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ABSTRACT. The asymptotic expansion of a Hermitian matrix integral known as the
Penner model is rigorously calculated.

1. Introduction.

The purpose of this paper is to establish an asymptotic analysis of a Hermitian
matrix integral known as the Penner model, and to calculate its asymptotic ex-
pansion. It was proved by Penner [7] that this asymptotic series gives the orbifold
Euler characteristic of the moduli spaces of pointed algebraic curves. The formula
he obtained is in agreement with the result of Harer and Zagier [2].

Both Harer-Zagier [2] and Penner [7] use a Hermitian matrix integral to compute
the Euler characteristic X(9,, s) of the moduli space M, , of stable algebraic curves
of genus g with s smooth marked points. Among the two, Penner’s method is
conceptually easier to understand. He computes the asymptotic expansion of the
Hermitian matrix integral in two different ways: one by using the Feynman diagram
expansion, and the other by direct computation using analytic continuation. Since
the asymptotic expansion is unique, the two methods should give the same answer.
Penner [7] established, based on the work of 't Hooft [8] and Bessis-Itzykson-Zuber
[1], that the Feynman diagram expansion of the matrix integral gives a generating
function of X(9M, s) for g > 0 and s > 0 with 2 —2g — s < 0. He then computed the
matrix integral by using analytic continuation and obtained the expression of the
rational numbers X(9M, ;) in terms of the special value (1 — 2¢g) of the Riemann
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zeta-function. However, the formula he suggested to compute the matrix integral
does not seem to hold in the holomorphic category.

We show in this paper that Penner’s formula is true in the asymptotic category,
which is sufficient to give the asymptotic expansion of the Penner model. Once we
establish a rigorous asymptotic analysis, Penner’s method of computation of the
Euler characteristic works without any major modification.

The contribution of this paper is Theorem 4.2, which replaces a corresponding
analytic statement found in Penner’s paper. The formula we establish does not
hold in the analytic category. With this Theorem, computation of the asymptotic
expansion of the Penner model becomes more straightforward and easier.

2. The Feynman diagram expansion of the Hermitian matrix integral.
Let us begin with recalling the asymptotic expansion of a holomorphic function.

Let €2 be an open domain of the complex plane C having the origin 0 on its boundary,
and let h(z) be a holomorphic function defined on Q. A formal power series

o0
(2.1) Z a,z"”
v=0
is said to be an asymptotic expansion of h(z) on Q at z = 0 if

- h(2) = Yl anz”
<22) ;li% Zm+1 °
zEQ

= Am+1

holds for all m > 0. The above formula shows that if h(z) admits an asymptotic
expansion, then it is unique. However, one cannot recover the original holomorphic
function from its asymptotic expansion. A simple example is e~ /# defined on the
left-half plane {z € C | Re(z) < 0}, whose asymptotic expansion at the origin is the
0-series. Sometimes this fact works positively: we will use it to simplify the matrix
integral in Section 4. Since the asymptotic expansion of a holomorphic function is
not equal to the original function, we use the following notation to indicate that
(2.1) is the asymptotic expansion of a holomorphic function A(z):

A(h(z)) = Z a,z".

If two holomorphic functions h(z) and f(z) defined on €2 have the same asymptotic
expansion at z = 0, we use the notation



Thus 0 2 e /% at z = 0 as holomorphic functions defined on the left-half plane.
The asymptotic expansion also applies to real analytic functions. For example, if
K is the positive real axis and h(z) is a real analytic function on K, then the same
formula (2.2) defines the asymptotic expansion of h(z) at z = 0.
The matrix integral we deal with in this paper is the following:

2m
1 ti s
(2.3) Zn(t,m) :/ exp (— 2 trace(XQ)) exp | trace E 2X7 1 dX

=87

where H,, is the space of all n x n Hermitian matrices, and dX denotes the usual
Lebesgue measure of H,, as a real vector space of dimension n2. We note that
Z,(t,m) is a holomorphic function for all values of (t3,t4, - ,tam_1) € C*™~3 and
tom satisfying that Re(ts,,) < 0. We can expand Z,(t,m) as a convergent power
series in tg, t4, - -+, ta;,—1 about 0, and as an asymptotic series in to,, as to,, — 0
with Re(tzm) < 0.

It is a well established theorem ([1], [3], [7], [8], and [9]) that the Feynman
diagram technique gives the asymptotic expansion

n t,m Vi
(2.4) log.A(%> = Z Z #Aut Ht ()

g>0, s>0 connected ribbon graph T’
2—2g—s<0 | with valency 3, 4, ---, 2m,
X(T)=2-2g—s, s(T')=s

with respect to ton,, as to, — 0 with Re(t2,) < 0, where a ribbon graph (or
fatgraph) T' is a 1-dimensional C'W-complex with cyclic ordering of edges at each
vertex, X(I') the Euler characteristic of the graph I', s(I') the number of closed
loops in I', Aut(I") the automorphism group of the ribbon graph, v;(I") the number
of j-valent vertices of I'; and

Z,(0) = / ) exp (— % trace(X2)> dX .

Let v(T") and e(T") be the total number of vertices and edges of the graph I, respec-
tively. Then

X(I) = v(l) — e(I)
(2.5) (F) v3(I') + 04 (I') + - -+ + vam (T')
=13 v3(D) +4-va(T) + -+ 2m - v2,(T)) ,
because I' has valency in between 3 and 2m. Thus for every fixed g and s, the

second summation of (2.4) is a finite sum. It shows that the right-hand-side of (2.4)
is an element of the formal power series ring

(C[[t37 t47 T 7t2m]]-
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Let us define the formal power series ring of infinitely many variables C|[ts, t4, 5, - - ]].
The adic topology of this ring is given by the degree

and the ideal J; of C|[t3,t4,15, - -]] generated by all the homogeneous polynomials
of degree j. We have a natural projection
mj : Cllts, tasts, - -]] — Cl[tz, ta, ts,---11/T; -

For each fixed j, the projection image

Zn(t,m) ~
) <logA (T(O))) € Cl[ts, ta,t5,---1]/7;
is stable for all 2m > j. Since
C[[t3at47t57 U ” = @C[[tg, t47t53 U ”/3]
J
and

(2.6) {mm (logA (%)) }mZZ

defines an element of the projective system, it gives a formal power series in infinitely
many variables. We denote the above element (2.6) symbolically by

(2.7) lim log A (%) :

which is a well-defined formal power series in infinitely many variables.

Going back to the Feynman diagram expansion (2.4), we have an equality
(2.8)

S

: Zn(t,m) _ n v; (T)
dm e () = 3 > a1
g>0, s>0 connected ribbon graph T’ 7j>3
2—2g—s<0 with valency >3 and
X(I)=2-2g—s, s(I')=s
as a well-defined element of C[[ts, 4,5, -]]. For each fixed ¢g and s, the maximum
possible valency of the graphs in the second summation is 4g 4+ 2s — 2. To see this,
let I' be a graph with the largest possible valency ¢. Since the Euler characteristic
of ' is given by 2 — 2g — s = v(I') — e(I"), the valency becomes maximum when I"
has only one vertex. Thus

1
2-2g—s=1—-1.
g—s 5

This shows that the right-hand-side of (2.8) does not have any infinite products.

Another interesting fact about the Hermitian matrix integral (2.3) is that it is
a solution to the KP equations. We refer to [5] and [6] for more detail about this
topic.



3. The Penner model.
Following Penner, let us make a substitution

(31) t] = _(\/E)j_27 .] - 374757 e

in (2.3), where /z is defined for Re(z) > 0. The condition Re(to,,) < 0 for ta,
translates into the condition Re(2™~!) > 0, which is satisfied if

(3.2) |arg(2)] < z——
holds. Thus we have a holomorphic function
(3.3)
2m ;

1 1 (Vz)' 2 -

P,(z,m) = —/ exp (— — trace(X? ) exp | — —~——trace(X”?) | dX
2m ;
) (VY ~? -
= exp | — ————trace(X’) | dX

defined on the region of the complex plane determined by (3.2). Its asymptotic
expansion at z = 0 can be calculated by making the same substitution (3.1) in
(2.4):
(3.4)

(_1)6(F) s 2g+s—2
logA(Pn(z,m)) = Z Z #Aut(F) no- (_Z) )
g>0, s>0 connected ribbon graph I
2—2g—s<0 | with valency 3, 4, ---, 2m,

X()=2-2g-s, s(I')=s

where we used (2.5) to compute

(o)

Jj=3

(—1)Z 5% vs (D) L 53 X5 gvs (D) =257 vy(T)

= (=1)7(D) ze@ ()
= (-1 (=) XD

Note that the right-hand-side of (3.4) is a well-defined element of (C[n])[[z]]. For
every v > 0, the terms of log. A (P,(z,m)) of degree less than or equal to v with
respect to z are stable for all m > v + 1. Again by the same argument we used in
Section 2, we can define an element

lim log A (P, (z,m)) € (C[n])[[z] .

m—00
)



Thus we have an equality

lim log A

VR
M 50 Zn(O)/ €xp —;—.trace(X) dX

J

(_1)6(F) s 29+s—2
= > > A | " - (—2)%t

g>0, s>0 connected ribbon graph I
2—2g—s<0 with valency >3,
X(M)=2-2g—s, s(I')=s

as a well-defined element of (C[n])[[z]]. It has been established in [7] that

—1)eM™)
wm-cyy L

connected ribbon graph I'
with valency >3,
X(T)=2—-2g—s, s(T')=s

for g > 0 and s > 0 such that 2—2¢g—s < 0, where 9, , is the moduli space of stable
algebraic curves with (unordered) s marked nonsingular points specified. Therefore,
the formal power series lim,, .. log A (P,(z,m)) in n and z gives a generating
function of the orbifold Euler characteristic of the moduli spaces of pointed algebraic
curves.

4. The asymptotic analysis.

Let us now compute lim,, .~ log. A (P, (z,m)). The standard analytic technique
to compute the Hermitian matrix integrals (2.3) and (3.3) is the following formula:

Formula 4.1. [1], [2], [4]. Let f(X) be a function on X € H,, which is invariant
under the conjugation by a unitary matric U € U(n):

fX)=fU " - X-U) = flko k1,  kn-1)

where ko, k1, ,kn—1 are the eigenvalues of the Hermitian matriz X. If f(X) is
integrable on H,, with respect to the measure dX, then

/ f(X)dX = c(n) : f(k(), ]Cl, tee ,kn_1>A(k)2dkodk1 R dk‘n_l 5
Hn R"
where

7I.n(n—l)/Q

n!-(n—1)"..20.117
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c(n) =



and

A(k) = Alko by, k1) = [ [ (ki — k;) = det ("7]>

1>7

18 the Vandermonde determinant.

Thus we have

B c(n) n—1 2m ‘_
P,(z,m) = 700 Jen A(k)? E) exp 2 ki

The following is our main result.

Theorem 4.2. Let 3, = z¥ - C[[z]] denote the ideal of C|[z]] generated by z¥, and
my : C[[2]] — C[[2]]/3

the natural projection. For a polynomial p(k) € Clk|, consider the following two
asymptotic series:

a(z,m)=A /OO p(k) - exp —Z (vz)"" K| dk | € C[[2]]

— 00

as z — +0 with |arg(z)| < and

_T
2m—2’

b(z) = A (ﬁ(ez)l/z /Ooop <1 \_/;37) eV dm) e C[[2]]

as z — +0 with z > 0. Then for every m > 2, we have

Tm (a(z,m)) = 7m (b(2))

as an element of C[[2]]/Tp,. In other words,

(ol £
:A(ﬁ@z)w ( > e dx)

holds with respect to the J,,-adic topology of Cl[z]].
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Proof. Putting y = /2 k, we have

/Oop(k:)-exp —%WW dk:%/mp<%)-exp —%%yj—‘j dy

—o0 =

where

d (L) exp |-t dy .
v(y, m) 7 D (\/Z) exp ; _ y

Let us decompose the integral into three pieces:
0o -1 1 oo

(4.3) / dv(y,m) :/ dv(y, m) +/ dv(y, m) +/ dv(y,m) .
oo —o0 —1 1

Note that the polynomial

of degree 2m takes positive values on the intervals (—oo,—1] and [1,00). Since
p(k) is a polynomial, it is obvious that the asymptotic expansion of the first and
the third integrals of the right-hand-side of (4.3) for z — +0 with z > 0 are the
0-series. Therefore, we have

| avtwm 2 [ 11 dv(y,m) .

On the interval [—1, 1], if we fix a z such that | arg(z)| < 7, then the convergence
lim exp | ==Y = | = (1 —y)/7.e¥/?
m—0o0

is absolute and uniform with respect to y. Therefore, in a new variable t = 1 — g,
we have

1 1
. 1 ) 1
lim dv(y, m :—/ p<—) 1—y)Y/% e¥% dy
Jm [ (y,m) = —= AW (1-y)
Ly /2 Lt /e v/
— z t z Zdt
=€ ; P 7z e




This last integral is

]__t 1/ *t/ ]- /oo (1_t) (1+1 t—t
t/7e VA dt = — p| —— ) elltlost=t/z g4
f / ( > vz Js Vz

Since 1+logt—t < 0 for t > 2, the asymptotic expansion of this integral as z — +0
with z > 0 is the O-series. Therefore, since the integrals do not depend on the
integration variables, we have

lim A /Oop(k) exp —Zm:wy dk

m—0o0
== 7

(o () o)
i [ )

as a formal power series in z. This completes the proof of Theorem.

By applying Theorem 4.2 for each k;, we obtain

n—l 2m j_2 )
lim A /A(k:)2-HeXp -> @kﬂ dk;
m— 00 n - - ]

j=2

2 n—1
(4.4) - A (( Jz ell? 2 / / <1 — zx) ' H xl}/z o~ da:z-)
i=0
noam-ny [ o nl
:A<<\/Zel/z zl/z> z7 2 / / A(m)Q-Hmil/z e i dxi>.
0 0 i=0

We can use the standard technique of orthogonal polynomials for the above integral.
Let pj(x) be a monic orthogonal polynomial in x of degree j with respect to the
measure

du(z) = 2% dx

defined on K = (0, oo] for a positive z > 0:

| ploms@uta) = 6l psta) 12
Because of the multilinearity of the determinant, we have

A(zx) = det (:L‘i) = det (pj(zi)) -
9



Therefore,
(4.5)

| A@Pduan) - duenr) = [ det (py(0) det (p(o:)du(z:)

n—1 n—1
N / > > Hrew @) [T pey(idpa:)
K" 58, reS, i=0 i—0

=3 3 1/ @ )it

ceS, Te€S, =0

= ﬁ/Kpo(i)(x)Pa(i)(x)du(fIf)

c€S, =0

n—1
=t T] ) 11
i=0
For a real number z > 0, the Laguerre polynomial

L%Z(x):i<m+1/z>(__l>jxj:ﬂxm+...

—q Al |
s \Nm—J ! m)!

of degree m satisfies the orthogonality condition

> 1/z 1/z —x,1/z _ <j+1/z)'
(4.6) /0 L/ (z)L; " (z)e "z / —5ijT.

Thus we can use
(4.7) pi(x) = (=1)% il - LY* ()

for the computation. From (4.4)—(4.7), we have

n—1 2m ji—2
lim A /A(k)z-HeXp —Z(\/_Z—)jkf dk;

e i=0 =
noamen YT 1
(4.8) =A ((ﬁ et/ zl/z> z= 2 nl H il - (z + —) !)
i=0 &



Applying Formula 4.1 and (4.8) to (3.5), we conclude
(4.9)

lim 1
A _log A Z(0)

1 n(n=1) = 1 1\""
— _ 2 . PRV — I ) —
log.A<Zn(O) ™ (ez)= - z | ( 1—1—2). (z—}—z) )
( : |

]_ nn— n n2 ]_
zlogA< S i () L o F(—
z

/ -z
H

Zn(0)

2
1
= const + n + E10gz+ n—logz+nlogA <F -
z oz 2 z
1
= const + n + Elogz — Elogz + nlog A (F (—))
z 0z 2 z
00 (_1),,_1 n—1
AT T
+Z—r (Z(n @)z)z.
r=1 =0
Let us recall Stirling’s formula:

1 1 11 by ey
4.10) 1 r{- =——1 ——4+ =1 — t
(4.10) ogA( (2)) ~logz — — + 5 ogz—l—}_1 or(ar 1),2 + const ,

where b, is the Bernoulli number defined by

=
et —1 rlt
T

=0

We are not interested in the constant term of (4.9) because the asymptotic series

in question, (3.5), has no constant term. We can see that substitution of (4.10) in
(4.9) eliminates all the logarithmic terms as desired:

2m
- (Vz)' 2 :
lim log.A4 / exp | — —trace(X7) | dX
A Z,0) S 2
- b27" 2r—1 = (_1)T_1 = N\ T T
:Z2T(2T_1)-n-z * r Z(n—z)z i
r=1 r=1 1=0

Let



denote the Bernoulli polynomial. Then we have

n—1

S = Gri1(n)
— r+1
Thus for r > 0,
n—1
S (n— i) = ngri1(n) — Pria(n)
= r+1 r+2
T r+1
:Z 1 (T+1)bq-nr+2_q—z 1 (T+2>bq~nr+2_q
q:0T+1 q q:OT+2 q
'(1-—
_ Z T ( Q) bq . nr—|—2—q . br+1 ‘n .
g (r+2—q)!

q=0

Therefore, we have

r=1 r=1 1=0
o0 oo T
1 — (r—1!(g—1) 2—
= — — by, -m - 22T (—-1)" by -n AL T
;27" " ;q_o g (r+2—q)
(4.11) ~ o .
= — _ b . . 2r—1 _1 r—1 ’I“—|-2 ST
D R DD b i o Ty R
r=1 r=1
oo [1r/2]

(r= 1! (2 - 1) +2-2
_1T b .n’ q . 7“.
+§q;( ) 29)! (r+2—2¢)! 20" z

It is time to switch the summation indices r and ¢ to ¢ and s as in (3.5). The
first sum of the third line of (4.11) is the case when we specify a single point on an
algebraic curve of arbitrary genus g = r. The second sum is for genus 0 case with
more than two points specified. So we use s = r 4+ 2 for the number of points. In
the third sum, ¢ = g > 0 is the genus and r 4+ 2 — 2¢g = s > 2 is the number of
points. Thus (4.11) is equal to

N 2g—1 S s—1 1 s 82
(1.12) 22 ) T ey
' & 2 —3)!
3 S0 T (1 )2
g=1s=2 T
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where we used Euler’s formula
by
1-2g)=—-—-2
¢( g) 5

and the fact that by = 1 and byq41 = 0 for ¢ > 1. Note that the first two summations
of (4.12) are actually the special cases of the third summation corresponding to s = 1
and g = 0. Thus we have recovered the formula due to Harer-Zagier [2] and Penner

[7]:
Z (=1)° X(My5) n® - (—z)~2H20+s

g=>0, s>0
2—2g—s<0
! S~ (V2 -
= lim logA —/ exp | — Y ———rtrace(X’) | dX

- _ Z M C(1—2g) - n® - (—z) " HH20+s
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