Cn −→ Co. Therefore, we have obtained the following:

Theorem 6.4 ([27]). Every finite-dimensional orbit of the traceless Heisenberg KP
system on the Grassmannian Grn(µ) of vector-valued functions is isomorphic to the
Prym variety associated with a morphism of algebraic curves.

Conversely, we can show by using the categorical equivalence that the Prym variety
of an arbitrary morphism of algebraic curves appears as an orbit of the traceless
Heisenberg flows (a generalization of the Krichever construction). Thus we have
established a characterization of arbitrary Prym varieties in terms of integrable
systems! We refer to [27] for more details.

As we have shown in that paper, every point W of the big-cell Gr+
n (0) of the

vector-valued Grassmannian corresponds bijectively to an n×n matrix S of zeroth
order pseudo-differential operators whose leading term is the identity matrix. The
correspondence is exactly the same as before: we simply define

W = S−1 · C[z−1]⊕n .

Let us use the identification z = ∂−1 as in (2.10). For 1 ≤ j ≤ ` and i ≥ 1, we
define an n× n matrix of pseudo-differential operators by

Bij = S · hnj
(z)−i · S−1 ,

where we identify

hnj (z) =



0
. . .

hnj
(z)

. . .
0

 .

We decompose it into the differential operator part (Bij)+ and the integral operator
part (Bij)−, as before. Then the Heisenberg KP system is equivalent to a system
of partial differential equations

(6.6)
∂S(t)
∂tij

= −Bij(t)− · S(t) .
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It implies automatically the Zakharov-Shabat equation

(6.7)
[
∂

∂tij
−Bij(t)+,

∂

∂tαβ
−Bαβ(t)+

]
= 0 ,

as in Section 4. Note that we have∑̀
j=1

hnj (z)nj = z · In

from the definition (6.4) of Hn(z) and the matrix (6.3), where In is the identity
matrix of size n. Since the above sum is a direct sum, we have

∂ =
∂

∂x
= z−1 =

∑̀
j=1

hnj
(z)−nj .

Using this formula, we can represent ∂ as a linear combination of ∂/∂tijs. To do
so, we need the Lax formalism. Eq.(6.6) has a corresponding Lax equation

∂L(t)
∂tij

=
[
Bij(t)+, L(t)

]
,

where

L(t) = S(t) · ∂ · S(t)−1 = S(t) ·
∑̀
j=1

hnj
(z)−nj · S(t)−1 =

∑̀
j=1

Bnjj(t) .

Since L(t) = In · ∂ + negative order terms,

∑̀
j=1

∂L(t)
∂tnjj

=

∑̀
j=1

Bnjj(t)+, L(t)

 =
[
L(t)+, L(t)

]
=
[
∂, L(t)

]
.

Therefore, we have a natural identification

(6.8)

∂ =
∑̀
j=1

∂

∂tnjj

x =
1
`

∑̀
j=1

tnjj .

Define a partial differential operator

Pij =
∂

∂tij
−Bij(t)+

in the t-variables only, by substituting the quantities identified in (6.8) for x and ∂
in the above expression.

Eq.(6.7) is a commutation relation for partial differential operators, but it does
not give any commuting operators unless we actually solve it. So let S(t) and Bij(t)
be a solution of (6.6) and (6.7), and X the corresponding finite-dimensional orbit
of the traceless Heisenberg flows. Since the tijs form a natural linear coordinate
system on X, the restriction Pij |X is an n×n matrix of partial differential operators
which are globally defined on X. Let〈

f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
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be the geometric data corresponding to our solution. The result of [27] shows that
X is canonically isomorphic to the Prym variety of the morphism f : Cn −→ Co.
Since those Pijs that are linearly independent generate the orbit X, the number of
linearly independent operators among the Pij |Xs is exactly equal to the dimension
of X. The definition of Prym varieties tells us

dim X = g(Cn)− g(Co) ,

where g denotes the arithmetic genus of the curve [27]. It is also obvious from
the construction that the operators Pij |X satisfy no algebraic relations. Therefore,
the associative algebra R generated by these Pij |Xs over C is isomorphic to the
polynomial ring in (dim X)-variables. Thus for every morphism of algebraic curves
of degree n, we can construct a commutative algebra of n × n matrices of partial
differential operators which are globally defined on the Prym variety associated
with the morphism.

Theorem 6.5. Let〈
f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
be a set of geometric data of type n, index 0 and rank 1 such that the corresponding
algebraic data 〈

i : Ao ↪→ An,W
〉

have a point W of the big-cell Gr+
n (0). This is equivalent to requiring that the line

bundle F on Cn satisfies

H0(Cn,F) = H1(Cn,F) = 0 .

Then the Zakharov-Shabat equation (6.7) gives a commutative algebra consisting of
n×n matrices of partial differential operators which are globally defined on the Prym
variety associated with the morphism f : Cn −→ Co. This algebra is isomorphic to
the polynomial ring of

(
g(Cn)− g(Co)

)
-variables over C as an abstract algebra.

Hitchin [14] and Beilinson, Drinfeld and Ginzburg (in an unpublished paper) have
constructed commuting matrix partial differential operators on moduli spaces of
vector bundles on algebraic curves with a fixed determinant in connection with
conformal field theory and the geometric Langlands correspondence. Since every
such moduli space admits a dominant finite morphism from a Prym variety of
the same dimension, and since the structure of the algebra of Beilinson-Drinfeld-
Ginzburg is isomorphic to the polynomial ring, we conjecture that our construction
is a pull-back of their construction on the moduli space via a dominant morphism.
It will be an interesting problem to look into this conjecture. We note that these
examples are not obtained by the method of [39].

7. The τ-function and infinite-determinants

The notion of τ -functions was introduced by R. Hirota in the early 1970s in order
to find (i.e., to compute) exact solutions of soliton equations. He used in [13] a new
notation, which we call Hirota’s bilinear form, for differentiation of products of
functions. Let t = (t1, t2, · · · , tn), s = (s1, s2, · · · , sn), ∂s = (∂s1 , ∂s2 , · · · , ∂sn)
and D = (D1, D2, · · · , Dn).
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Definition 7.1. For differentiable functions f (t) and g (t) in t ∈ Cn and a poly-
nomial P (D) in D, we write

P (D)f · g = P (∂s)
(
f(t+ s)g(t− s)

)∣∣
s=0

.

When n = 1 for example, we have

DNf · g =
N∑
r=0

(−1)N−r
(
N

r

)
f (r)g(N−r) .

Consider a function τ (x, t) in two variables x ∈ C and t ∈ C and let

(7.1) u = ∂2
x log τ .

In the new variable τ , the KdV equation (1.2) becomes

(7.2)
(
D4
x − 4DxDt

)
τ · τ = 0 .

Why did Hirota want to rewrite the equation in this strange form? The answer is
this: by using the new form, one can find exact solutions of the KdV equation
by finite iterated approximation in the form of polynomials in simple exponential
functions. The method he used, now known as Hirota’s direct method, is therefore
something like the Padé approximation. In order to see how it works, let us define

τ = 1 + τ1 + τ2 + τ3 + · · · ,

τ1 =
N∑
i=1

aie
2(kix+ωit) ,

where τj is a polynomial of degree j in exponential functions of linear forms in x

and t, such as e2(kx+ωt). The simplest nontrivial case is

τ = 1 + τ1 ,

τ1 = ae2(kx+ωt) .

Since the constant function and the exponential function of linear forms give the
trivial solution of the KdV equation because of (7.1), the Hirota bilinear equation
(7.2) for τ = 1 + τ1 gives

0 =
(
D4
x − 4DxDt

)
(1 · 1 + 1 · τ1 + τ1 · 1 + τ1 · τ1)

=
(
D4
x − 4DxDt

)
(1 · τ1 + τ1 · 1)

= 2
(
∂4
x − 4∂x∂t

)
τ1

= 2
(
24k4 − 4 · 2k · 2ω

)
τ1 ,

which simply means ω = k3. Thus

u (x, t) = ∂2
x log

(
1 + ae2(kx+k3t)

)
=

4k2a(
e−kx−k3t + aekx+k3t

)2
is a solution. This is nothing but the one-soliton solution of the KdV equation,
which recovers the solutions (1.9) and (1.10) of Section 1 by setting k =

√
c and a =
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±1. More generally, Hirota found N -soliton solutions depending on 2N parameters
a1, · · · , aN and k1, · · · , kN in the form of

τ = 1 + τ1 + τ2 + · · ·+ τN ,

τ1 =
N∑
n=1

ane
2(knx+k3

nt),

τ2 =
(N

2 )-terms∑
m<n

c (km, kn) amane2(kmx+k3
mt)+2(knx+k3

nt),

τ3 =
(N

3 )-terms∑
l<m<n

c (kl, km, kn) alamane2(klx+k3
l t)+2(kmx+k3

mt)+2(knx+k3
nt),

...

τN = c (k1, · · · , kN ) a1 · · · aNe2(k1x+k3
1t)+···+2(kNx+k3

N t),

where

c (km, kn) =
(
km − kn
km + kn

)2

,

c (k1, k2, · · · , kr) =
(r
2)-terms∏

1≤m<n≤r

c (km, kn) .

One can certainly appreciate Hirota’s method here because without it the N -soliton
solution would be too complicated to write down explicitly.

During 1978–79, Sato and Hirota ran a joint seminar on soliton theory at RIMS,
Kyoto. Learning the direct method of Hirota, Sato went on to recognize the deep
mathematical nature behind it. The bilinear form of the KP equation (1.1) is given
by (

D4
1 + 3D2

2 − 4D1D3

)
τ · τ = 0 ,

where τ = τ (t1, t2, t3) and the variables x, y and t of (1.1) are identified with t1,
t2, and t3, respectively. The relation between τ and u is the same as before:

(7.3) u (t1, t2, t3) = ∂2
1 log τ (t1, t2, t3) .

First, Sato gave a more general form of soliton solutions of the KP equation depend-
ing on N parameters k1, k2, · · · , kN and an N ×m matrix ξ = (ξij)1≤i≤N,1≤j≤m
as follows:

(7.4) τ (t) =
(N

m)-terms∑
1≤n1<···<nm≤N

∆ (kn1 , · · · , knm
) ξn1···nm

eη(t,kn1 )+···+η(t,knm ) ,
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where

∆ (kn1 , · · · , knm) =
(m

2 )-terms∏
1≤i<j≤m

(
kni − knj

)
,

ξn1···nm
= det

 ξn11 . . . ξn1m

...
...

ξnm1 . . . ξnmm

 ,

η (t, k) = t1k + t2k
2 + t3k

3 .

Surprisingly, the same formula gives an exact solution to the entire KP system by
simply replacing the above η (t, k) by

η (t, k) =
∞∑
i=1

tik
i .

One can recover Hirota’s soliton solutions of the KdV equation by specializing the
parameters k and ξ in (7.4). The next step due to Sato [48] is a giant leap of genius.
He noticed that formula (7.4) is still a very special case of a far more general form
of exact solutions. Let us consider infinite-size matrices

(7.5) X = (xij)−∞<i<∞,−∞<j≤0 =



. . .
...

...
...

. . . x−2−2 x−2−1 x−20

. . . x−1−2 x−1−1 x−10

. . . x0−2 x0−1 x00

. . . x1−2 x1−1 x10

. . . x2−2 x2−1 x20

. . . x3−2 x3−1 x30

...
...

...


=
(
X+

X−

)

and

Λ = (δi+1,j)−∞<i,j<∞ =



. . .
0 1

0 1
0 1

0
. . .


.

Let (X)+ = X+ denote the upper-half square part of the rectangular matrix X.
Then

Theorem 7.2 ( [48]). For every rectangular matrix X of (7.5), the function (called
Sato’s τ -function)

τ (t1, t2, t3, · · · ;X) = det
(
et1Λ+t2Λ2+t3Λ3+··· ·X

)
+

gives a solution of the entire KP system. In particular, it solves the KP equation
(1.1) with respect to the first three variables through (7.3).
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Here, we use the definition of infinite-size determinant due to Fredholm: for an
infinite square matrix of the form

I +A+ = (δij)−∞<i,j≤0 + (aij)−∞<i,j≤0 ,

we define

det (I +A+) =
∞∑
n=0

1
n!

∑
−∞<`1,··· ,`n≤0

det
(
a`i`j

)
1≤i,j≤n

= 1 +
∑
`

a`` +
1
2!

∑
`1,`2

∣∣∣∣a`1`1 a`1`2
a`2`1 a`2`2

∣∣∣∣+
1
3!

∑
`1,`2,`3

∣∣∣∣∣∣
a`1`1 a`1`2 a`1`3
a`2`1 a`2`2 a`2`3
a`3`1 a`3`2 a`3`3

∣∣∣∣∣∣+ · · · .

Let us define deg tn = n. We say a series in t = (t1, t2, t3, · · · ) is well-defined
if the number of terms of degree less than n is finite for every integer n. One can
give a necessary and sufficient condition for a matrix X so that the expression of
Theorem 7.2 is well-defined as a formal power series in t = (t1, t2, t3, · · · ). For
example, if the upper-half part X+ of X is the identity matrix, then Sato’s τ -
function is well-defined. More generally, τ (t;X) is well-defined if X+ differs from
the identity matrix in finitely many rows. Let us call a matrix X admissible if it
has maximal rank (i.e., all the column vectors are linearly independent) and X+

differs from the identity matrix in finitely many rows.

Proposition 7.3. Every point W of the index zero Grassmannian Gr (0) of Defi-
nition 3.2 gives rise to an admissible matrix. Conversely, every admissible matrix
determines a unique point of Gr(0). An admissible matrix of the form(

I

X−

)
corresponds to a point in the big-cell Gr+(0). The τ -zero-value τ(0;X) = det(X+)
is nonzero if and only if the corresponding point W belongs to the big-cell.

Proof. Let W ∈ Gr (0). This means that W is a vector subspace of C((z)) such
that the projection γW : W → C[z−1] is Fredholm of index zero. We say an element
v ∈ C((z)) has (pole) order n if its leading term is cz−n, c 6= 0. Following Segal-
Wilson [52], we call a basis {w0, w−1, w−2, · · · } for W admissible if each wj is
monic and satisfies ord w0 < ord w−1 < ord w−2 < · · · . Because of the Fredholm
condition, we can choose wj as the inverse image of the canonical basis {zj}−∞<j≤0

of C[z−1] via the projection γW except for a finite number of elements. Each of the
basis elements has an expansion

wj =
∞∑

i=−∞
xijz

i , −∞ < j ≤ 0

with xij = 0 for i << 0, and, except for a finite number of j, it has the form

wj = zj +
∞∑
i=ν

xijz
i

for some ν ≤ 0 independent of j. Define a matrix

X = (xij)−∞<i<∞,−∞<j≤0 =
(
X+

X−

)
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with these coefficients. Since it has maximal rank and since X+ differs from the
identity matrix in only finitely many rows, our X is an admissible matrix. The
converse and the other assertions are obvious from the above construction. �

The matrix Λ acts on X from the left by shifting of rows, which corresponds
exactly to the action of z−1 on W by multiplication. In Section 5 (5.6), we showed
that the vector fields on the Grassmannian Gr(0) corresponding to the KP system
are given by the infinitesimal action of t1z−1, t2z−2, t3z−3, · · · . The integral
manifolds of these vector fields are therefore spanned by the group action of an
operator

et1z
−1+t2z

−2+t3z
−3+···

on the Grassmannian, which is the matrix operator appearing in Sato’s formula
(Theorem 7.2) under the identification of Λ = z−1.

In order to complete the story, we have to explain how to construct the operator
S(t) of (4.10) from the τ -function of Theorem 7.2. For this purpose, let us define
polynomials

pn(t) =
finite sum∑

n=n1+2n2+3n3+···

tn1
1 · t

n2
2 · t

n3
3 · · ·

n1! · n2! · n3! · · ·
, n = 0, 1, 2, · · · .

Each pn(t) is a weighted homogeneous polynomial in t1, · · · , tn of degree n. The
generating function of these polynomials is given by

(7.6) et1z
−1+t2z

−2+t3z
−3+··· =

∞∑
n=0

pn(t)z−n .

Let

∂t =
(
∂1,

1
2
∂2,

1
3
∂3, · · ·

)
,

where ∂n = ∂/∂tn.

Theorem 7.4 ([48]). For every admissible matrix X, let τ(t;X) be the τ -function
of Theorem 7.2. Then the pseudo-differential operator S(t) defined by

S(t) =
∞∑
n=0

pn(∂t) τ(t;X)
τ(t;X)

∣∣∣∣
t1=x

·
(
d

dx

)−n
gives a solution L(t) = S(t) · ∂ · S(t)−1 of the KP system. In particular, every
regular solution can be obtained from an admissible matrix X corresponding to a
point of the big-cell of the Grassmannian in this way.

Sato derived Theorem 7.4 from the standard theory of Wronskian matrices and de-
terminants. Indeed, after the substitution t1 7−→ x, τ(t;X) is really an infinite-size
Wronskian determinant and S(t) is the operator corresponding to the Wronskian
matrix

exΛ · et2Λ2+t3Λ3+··· ·X .

The key point is that
d

dx
exΛ · et2Λ2+t3Λ3+··· ·X = Λ · exΛ · et2Λ2+t3Λ3+··· ·X ,

which is the same matrix shifted by a row.
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Remark. One can give a condition for regularity of the operator S(t) which cor-
responds to the entire Grassmannian Gr(0) [49]. However, there are more gen-
eral solutions of (4.10) which can be obtained by the method of the generalized
Birkhoff decomposition of Section 4 but which have no corresponding points on our
Grassmannian. The τ -functions associated with these more general solutions have
essential singularities at the origin.

Now let us give the geometric meaning of the τ -function via the Krichever func-
tor of Section 3. Since we are dealing with the space V = C((z)) of formal Laurent
series rather than a Hilbert space, we cannot define a complex manifold structure
on Gr(µ). We have to compare our Grassmannian with finite-dimensional Grass-
mannians in order to introduce an algebraic structure. Choose a pair of positive
integers (m,n) and consider the subspace

Vm,n = C · z−m+1 ⊕ C · z−m+2 ⊕ · · · ⊕ C · zn−1 ⊕ C · zn ⊂ V
of dimension m + n. We denote by Grm,n the Grassmannian consisting of m-
dimensional vector subspaces of Vm,n. For every element Wm,n ∈ Grm,n, we assign
a vector subspace

W = Wm,n ⊕ C[z−1] · z−m ⊂ V ,

which belongs to Gr(0). This assignment defines an embedding

Grm,n −→ Gr(0)

for every pair (m,n).

Definition 7.5. The determinant line bundle DET ∗ on the Grassmannian Gr(0)
is a line bundle whose fiber at W ∈ Gr(0) is the one-dimensional vector space

DET ∗W =

(
max∧

Ker γW

)∗⊗max∧
Coker γW .

By definition, the restriction of the determinant line bundle to the big-cell Gr+(0)
is the trivial bundle. The restriction of DET ∗ to each finite-dimensional Grass-
mannian Grm,n ⊂ Gr(0) is the very ample holomorphic line bundle OGrm,n(1) on
the complex algebraic manifold Grm,n. In this sense, we call DET ∗ a very am-
ple holomorphic line bundle on Gr(0). We denote by G̃r(0) the total space of
the GL(1,C)-principal fiber bundle associated with the dual of the determinant
line bundle. The restriction of this principal bundle to each Grm,n is denoted by
G̃rm,n.

Let W be a point of the Grassmannian Gr(0) belonging to the embedded Grm,n;
i.e., W = Wm,n⊕C[z−1]·z−m for some Wm,n ∈ Grm,n. We can define an admissible
matrix X = XW associated with W following the proof of Proposition 7.3. It is
easy to show that the τ -function τ(t;XW ) in this case is a polynomial (depending
only on the first m + n variables t1, · · · , tm+n) known as the Schur polynomial.
We have to note here that the correspondence W 7→ XW is not unique unless we
provide an ordered basis for Wm,n. Let {w1, · · · , wm} and {w′1, · · · , w′m} be two
ordered bases of Wm,n and let X and X ′ be the corresponding admissible matrices,
respectively. Then the τ -functions associated with X and X ′ differ by a constant
factor. More precisely, we have

τ(t;X)
τ(t;X ′)

=
w1 ∧ · · · ∧ wm
w′1 ∧ · · · ∧ w′m

.
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Since the ratio of two volume forms on Wm,n is an element of GL(1,C), we can
conclude that the τ -function is a holomorphic function on the principal bundle
G̃rm,n. In this sense, we say that the τ -function τ(t;X) of Theorem 7.2 is a holo-
morphic function on G̃r(0) depending holomorphically on X. The restriction of
the τ -function to a generic fiber GL(1,C) of G̃rm,n is a group endomorphism of
the Abelian group GL(1,C). Thus the logarithm of the τ -function log τ(t;X) is a
meromorphic function on the total space of the dual of the determinant line bundle
which is linear on each fiber. In other words, log τ(t;X) is a meromorphic section
of the determinant line bundle DET ∗.

Every point W determines a unique maximal Schur pair (AW ,W ), where

AW = {v ∈ V | v ·W ⊂W} .
If AW is nontrivial, then the pair corresponds to a quintuple (C, p, π,F , φ) through
the Krichever functor. Suppose that the point W is such that the corresponding
curve C is nonsingular. Then the torsion-free sheaf F is actually a vector bundle
on C. Let us choose a fiber metric h of F and consider the ∂-complex

(7.7) 0 −→ C∞(F) ∂−→ C∞(F)⊗ ∧0,1(C) −→ 0 ,

where C∞(F) denotes the set of all C∞-sections of F and ∧0,1(C) is the set of
(0,1)-forms on C. By Dolbeault’s theorem, we have the isomorphisms

Ker ∂ ∼= H0(C,F)

Coker ∂ ∼= H1(C,F)

depending on the metric h. Note that (3.4) defines a complex

(7.8) 0 −→W
γW−→ V/V− −→ 0

having the same cohomology groups

Ker γW ∼= H0(C,F)

Coker γW ∼= H1(C,F)

by Lemma 3.7. Thus complexes (7.7) and (7.8) are quasi-isomorphic. Recall that
the determinant of a Fredholm operator

0 −→ V1
α−→ V2 −→ 0

is defined to be an element

det(α) ∈

(
max∧

Ker α

)∗⊗max∧
Coker α ,

which is nonzero if and only if α is an isomorphism. Therefore, we have an equality

(7.9) det
(
∂F
)

= ch · det (γW ) .

The nonzero factor ch depends on the metric h.

Problem. Calculate the factor ch of (7.9).

The vector bundle F is semi-stable if the corresponding point W belongs to the
big-cell [35]. If the bundle is strictly stable, then it has a canonical fiber metric
known as the Einstein-Hermitian metric [21]. It will be an interesting problem to
determine ch for this canonical metric (see Fay [9]).



ALGEBRAIC THEORY OF THE KP EQUATIONS 47

As we have noted in Proposition 7.3, the τ -zero-value τ(0;X) is proportional to
det(γW ) if the matrix X corresponds to a point W ∈ Gr(0). Thus we have

(7.10) τ(0;XW ) = c · det
(
∂F
)
,

where this time the factor depends on the choice of the fiber metric h of F and the
volume element (the semi-infinite product of [10]) of the vector space W . In the
sense of (7.10), we can say that the τ -function is essentially the analytic torsion of
the vector bundle F on the curve C.

Let W ∈ Gr(0) be a point such that the orbit of the KP flows has finite di-
mension. We have seen in Section 5 that the orbit is canonically isomorphic to
the Jacobian variety Picg−1(C) of the curve C of genus g of the quintuple (C, p,
π, F , φ) corresponding to (AW ,W ). It is easy to see that finite dimensionality
of the orbit implies that F is a line bundle, i.e. (AW ,W ) has rank one. Once we
choose a matrix XW for the point W , τ(t;XW ) becomes a holomorphic function in
t which is proportional to the determinant of the Cauchy-Riemann operator of the
line bundle F(t) = F ⊗ L(t) whose transition function is given by

e(t) · ψ = et1z
−1+t2z

−2+t3z
−3+··· · ψ .

Here, e(t) and L(t) are the cohomology classes of (5.8) and ψ is the transition
function of the original line bundle F written in terms of the local coordinate π(z)
on the neighborhood Up around p ∈ C with respect to the Stein covering

C = (C \ {p}) ∪ Up
of the curve C. Since τ(t;XW ) vanishes if and only if

H1(C,F(t)) 6= 0 ,

it must be (by definition) the theta function associated with the Jacobian variety.
Thus on the locus of the Grassmannian on which the KP flows produce finite-
dimensional orbits, we have

τ -functions = theta functions = analytic torsion of line bundles

up to nonzero factors. This explains the appearance of the elliptic functions, which
are just theta functions of genus one, in the beginning (1.6) of this paper.

The τ -function is therefore a determinant in a two-fold way: by Theorem 7.2,
which can be understood as a Wronskian determinant, and by (7.10) through the
Krichever functor, which gives essentially the analytic torsion of arbitrary vector
bundles defined on an algebraic curve. This is one of the mathematical structures
hidden behind Hirota’s ingenious substitution (7.1) some twenty years ago!

8. Hermitian matrix integrals as τ-functions

The Riemann theta functions associated with Jacobian varieties are τ -functions
of the KP system. They correspond to finite-dimensional solutions of the KP sys-
tem. Conversely, the results of [31] show that these solutions exhaust all finite-
dimensional solutions if we take generalized Jacobian varieties into account. Quite
recently, it has been discovered that some matrix integrals give examples of τ -
functions corresponding to infinite-dimensional orbits. These solutions carry co-
homological information on the topology of moduli spaces of algebraic curves of
arbitrary genus [59] [16]. In this section, we study the simplest example of Her-
mitian matrix models. We first prove that the Hermitian matrix integral is itself
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an infinite-dimensional solution of the KP system with respect to the coupling
constants. Amazingly, this solution gives the generating function of the Euler char-
acteristics of the moduli spaces of algebraic curves of arbitrary genus together with
marked points by substituting the coupling constants by powers of a single param-
eter.

The relation of our matrix integrals and the topology of the moduli spaces of
curves is treated elsewhere [37]. In this article, we concentrate on more computa-
tional side of the theory. The standard references of the matrix integrals we deal
with in this section are [4] and [42]. For deeply related, exiting new developments
of the theory of random matrices, we refer to the fundamental paper by Tracy and
Widom [55].

A finite-dimensional solution gives a commutative algebra of ordinary differential
operators. Then what does an infinite-dimensional solution represent? Strikingly,
Kontsevich discovered that the point of the Grassmannian corresponding to the
solution coming from a matrix integral has a stabilizer algebra which is isomorphic
to sl(2,C). We can further prove that the stability by the sl(2,C) algebra deter-
mines the point of the Grassmannian uniquely, and that this solution gives rise
to an embedding of the universal enveloping algebra of sl(2,C) into the ring D of
ordinary differential operators.

We also give a new proof of an alternative formula for Sato’s τ -function due to
Kontsevich at the end of this section.

Let us consider the real line R1 with the Gaussian measure exp
(
− 1

2k
2
)
dk.

The probability for a real number k to be in a subset K of R1 is then given by
Z1(0;K)/Z1(0; R1), where

Z1(0;K) =
∫
K

e−
1
2k

2
dk

is the relative probability. In the same spirit, the relative probability for a Hermitian
matrix H to have its eigenvalues in K ⊂ R1 is given by

(8.1) Zn(0;K) =
∫
HK

e−
1
2 trace H2

dH ,

where HK denotes the set of all Hermitian matrices whose eigenvalues are in K.
Here we use the probability measure

exp
(
−1

2
trace H2

)
dH

on the set of all n× n Hermitian matrices. It is well-known that (8.1) can also be
written as

Zn(0;K) = c

∫
Kn

exp

−1
2

n−1∑
j=0

k2
j

∆(k0, · · · , kn−1)2dk0 · · · dkn−1

for some constant c, where ∆(k0, · · · , kn−1) is the Vandermonde determinant as in
Section 7.
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If we regard (8.1) as the free matrix model, then we can likewise consider an
interacting matrix model
(8.2)

Zn(t;K)

=
∫
HK

exp

( ∞∑
i=1

ti · trace Hi

)
exp

(
−1

2
trace H2

)
dH

= c

∫
Kn

exp

n−1∑
j=0

η(t, kj)

 exp

−1
2

n−1∑
j=0

k2
j

∆(k0, · · · , kn−1)2dk0 · · · dkn−1 ,

where

η(t, k) =
∞∑
i=1

tik
i

is a general potential with coupling constants t = (t1, t2, t3, · · · ). Usually, we set
ti = 0 for all but finitely many even variables. However, the integral (8.2) always
converges for arbitrary negative t2i and purely imaginary t2i−1 so that it defines
a complex holomorphic function in t = (t1, t2, t3, · · · ) on a wedge-shaped domain
with the origin t = 0 as its vertex. Therefore, (8.2) makes sense as a formal power
series in t = (t1, t2, t3, · · · ), which gives an asymptotic expansion of this analytic
function defined on the complex domain.

Surprisingly, (8.2) is a τ -function of the KP system for every K with respect to
the coupling constants! However, we emphasize here that the integral Zn(t; R) for
K = R is not a τ -function in the sense of Segal-Wilson [52], but only in the sense
of Theorem 7.2. In fact, the radius of convergence of (8.2) for K = R is 0 and the
point of the Grassmannian Gr(0) corresponding to this solution does not belong to
the Grassmannian of [52] that is modeled on the Hilbert space of L2-functions on
a circle.

Maxim Kontsevich told me in 1991 that Zn(t; R) satisfies the KP system. The
following proof I gave is applicable for an arbitrary K ⊂ R. Many people have
obtained similar results more or less independently.

Theorem 8.1. Let K ⊂ R be a subset of positive measure. Then the formal power
series Zn(t;K) in t is a τ -function of the KP system corresponding to a point
Wn(K) of the big-cell Gr+(0) defined by

Wn(K) =
0⊕

j=−n+1

C · wj(K)⊕
∞⊕
m=n

C · z−m ,

where

wj(K) =
∞∑

i=−n+1

∫
K

(
e−

k2
2 ki+j+2n−2dk

)
· zi

=
∫
K

e−
k2
2
kj+n−1z−n+1

1− kz
dk .

Proof. Our proof is based on the following formula for the Vandermonde determi-
nant.
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Lemma 8.2. Let Sn denote the full symmetric group on n letters. Then

∆(k0, k1, · · · , kn−1)2 =
∑
σ∈Sn

det


1 kσ(1) k2

σ(2) . . . kn−1
σ(n−1)

kσ(0) k2
σ(1) k3

σ(2) . . . knσ(n−1)

k2
σ(0) k3

σ(1) k4
σ(2) . . . kn+1

σ(n−1)

...
...

...
...

kn−1
σ(0) knσ(1) kn+1

σ(2) . . . k2n−2
σ(n−1)


=
∑
σ∈Sn

det
(
k`+mσ(m)

)
0≤`,m≤n−1

.

This lemma can be shown by observing that the quantity is a homogeneous sym-
metric polynomial in k1, k2, · · · , kn−1 of degree n(n− 1) such that (i) it vanishes if
ki = kj for i 6= j, and (ii) the coefficient of k2

1k
4
2 · · · k2n−2

n−1 is equal to 1.

The matrix Xn(K) =
(
xij(K)

)
−∞<i<∞,−∞<j≤0

of (7.5) corresponding to the
point Wn(K) can be easily calculated:

(8.3) xij(K) =

{∫
K
e−

k2
2 ki+j+2n−2dk for − n+ 1 ≤ i, −n+ 1 ≤ j ≤ 0

δij otherwise.

Since the basis vectors for Wn(K) differ from those for the base point C[z−1] ∈
Gr+(0) by finitely many vectors, the τ -function of Theorem 7.2 defined by the
matrix (8.3) is a finite-size determinant. Let us rewrite our matrix (8.3) as

ξ`m = ξ`m(K) = x−n+1+`,−n+1+m(K) =
∫
K

e−
k2
2 k`+mdk ,

where 0 ≤ ` and 0 ≤ m ≤ n − 1. Then the τ -function corresponding to the point
Wn(K) is given by

τ
(
t;Xn(K)

)
=

det




1 p1(t) p2(t) . . . pn−1(t)

1 p1(t) . . . pn−2(t)
. . .

...
1 p1(t)

1

∣∣∣∣∣∣∣∣∣∣∣

pn(t) . . .
pn−1(t) . . .

...
p2(t) . . .
p1(t) . . .





ξ0,0 . . . ξ0,n−1

ξ1,0 . . . ξ1,n−1

...
...

ξn−1,0 . . . ξn−1,n−1

ξn,0 . . . ξn,n−1

ξn+1,0 . . . ξn+1,n−1

ξn+2,0 . . . ξn+2,n−1

...
...




= det

( ∞∑
α=0

p−`+α(t) · ξαm

)
0≤`,m≤n−1

= det

(∫
K

e−
k2
2

∞∑
α=0

p−`+α(t)kα+mdk

)
0≤`,m≤n−1

= det
(∫

K

e−
k2
2 eη(t,k)k`+mdk

)
0≤`,m≤n−1 .
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Since k is an integration variable, we can replace it by a new variable km for each
m. Then

τ
(
t;Xn(K)

)
= det

(∫
K

e−
k2

m
2 eη(t,km)k`+mm dkm

)
0≤`,m≤n−1

=
∫
Kn

exp

(
n−1∑
m=0

η(t, km)

)
exp

(
−1

2

n−1∑
m=0

k2
m

)
·

det
(
k`+mm

)
0≤`,m≤n−1

dk0dk1 · · · dkn−1

=
∫
Kn

exp

(
n−1∑
m=0

η(t, km)

)
exp

(
−1

2

n−1∑
m=0

k2
m

)
·

1
n!

∑
σ∈Sn

det
(
k`+mσ(m)

)
0≤`,m≤n−1

dk0dk1 · · · dkn−1

=
1
n!

∫
Kn

exp

(
n−1∑
m=0

η(t, km)

)
exp

(
−1

2

n−1∑
m=0

k2
m

)
·

∆
(
k0, · · · , kn−1

)2
dk0dk1 · · · dkn−1

=
1
cn!

∫
HK

exp

( ∞∑
i=1

ti · trace Hi

)
exp

(
−1

2
trace H2

)
dH

=
1
cn!

Zn(t;K) .

The above computation also shows that the point Wn(K) belongs to the big-cell
Gr+(0) if K ⊂ R has positive measure, since

det
(
Xn(K)+

)
= det


ξ0,0 . . . ξ0,n−1

ξ1,0 . . . ξ1,n−1

...
...

ξn−1,0 . . . ξn−1,n−1


= τ

(
0;Xn(K)

)
=

1
cn!

Zn(0;K) 6= 0 .

This completes the proof of Theorem 8.1. �

Let W ∈ Gr(0) be a point of the Grassmannian. As we have seen in the previous
sections, if the maximal commutative stabilizer

C ⊂ AW = {a ∈ C((z)) |a ·W ⊂W}

contains more than constant elements (i.e., if AW 6= C), then the pair (AW ,W )
is a Schur pair of Section 3, and hence it corresponds to a geometric quintuple
(C, p, π,F , φ) by the functor χ−1 of Theorem 3.6. For the point W = Wn(R), we
will show later that the maximal commutative stabilizer AW is indeed equal to
C. Therefore, algebraic geometry cannot tell us anything about Wn(R). However,
Wn(R) has a totally different kind of stabilizer algebra:
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Theorem 8.3 (Kontsevich). The point Wn(R) of the Grassmannian of Theo-
rem 8.1 is stable under the action of the following three differential operators:


L−1(n) = z2 d

dz + nz − z−1

L0(n) = z d
dz + 3n−1

2 − z−2

L1(n) = d
dz + (2n− 1)z−1 − z−3.

Remark. The operators L−1(n), L0(n) and L1(n) satisfy the commutation relation

[
Li(n), Lj(n)

]
= (i− j)Li+j(n) .

Therefore, the Lie algebra generated by L−1(n), L0(n) and L1(n) is isomorphic
to sl(2,C). The above theorem asserts that the point Wn(R) is stable under the
action of the universal enveloping algebra of sl(2,C).

We can extend our definition of the operators to

Li(n) = z1−i d

dz
+

3n− 1 + i(n− 1)
2

z−i − z−i−2

for all i ∈ Z, which generate the Virasoro algebra without center. However, our
point Wn(R) is not stable under these Virasoro generators except for the generators
of the sl(2,C)-subalgebra.

Proof. For our purpose, it is more convenient to rewrite the basis vectors of Wn(R)
as

wm =
∞∑
`=0

(∫ ∞
−∞

e−
k2
2 k`+mdk

)
z−n+1+`

for 0 ≤ m ≤ n − 1. First of all, we note that the three operators L−1(n), L0(n)
and L1(n) stabilize the subspace of Wn(R) spanned by z−j for j ≥ n. So let us
compute the action of Li(n) on wm. The trick we use is a formula

`

∫ ∞
−∞

e−
k2
2 k`+mdk =

∫ ∞
−∞

e−
k2
2 k`+m+2dk − (m+ 1)

∫ ∞
−∞

e−
k2
2 k`+mdk ,

which follows immediately from

0 =
∫

d

dk

(
e−

k2
2 k`+m+1

)
dk

= −
∫
e−

k2
2 k`+m+2dk + (`+m+ 1)

∫
e−

k2
2 k`+mdk .
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Now we have

Li(n) · wm

=
∞∑
`=0

∫
e−

k2
2 k`+m

(
(−n+ 1 + `)z−n+1+`−i +

3n− 1 + i(n− 1)
2

z−n+1+`−i

− z−n+1+`−i−2

)
dk

=
∞∑
`=0

∫
e−

k2
2 k`+m`z−n+1+`−idk +

n+ 1 + i(n− 1)
2

∞∑
`=0

∫
e−

k2
2 k`+mz−n+1+`−idk

−
∞∑
`=0

∫
e−

k2
2 k`+mz−n+1+`−i−2dk

=
∞∑
`=0

∫
e−

k2
2 k`+m+2z−n+1+`−idk

+
n+ 1 + i(n− 1)− 2m− 2

2

∞∑
`=0

∫
e−

k2
2 k`+mz−n+1+`−idk

−
∞∑
`=0

∫
e−

k2
2 k`+m+i+2z−n+1+`dk −

i+1∑
j=0

∫
e−

k2
2 k−j+m+i+1z−n−jdk .

If i ≥ 1, then

Li(n) · wm

=
i−1∑
j=0

∫
e−

k2
2 k−j+m+i+1z−n−jdk−

i+1∑
j=0

∫
e−

k2
2 k−j+m+i+1z−n−jdk + (1− 1)wm+i+2

+
n+ 1 + i(n− 1)− 2m− 2

2

i−1∑
j=0

∫
e−

k2
2 k−j+m+i−1z−n−jdk + wm+i


= −

∫
e−

k2
2 km+1z−n−idk −

∫
e−

k2
2 kmz−n−i+1dk

+
n+ 1 + i(n− 1)− 2m− 2

2

i−1∑
j=0

∫
e−

k2
2 k−j+m+i−1z−n−jdk

+
n+ 1 + i(n− 1)− 2m− 2

2
· wm+i .

The last term is 0 for (i,m) = (1, n−1). Therefore, Li(n)·wm is a linear combination
of the basis vectors of Wn(R) for i = 1, but Li(n) for i ≥ 2 does not stabilize Wn(R).
When i = 0, we have

L0(n)·wm =
n− 2m− 1

2
·wm−

∫
e−

k2
2 km+1z−ndk−

∫
e−

k2
2 kmz−n−1dk ∈Wn(R) .
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Finally, for i = −1, we have
L−1(n) · wm

= −
∫
e−

k2
2 km+1z−n+1dk −

∫
e−

k2
2 kmz−ndk+

m

∫
e−

k2
2 km−1z−n+1dk −mwm−1

=
∫

d

dk

(
e−

k2
2 kmz−n+1

)
dk −

∫
e−

k2
2 kmz−ndk −mwm−1

= −
∫
e−

k2
2 kmz−ndk −mwm−1 ,

where the only possible problem comes from the termmwm−1 form = 0. But it does
not occur because m = 0 kills it. This completes the assertion of Kontsevich. �

Theorem 8.4. For an arbitrary complex number q, we define a formal power series
w(z) ∈ C[[z]] by

w(z) =
∞∑
m=0

1
2m ·m!

Γ(q + 2m)
Γ(q)

· z2m =
∞∑
m=0

(2m− 1)!!
(
q + 2m− 1
q − 1

)
· z2m ,

where

(2m− 1)!! =
(2m)!

2m ·m!
=

1√
2π

∫ ∞
−∞

e−
k2
2 k2mdk .

This is the unique regular solution of the differential equation

(8.4)

[
z3

(
d

dz

)2

+ (2q + 2)z2 d

dz
− d

dz
+ q(q + 1)z

]
· w(z) = 0

with w(0) = 1. Let Wq ∈ Gr+(0) be a point of the big-cell defined by

Wq =
∞⊕
`=0

(
z2 d

dz
+ qz − z−1

)`
· w(z) = C

[
L−1(q)

]
· w(z) .

Then it satisfies the stability condition

(8.5) Li(q) ·Wq ⊂Wq, i = −1, 0, 1,

where 
L−1(q) = z2 d

dz + qz − z−1

L0(q) = z d
dz + 3q−1

2 − z−2

L1(q) = d
dz + (2q − 1)z−1 − z−3

are generators of the universal enveloping algebra of sl(2,C). Moreover, the stability
condition (8.5) uniquely determines the point Wq ∈ Gr+(0). In particular, when
q = n, our point Wq is precisely equal to the point Wn(R) defined by the matrix
model.

Proof. Let W ∈ Gr+(0) be a point stable under L−1(q), L0(q) and L1(q). Since W
is in the big-cell, it has a power series w(z) ∈ C[[z]] with w(0) = 1. Then W has
to be generated by L−1(q)` · w(z) for ` ≥ 0 because L−1(q) has a term z−1. The
stability under L0(q) is then equivalent to

(8.6) −L0(q) · w = a0w + a1L−1(q) · w + a2(L−1(q))2 · w
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for some constants a0, a1, a2. Similarly, the L1(q)-stability gives

(8.7) −L1(q) · w = b0w + b1L−1(q) · w + b2L0(q) · w+

One can immediately derive that it is necessary to have a0 = (q − 1)/2, a1 = 0,
a2 = 1, b0 = 0, b1 = (1−q)/2, b2 = 0 and b3 = 1 in order for these equations to have
a simultaneous regular solution w(z) ∈ C[[z]]. Then both (8.6) and (8.7) coincide
with (8.4). Although (8.4) has two independent solutions, only one has a regular
power series expansion at z = 0. (The other solution contains negative powers of z
such as z−q−m, m ≥ 0.) The Taylor series solution of (8.4) with w(0) = 1 is thus
uniquely determined. Since Wn(R) satisfies the same stability condition (8.5) for
q = n, we have Wn = Wn(R). This completes the proof. �

From Theorem 8.4, we can prove that the maximal commutative stabilizer AWn

is trivial. Indeed, if a(z) ∈ C((z)) is a stabilizer of Wn of pole order m > 0, then[
L−1(n), a(z)

]
= z2a′(z) ∈ AWn

has order m− 1. Since
AWn ∩ C[[z]] = C ,

we conclude that a(z) ∈ AWn
= C[z−1]. But then

L−1(q) + z−1 = z2 d

dz
+ qz

should also stabilize Wq, which is impossible.
An unexpected byproduct of Theorem 8.4 is that we have constructed a one-

parameter family of deformations of an embedding

U
(
sl(2,C)

)
⊂ D

of the universal enveloping algebra of sl(2,C) into the ring D of differential opera-
tors.

Corollary 8.5. Let Sq ∈ G− be the operator of Theorem 3.3 corresponding to
the point Wq ∈ Gr+(0) and let Aq denote the associative algebra generated by
L−1(q), L0(q) and L1(q), which is isomorphic to U

(
sl(2,C)

)
. Then

Bq = Sq · Aq · S−1
q ⊂ D .

Proof. The relation between Sq and Wq, i.e., Wq = S−1
q · C[z−1], and the stability

condition Aq ·Wq ⊂Wq imply

Sq · Aq · S−1
q · C[z−1] ⊂ C[z−1] .

Then by Lemma 3.9, we have the desired embedding

Sq · Aq · S−1
q ⊂ D .

�

Let us determine the image of this embedding. We recall the relation ∂ = z−1

of (2.10). Since

[x, ∂] =
[
z2 d

dz
, z−1

]
= −1 ,

we can identify

x = z2 d

dz
.
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Then we can rewrite the operators as
L−1(q) = −∂ + x+ q∂−1

L0(q) = −∂2 + ∂ · x+ 3q−1
2 = −∂2 + x∂ + 3q+1

2

L1(q) = −∂3 + ∂2 · x+ (2q − 1)∂ = −∂3 + x∂2 + 2(q + 1)∂ .

Since these operators uniquely determine the point Wq, the corresponding Sq is
also unique. By a straightforward calculation, we obtain

(8.8)


Sq · L−1(q) · S−1

q = −∂ + x

Sq · L0(q) · S−1
q = −∂2 + x∂ + 1−q

2

Sq · L1(q) · S−1
q = −∂3 + x∂2 + (1− q)∂ .

How large is this class (8.8) among the sl(2,C)-subalgebras of the ring D of differ-
ential operators? The following proposition tells us that it is rather small.

Proposition 8.6. Let L−1, L0 and L1 be the generators of sl(2,C). For an arbi-
trary function f = f(x), the assignment

L−1 7−→ −∂ + f(x)
L0 7−→ −∂2 + g1(x)∂ + g2(x)
L1 7−→ −∂3 + h1(x)∂2 + h2(x)∂ + h3(x)

gives an injective homomorphism of the universal enveloping algebra U
(
sl(2,C)

)
into D, where

g1 = 2f − x+ c1 ,

g2 = f ′ − f2 + xf − c1f + c2 ,

h1 = 3f − 2x+ 2c1 ,

h2 = 3f ′ − 3f2 + 4xf − 4c1f − x2 + 2c1x+ 2c2 − c21 − 1 ,

h3 = f ′′ − 3ff ′ + 2xf ′ − 2c1f ′ + f3 − 2xf2 + 2c1f2 + x2f − 2c1xf

− (2c2 − c21 − 1)f + 2c2x− 2c1c2 ,

and c1 and c2 are arbitrary constants.

The proof is straightforward. First of all, by conjugation by the function

(8.9) exp
(∫ x

f(x)dx
)
,

we can bring the operator assigned to L−1 to −∂. Then the commutation relation
dictates that the generators should be assigned to

(8.10)


L−1 7−→ −∂
L0 7−→ −∂2 − (x− c1)∂ + c2

L1 7−→ −∂3 − 2(x− c1)∂2 +
(
2c2 − (x− c1)2 − 1

)
∂ + 2c2(x− c1) .

Applying the inverse of the conjugation by (8.9), we recover Proposition 8.6.
I do not know what are the points of the Grassmannian corresponding to these

sl(2,C)-subalgebras of D of Proposition 8.6. Do they have any interesting mean-
ing? I don’t know this, either. Recalling that the classification of commutative
subalgebras of D is a rich mathematical subject, one might expect that classifying
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sl(2,C)-subalgebras of D is an interesting problem, too. In any classification, prob-
ably we should identify differential operators of Proposition 8.6 and (8.10) as we
have done in the case of commutative algebras (see Theorem 3.8). We have not yet
constructed enough examples to speculate on the fate of this problem. The unex-
pected appearance of the sl(2,C)-stabilizer algebras in the context of the Hermitian
matrix model due to Kontsevich is still very mysterious.

Finally, let us give a new proof of the Kontsevich formula for the τ -function.

Theorem 8.7 (Lemma 4.2 of [16]). Let z0, z1, z2, · · · be an infinite set of variables
of degree 1 which are 0 except for finitely many zis. We define

tn =
1
n

∞∑
i=0

zni , n = 1, 2, 3, · · · ,

which is a finite sum for every n. Then for an arbitrary matrix

X =
(
xij
)
−∞<i<∞,−∞<j≤0

of (7.5), the expression

det




...
...

...
. . . z−2

2 z−1
2 1

. . . z−2
1 z−1

1 1
. . . z−2

0 z−1
0 1


−1

·


...

...
...

. . . z−2
2 z−1

2 1
. . . z−2

1 z−1
1 1

. . . z−2
0 z−1

0 1

∣∣∣∣∣∣∣∣∣
...

...
z2 z2

2 . . .
z1 z2

1 . . .
z0 z2

0 . . .

 ·X


coincides with Sato’s τ -function of Theorem 7.2.

Proof. This is a direct consequence of the following matrix formula:
...

...
...

. . . z−2
2 z−1

2 1
. . . z−2

1 z−1
1 1

. . . z−2
0 z−1

0 1


−1

·


...

...
...

. . . z−2
2 z−1

2 1
. . . z−2

1 z−1
1 1

. . . z−2
0 z−1

0 1

∣∣∣∣∣∣∣∣∣
...

...
z2 z2

2 . . .
z1 z2

1 . . .
z0 z2

0 . . .



≡


. . .

...
...

...
1 p1(t) p2(t)

1 p1(t)
1


−1

·


. . .

...
...

...
1 p1(t) p2(t)

1 p1(t)
1

∣∣∣∣∣∣∣∣∣
...

...
p3(t) p4(t) . . .
p2(t) p3(t) . . .
p1(t) p2(t) . . .


mod

(
zN0 , z

N
1 , z

N
2 , · · ·

)
for every N > 0. Let

A =


...

...
...

. . . z−2
2 z−1

2 1
. . . z−2

1 z−1
1 1

. . . z−2
0 z−1

0 1

 =
[
zj−i
]
−∞<i,j≤0 ,

B =


...

...
z2 z2

2 . . .
z1 z2

1 . . .
z0 z2

0 . . .

 =
[
zj−i
]
−∞<i≤0,0<j<∞ ,
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C =


. . .

...
...

...
1 p1(t) p2(t)

1 p1(t)
1

 =
[
p−i+j(t)

]
−∞<i,j≤0 ,

and

D =


...

...
p3(t) p4(t) . . .
p2(t) p3(t) . . .
p1(t) p2(t) . . .

 =
[
p−i+j(t)

]
−∞<i≤0,0<j<∞ .

We have to show A−1 ·
[
A
∣∣B] = C−1 ·

[
C
∣∣D], i.e., B = A · C−1 ·D. We note that

(7.6) implies
C−1 =

[
p−i+j(−t)

]
−∞<i,j≤0 .

Then, as a matrix of formal series in t = (t1, t2, t3, · · · ) and z = (z0, z1, z2, · · · ), we
have

A · C−1 ·D

=

∑
`,k≤0

z`−i · p−`+k(−t) · p−k+j(t)


i≤0,0<j

=

∑
`,k≤0

z
−(−`+k)
−i · p−`+k(−t) · z−(−k+j)

−i · p−k+j(t) · z
j
−i


i≤0,0<j

=

∑
k≤0

exp
(
η(−t, z−1

−i )
)
· z−(−k+j)
−i · p−k+j(t) · z

j
−i


i≤0,0<j

=

[
exp
(
η(−t, z−1

−i )
)
·

(
exp
(
η(t, z−1

−i )
)
−
j−1∑
`=0

p`(t) · z−`−i

)
· zj−i

]
i≤0,0<j

= B −

[
exp
(
η(−t, z−1

−i )
)
·
j−1∑
`=0

p`(t) · z
j−`
−i

]
i≤0,0<j .

Substituting the relation

tn =
1
n

(
zn0 + zn1 + zn2 + · · ·

)
in the above formula, we have for an arbitrary i ≥ 0,

exp
(
η(−t, z−1

i )
)

= exp
(
−z0 + z1 + z2 + · · ·

zi
− z2

0 + z2
1 + z2

2 + · · ·
2z2
i

− z3
0 + z3

1 + z3
2 + · · ·

3z3
i

− · · ·
)

= exp
(
−1− 1

2
− 1

3
− · · ·

)
·

exp
(

formal power series in
zj
zi
, j 6= i, without constant terms

)
= 0.



ALGEBRAIC THEORY OF THE KP EQUATIONS 59

�

This formula is one of the key steps in Kontsevich’s solution to the Witten Conjec-
ture.
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