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Abstract. Equivalence between the following categories is established: 1) A cate-

gory of arbitrary vector bundles on algebraic curves defined over a field of arbitrary
characteristic, and 2) a category of infinite dimensional vector spaces corresponding

to certain points of Grassmannians together with their stabilizers. Our contravari-

ant functor between these categories gives a full generalization of the well-known
Krichever map, which assigns points of Grassmannians to the geometric data consist-

ing of curves and line bundles. As an application, a solution to the classical problem

of Wallenberg-Schur of classifying all commutative algebras consisting of ordinary
differential operators is obtained.
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0. Introduction.

In this paper, we give a complete solution to the classical problem of Wallenberg–
Schur: determine all the commutative algebras consisting of ordinary differential
operators.

In the 1903 paper [W], G. Wallenberg studied commuting pairs of ordinary dif-
ferential operators. Let P and Q be ordinary differential operators. We say P and
Q commute if

[P, Q] = P ·Q−Q · P = 0 .

He tried to determine all such commuting pairs. First, he did it for the case when
ord P = 1 and ord Q = n, and then the case of ord P = ord Q = 2. These are easy
cases and he gave an explicit determination. Then he moved on to the nontrivial
cases such as ord P = 2 and ord Q = 3. He discovered that the coefficients of P
and Q are given by Weierstrass elliptic functions. Let us take

(0.1)

{
P =

(
d
dx

)2 − 2u(x)

Q =
(
d
dx

)3 − 3u(x) ddx −
3
2u

′(x) ,

where u′(x) is the derivative of u(x) with respect to x. It is an easy calculation to
show that P and Q commute if and only if u satisfies

u′′′ = 12uu′ .

We can integrate this equation twice to obtain

(0.2) (u′)2 = 4u3 − g2u− g3 ,

where g2 and g3 are constants of integration. Therefore, P and Q commute if and
only if their coefficients are given by the Weierstrass elliptic functions and their
degenerations, since g2 and g3 in (0.2) can be arbitrary. If u satisfies (0.2), then P
and Q satisfy a polynomial relation

Q2 = P 3 − g2
4
P − g3

4
,

which defines a plane cubic curve. Wallenberg did not seem to be interested in
his own discovery of this mysterious connection between commuting differential
operators and algebraic curves, presumably because he was interested only in the
explicit determination.

Two years later, inspired by [W], I. Schur found a remarkable fact. Since he
obtained his famous Schur’s Lemma in the same year of 1905, I propose to call his
result
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Schur’s Other Lemma. Let P be an arbitrary ordinary differential operator of
order greater than zero, and let BP be the set of all differential operators which
commute with P . Then BP is a commutative algebra.

Schur’s proof is based on the D-module theory of one dimension introduced by
G. Floquet [F] in 1879 and the theory of pseudo-differential operators in one variable
invented by S. Pincherle [P] in 1897. (For his proof and more detail of the history
of the subject, see [M4].)

Schur’s Other Lemma does not hold for other algebras such as matrix algebras
and the algebra of partial differential operators. It is one of the characteristic
features of the case of ordinary differential operators. Because of this result, it is
more natural to consider commutative algebras of ordinary differential operators
than to look only at two elements of such an algebra. Therefore, a more natural
problem in this direction is to classify all possible commutative algebras consisting
of ordinary differential operators.

This problem has been studied by many authors and in diverse context of mo-
tivations, including Burchnall–Chaundy [BC], Gelfand–Dikii [GD], Krichever [K],
Mumford [Mum], Segal–Wilson [SW] and Verdier [V]. For a commutative algebra
B of ordinary differential operators, we define

(0.3) rank B = G.C.D.{ord P | P ∈ B} .

Complete geometric classification of rank one algebras was established by Krichever
and Mumford. Their result is, roughly speaking, that every rank one algebra B
is in one-to-one correspondence with a geometric triple (C, p,L) consisting of an
arbitrary algebraic curve C, a smooth point p ∈ C and a generic line bundle L on
C of degree genus(C) − 1. It is important to notice that their correspondence is
essentially constructible in both directions. After their work, many attempts have
been made to classify higher rank algebras. Unfortunately, the obvious idea of using
the triple (C, p,F) with a vector bundle F does not work, because B has far more
informations than a triple.

Then Verdier [V] proposed a classification in terms of parabolic structures and
connections of vector bundles defined on curves. As far as I know, this is the only
result so far obtained which covers all the higher rank cases. But this is not a
natural generalization of the theorem of Krichever and Mumford. From both an
analytic and an algebraic point of view, it is natural to identify two algebras of
ordinary differential operators B1 and B2 if there is an invertible function f such
that B1 = f · B2 · f−1. Krichever and Mumford used this identification in their
classification. But the theorem of [V] dealing with the higher rank cases does not
incorporate this identification. And also, the correspondence is constructible only
in one direction, from algebra to geometry.

The solution we are proposing in this paper works for an arbitrary rank, is a nat-
ural generalization of the theorem of Krichever and Mumford, and is constructible
in both ways.
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Classification Theorem. There is a bijective correspondence between the follow-
ing two sets of objects:

Analytic object: A commutative algebra B of ordinary differential operators with
a monic element (i.e. an operator whose leading coefficient is 1). For an invertible
function f , we identify the algebras B and f ·B · f−1.

Geometric object: An isomorphism class of quintets (C, p,F , π, φ) consisting of
an arbitrary complete irreducible algebraic curve C of genus, say g, a smooth point
p ∈ C, an arbitrary semistable vector bundle F on C of rank r and a fixed degree
d = r(g − 1) and having no nontrivial holomorphic global sections, a local covering
π of C ramified at p, and a special kind of local trivialization φ of F near p.

Remark. All the vector bundles appearing in this correspondence are semistable. I
do not know how to characterize strictly stable ones in terms of the commutative
rings of ordinary differential operators.

The above theorem is obtained as a corollary of more elaborate theorem of cate-
gorical equivalence between a category of quintets and a category of infinite dimen-
sional vector spaces. After Segal and Wilson [SW] discovered an injective map, now
called the Krichever map, of the set of geometric objects consisting of quintuples
(C, p,L, z, φ) into the infinite dimensional Grassmannian introduced by M. Sato [S],
where L is a line bundle of degree g − 1 and z is a local coordinate of C around z,
people started to generalize this map to the data consisting of vector bundles. For
example, if one uses (C, p,F , z, φ), then one can construct a map of these quintuples
into the Grassmannian of vector valued functions. It is possible to give a one-to-one
correspondence between this Grassmannian of vector valued functions and Sato’s
original Grassmannian of scalar valued functions, and hence one obtains a map of
higher rank objects into the single Grassmannian. However, such a map can never
be functorial.

In this paper, a contravariant functor is presented as a higher rank generalization
of the Krichever map. Let Q be the category of quintets (C, p,F , π, φ) consisting
of arbitrary curves and vector bundles, with absolutely no restrictions on ranks
and degrees. Our functor χ makes this category equivalent with the other category
S (S stands for Schur) of pairs (A,W ), where W is a vector subspace of V =
k
(
(z)
)

satisfying certain Fredholm conditions (therefore, it is indeed a point of the
Grassmannian of Fredholm operators), and A is a nontrivial subring of V which
stabilizes W , i.e. AW ⊂ W . The correspondence is basically obtained in the
following way:

(1) A = the set of holomorphic functions on C \ {p};
(2) W = the set of holomorphic sections of F on C \ {p}.
For a pair (A,W ), we define

rank A = G.C.D.{pole order of a(z) | a(z) ∈ A}.
4



It coincides with the rank of the corresponding vector bundle F and the rank of the
algebra B defined by (0.4).

If W is a point of the big cell of the special Grassmannian G(0,−1) (see Section 1
for definition), then W determines a unique pseudo-differential operator S of order
zero. This is the theorem of Sato discovered in 1981 [S]. Let us introduce an identi-
fication of the coordinate z−1 with the differential operator d

dx , which is in a sense
the Fourier transform of the operator. Then A becomes a ring of pseudo-differential
operators with constant coefficients. Now define

B = S ·A · S−1 .

It turns out that the condition AW ⊂ W is precisely equivalent to the condition
that B contains only differential operators. Therefore, our classification theorem
immediately follows from the categorical equivalence. The reason why we need
a functor instead of just a bijection is that, in due course, we have to consider
isomorphism relations among the quintets and the pairs (A,W ). We will see in
Section 4 that a morphism among the geometric objects corresponds to an action
of a pseudo-differential operator on the Grassmannians.

Remark. It is possible to define a category of commutative algebras of ordinary
differential operators in a natural way. But it does not become equivalent with the
category of the geometric data we have.

The ring V acts on V itself by multiplication, hence it defines an infinitesimal
action on the Grassmannians. Sato found that this action on G(0,−1) is nothing
but the system of Kadomtsev-Petviashvili equations (the KP system) through the
correspondence between points of G(0,−1) and pseudo-differential operators of or-
der zero. Then I proved in [M1] and [M2] that every finite dimensional orbit of
the KP action is isomorphic to a generalized Jacobian variety of an algebraic curve.
Thus the KP system produces all line bundles.

Since we now have the correspondence between vector bundles and points of the
Grassmannian, it is natural to ask if the KP system produces all the vector bundles
on arbitrary algebraic curves. By using our theorem of categorical equivalence
together with the recent theory of Hitchin [H] and Beauville–Narasimhan–Ramanan
[BNR], we can answer this question affirmatively. Namely, we can show that the KP
action (more precisely, the action of V on the Grassmannians) produces all generic
vector bundles.

The paper is organized as follow.
In Section 1, we define the Grassmannians labeled by the index of the Fredholm

condition. The category S of pairs (A,W ) is also defined.
In Section 2, the category of quintets consisting of geometric data is defined. An

explicit construction of (A,W ) out of a quintet is given.
The equivalence between these categories is proved in Section 3. We do this

by giving an explicit construction of the geometric data from (A,W ). We use the
technique of [Mum] and [V] in this section.
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In order to relate the theory of previous sections with ordinary differential opera-
tors, we have to introduce more morphisms into these categories. These morphisms
are defined by actions of pseudo-differential operators on the Grassmannians. In
this section, the functor of Section 3 is extended to these thickened categories. The
equivalence still holds in this case.

The geometric classification theorem of commutative algebras of ordinary differ-
ential operators is proved in Section 5.

The KP system, i.e. the V action on the Grassmannians, is defined in a coordi-
nate free manner in Section 6 and its finite dimensional orbits are examined. It is
shown that all generic vector bundles on an arbitrary curve of genus greater than
one appear in a orbit of this action.

In Appendix, we give a proof of the theorem of Sato. Since we change the formu-
lation of the theorem from the original one used in [S] and [SN], our correspondence
becomes canonical and rather simpler.

I express my hearty gratitude to Professor Pierre Deligne for many stimulating
discussions and invaluable suggestions. In particular, the idea of incorporating
categorical point of view was suggested by him. I am also grateful to Professor
Goro Shimura for his important and useful comments made on the earlier version
of this paper.

1. The Grassmannians and the category S(ν).

Throughout this paper, we work with a field k of an arbitrary characteristic unless
otherwise stated. In Section 1, we define the infinite dimensional Grassmannian of
index µ and level ν for every integers µ and ν. Then we introduce a category of
points of these Grassmannians.

Let V = k
(
(z)
)

be the set of all formal Laurent series in one variable z. This is
the field of quotients of the ring k

[
[z]
]

of formal power series. There is a natural
filtration

(1.1) · · · ⊃ V (ν+1) ⊃ V (ν) ⊃ V (ν−1) ⊃ · · ·

in V defined by

(1.2) V (ν) = k
[
[z]
]
· z−ν ,

which is the set of all formal Laurent series whose pole order at z = 0 is less than
or equal to ν ∈ Z. We say v ∈ V has order ν if v ∈ V (ν) \ V (ν−1). Since⋃

ν∈Z
V (ν) = V and

⋂
ν∈Z

V (ν) = {0} ,

the filtration (1.1) defines a natural complete topology in V by defining {V (ν)}ν∈Z
as a basis for open sets of V . For every vector subspace W in V , let γ(ν)W denote
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the natural map of W into V/V (ν) defined by

(1.3)

V
identity−−−−−→ V

inclusion

x yprojection

W
γ(ν)W−−−−→ V/V (ν) .

This map is said to be Fredholm if both of the kernel and cokernel of γ(ν)W are
of finite dimension. For a Fredholm map γ, we define the Fredholm index by
Index γ = dimk Ker γ − dimk Coker γ.

Definition 1.1. For every integers µ, ν ∈ Z, the following set is called the Grass-
mannian of index µ and level ν:

G(µ, ν) =
{
closed vector subspace W

∣∣ γ(ν)W is Fredholm of index µ
}
.

The big cell of the Grassmannian of index zero is defined by

G+(0, ν) =
{
W ∈ G(0, ν)

∣∣Ker γ(ν)W = Coker γ(ν)W = 0
}
.

Each G(µ, ν) has a structure of infinite dimensional scheme by projective limit.
Therefore, our Grassmannians are pro-algebraic varieties in the sense of Grothen-
dieck. An element v ∈ V of order ν′ ∈ Z gives a continuous isomorphism v : V → V
by multiplication. Thus G(µ, ν) is always isomorphic to G(µ, ν + ν′) for every µ
and ν. We note here that there is no canonical isomorphism between them.

Definition 1.2. Let r be a positive integer, µ and ν be arbitrary integers. A pair
(A,W ) is said to be a Schur pair of rank r, index µ and level ν if the following
conditions are satisfied:

(1) W is a point of the Grassmannian G(µ, ν) of index µ and level ν.
(2) A ⊂ V is a k-subalgebra of V such that k ⊂ A, k 6= A, AW ⊂W and

(1.4) r = rankA = G.C.D. {ord a
∣∣ a ∈ A}.

We denote by Sr(µ, ν) the set of all Schur pairs of rank r, index µ and level ν.

Remark 1.3. If (A,W ) is a Schur pair, then W cannot be an arbitrary point of the
Grassmannian. Let

(1.5) AW = {v ∈ V
∣∣ vW ⊂W}.

If k 6= AW , then (AW ,W ) gives a Schur pair, which we call a maximal Schur pair.
However, for a generic W , we always have AW = k. In this case, W does not have
any interesting geometric informations.
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We define the set of finite rank points of the Grassmannian by

(1.6) Gfin(µ, ν) = {W ∈ G(µ, ν) |AW 6= k}.

Then we have a canonical injection

(1.7) s : Gfin(µ, ν) −→
⋃
r∈N
Sr(µ, ν)

defined by s(W ) = (AW ,W ), which we call the Schur map.

Definition 1.4. We define the category of Schur pairs S(ν) for every ν ∈ Z as
follows:

(1) The set of objects is defined by

Ob
(
S(ν)

)
=
⋃
µ∈Z

⋃
r∈N
Sr(µ, ν).

(2) The set of morphisms Mor
(
(A2,W2), (A1,W1)

)
consists of

(α, ι) : (A2,W2) −→ (A1,W1) ,

where α : A2 ↪→ A1 and ι : W2 ↪→W1 are inclusion maps.

2. The category Q(ν) of geometric data on algebraic curves.

In this section we define categories of geometric data consisting of algebraic curves
and torsion free sheaves on them, and show that every object of these categories
gives rise to a Schur pair which is defined in the previous section.

Definition 2.1. Let r > 0 be a positive integer, µ and ν be arbitrary integers.
We call (C, p,F , π, φ) a quintet of rank r, index µ and level ν if it consists of the
following geometric data:

(1) C is a reduced irreducible complete algebraic curve defined over a field k of
arbitrary characteristic;

(2) p ∈ C is a smooth k-rational point;
(3) F is a torsion free sheaf of OC-modules on C of rank r satisfying

dimkH
0(C,F)− dimkH

1(C,F) = µ .

(4) π : U0 → Up is a morphism of formal schemes, where U0 is the formal
completion of the affine line A1

k = A1 along the origin 0 ∈ A1 and Up is
the formal completion of the curve C along p. Once for all, we choose a
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coordinate z on A1 and fix it throughout this paper. Thus U0 = Spec k
[
[z]
]
.

The morphism π induces a ring homomorphism

π∗ : ÔC,p −→ ÔA1,0 .

We require that π∗ is injective and the ideal of ÔA1,0 generated by π∗(mp)
coincides with the r-th power (m0)r of the unique maximal ideal m0 of ÔA1,0,
where mp is the unique maximal ideal of ÔC,p. We call such π an r-sheeted
covering of Up ramified at p.

(5) φ : FUp

∼−→ π∗OU0(ν) is an OUp
-module isomorphism between the formal

completion FUp
of F along p ∈ C which is a free OUp

-module of rank r
and the direct image π∗OU0(ν) of the twisted structure sheaf OU0(ν) of the
formal scheme U0 via the morphism π. Since π is an r-sheeted covering,
π∗OU0(ν) is a free OUp

-module of rank r.
Two quintets (C, p,F , π, φ) and (C, p,F , π, cφ) are identified if c ∈ k×. We also
identify (C, p,F , π1, φ1) with (C, p,F , π2, φ2) if the following commutative diagram
holds:

H0(Up,FUp
)

φ1−−−−→ H0(Up, π1∗OU0(ν))

φ2

y yo
H0(Up, π2∗OU0(ν))

∼−−−−→ H0(U0,OU0(ν)).

The set of all quintets of rank r, index µ and level ν is denoted by Qr(µ, ν).

Remark 2.2.
(1) Let SingC denote the singularity of C. Since dim C = 1, F is locally free

on C \SingC. In particular, if C is a non-singular curve, then F is actually
a vector bundle on C of rank r and degree µ+ r(g−1), where g is the genus
of C. The last formula of degree follows from the Riemann-Roch theorem

dimkH
0(C,F)− dimkH

1(C,F) = deg F − r(g − 1) .

(2) In the case of k = C, we can use a local Stein neighborhood of p in C instead
of the formal completion. Thus Up is a small open set of C around p and
U0 is a small open disk of the complex plane C centering at the origin. The
morphism π is a holomorphic covering of Up ramified at p. In this case we
can replace the formal completion FUp by the restriction F

∣∣
Up

and thus the
map φ gives an isomorphism

φ : F
∣∣
Up

∼−→ π∗OU0(ν)

as a trivial holomorphic vector bundle on Up. In other words, π is a local
covering of the curve C at the point p and φ can be thought of as a local
trivialization of the vector bundle F on Up.

9



(3) When r = 1, π gives an isomorphism π : U0
∼−→ Up. Since we have chosen

a coordinate z on U0, π gives a local coordinate y = π(z) on Up. Thus
our quintet (C, p,F , π, φ) becomes (C, p,F , y, φ) with a local parameter y
around p and a local trivialization φ of F near the point p. This is the
quintuple introduced by Segal-Wilson [SW].

Definition 2.3. We define a category Q(ν) of quintets of level ν ∈ Z as follows:
(1) The set of objects is defined by

Ob
(
Q(ν)

)
=
⋃
µ∈Z

⋃
r∈N
Qr(µ, ν).

(2) A morphism

(β, ψ) : (C1, p1,F1, π1, φ1) −→ (C2, p2,F2, π2, φ2)

consists of a morphism β : C1 → C2 of curves and a homomorphism ψ :
F2 → β∗F1 of sheaves on C2 such that

(2.1) β(p1) = p2,

(2.2)

U0 U0

π1

y yπ2

Up1
β̂−−−−→ Up2 ,

i.e. π2 = β̂ ◦ π1, where β̂ is the morphism of formal schemes determined by
β, and

(2.3)

F2Up2

ψ̂−−−−→ β̂∗F1Up1

φ2

y yβ̂∗(φ1)

π2∗OU0(ν) β̂∗π1∗OU0(ν) ,

where ψ̂ is the homomorphism of sheaves on Up2 defined by ψ.

In the above definition of quintet, we introduced a fixed formal coordinate z on
the formal scheme U0. We are going to define in the next section a contravariant
functor χ(ν) from Q(ν) to S(ν) by using this coordinate. The formal parameter z
which is used in the definition of Grassmannians is nothing but the coordinate z
on U0, and this is the key of the connection between the two completely different
categories.

However, from geometric point of view, it is more desireble to have coordinate
free objects. This is one of the motivations of introducing another category in the
next definition.
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Definition 2.4. The thickened category Q(ν) of quintets of level ν ∈ Z is defined
as follows:

(1) The set of objects is exactly the same as before;

Ob
(
Q(ν)

)
= Ob

(
Q(ν)

)
.

(2) A morphism

(β, ψ) : (C1, p1,F1, π1, φ1) −→ (C2, p2,F2, π2, φ2)

consists of a morphism β : C1 → C2 of curves and a homomorphism ψ :
F2 → β∗F1 of sheaves on C2 satisfying the following four conditions:

(2.4) β(p1) = p2.

There exists a formal scheme isomorphism h : U0
∼→ U0 such that the cor-

responding ring homomorphism h̄ : k
[
[z]
] ∼→ k

[
[z]
]

is defined by

(2.5) h̄(z) = z + a2z
2 + a3z

3 + · · · , a2, a3 ∈ k,

and

(2.6)

U0
h−−−−→ U0

π1

y yπ2

Up1
β̂−−−−→ Up2 ,

where β̂ is the morphism of formal schemes determined by β.
There is an OU0-module isomorphism ξ : OU0(ν)

∼→ h∗OU0(ν) such that

(2.7)

F2Up2

ψ̂−−−−→ β̂∗F1Up1

φ2

y yβ̂∗(φ1)

π2∗OU0(ν)
π2∗(ξ)−−−−→ π2∗h∗OU0(ν) = β̂∗π1∗OU0(ν) ,

where ψ̂ is the homomorphism of sheaves on Up2 defined by ψ.

The new category Q(ν) has the same objects of Q(ν) but has much more mor-
phisms than that. It is very interesting to know, as we are going to see in Section 5,
that this thickened category has a direct connection with the commutative algebras
of ordinary differential operators.
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Definition 2.5. Let U ⊂ C be an affine open subset of C containing p ∈ C and
let Up be the formal completion of C along p. For every coherent sheaf L on U , we
define

H0(U \ {p},L) = lim−→
n
H0(U,L ⊗OU (n))

and
H0(Up \ {p},LUp

) = lim−→
n
H0(Up,LUp

⊗OUp
(n)) .

These are the set of regular sections of L defined on U \{p} or Up\{p} which have
poles of finite order at p ∈ C. Since p is a smooth k-rational point of C, there is a
canonical inclusion Lp ⊂ LUp

. Therefore, we can view the cohomology groups such
as H0(U \ {p},L), H0(Up,LUp

) and H0(U,L) as subgroups of H0(Up \ {p},LUp
).

Now we have

Proposition 2.6.

(1) Let L be a torsion free sheaf on a Zariski open set U ⊂ C containing p.
Then

H0(U \ {p},L) ∩H0(Up,LUp) = H0(U,L) .

(2) There is a Zariski open set U ⊂ C containing p ∈ C so that we have a
canonical isomorphism

H0(U \ {p},OU )
/
H0(U,OU ) ∼−→ H0(Up \ {p},OUp

)
/
H0(Up,OUp

) .

(3) Let F be a torsion free sheaf on C. Then there exists a Zariski open set
U ⊂ C containing p ∈ C such that

H0(U \ {p},F)
/
H0(U,F) ∼−→ H0(Up \ {p},FUp)

/
H0(Up,FUp)

gives a natural isomorphism.

Proof.

(1) Every regular section of L defined on U \ {p} which is also regular at p is
regular everywhere on U .

(2) Since p ∈ C is a smooth k-rational point, there is a rational function y on
C which has a simple zero at p. Let U be a Zariski open set of C such that
y is regular everywhere on U and y−1 is regular on U except at p. Since
the equation y = 0 on U defines the point p ∈ U ⊂ C, y is the (topological)
generator of ÔC,p = OUp , i.e. H0(Up,OUp) = k

[
[y]
]
. Therefore,

H0(Up \ {p},OUp
) = lim−→

n
H0(Up,OUp

(n)) = k
(
(y)
)
.
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On the other hand, since yν ∈ H0(U \ {p},OU ) for every ν ∈ Z, we have

k[y, y−1] inclusion−−−−−→ H0(U \ {p},OU )

inclusion

x xinclusion

k[y] inclusion−−−−−→ H0(U,OU ) .

But since k[y, y−1] ∩H0(U,OU ) = k[y], there is a natural inclusion

k[y, y−1]
/
k[y] ↪→ H0(U \ {p},OU )

/
H0(U,OU ) .

Similarly, since we have

H0(U \ {p},OU ) inclusion−−−−−→ H0(Up \ {p},OUp
)

inclusion

x xinclusion

H0(U,OU ) inclusion−−−−−→ H0(Up,OUp)

and
H0(U \ {p},OU ) ∩H0(Up,OUp

) = H0(U,OU ) ,

there is a natural inclusion

H0(U \ {p},OU )
/
H0(U,OU ) ↪→ H0(Up \ {p},OUp

)
/
H0(Up,OUp

) .

By combining these, we obtain

k[y, y−1]
/
k[y] ↪→ H0(U \ {p},OU )

/
H0(U,OU )

↪→ H0(Up \ {p},OUp
)
/
H0(Up,OUp

)

= k
(
(y)
)/
k
[
[y]
]
.

But note that k[y, y−1]/k[y] ' k
(
(y)
)
/k
[
[y]
]
. Therefore, every injective

homomorphism in the above is indeed an isomorphism.
(3) Let U be an affine open subset of C on which F is locally free. Since p is

a smooth point of C, U contains p. If the rank of F is r, then we have an
isomorphism η : F

∣∣
U

∼−→ (OU )r. Thus

H0(U \ {p},F)
/
H0(U,F) '

(
H0(U \ {p},OU )

/
H0(U,OU )

)r
.

We can take U even smaller so that the above (2) holds. Then

H0(U \ {p},F)
/
H0(U,F) '

(
H0(U \ {p},OU )

/
H0(U,OU )

)r
=
(
H0(Up \ {p},OUp)

/
H0(Up,OUp)

)r
' H0(Up \ {p},FUp

)
/
H0(Up,FUp

) ,

because the formal completion of η gives a trivialization η̂ : FUp

∼−→ (OUp)r.
The resulting isomorphism between the quotient of cohomologies does not
depend on the choice of the trivialization η.
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This completes the proof of the proposition.

In the above proof, we have established that

k
[
[y]
]

= H0(Up,OUp)⋂ ⋂
k
(
(y)
)

= H0(Up \ {p},OUp
) .

Note that we have chosen a fixed coordinate z on U0. Therefore, the ring homo-
morphism π∗ associated to the morphism π: U0 → Up gives an injection

k
[
[y]
]

= H0(Up,OUp) π∗−→ H0(U0,OU0) = k
[
[z]
]
.

This injective ring homomorphism π∗ : k
[
[y]
]
↪→ k

[
[z]
]

extends to a unique injective
field homomorphism π∗ : k

(
(y)
)
↪→ k

(
(z)
)

over k which we denote by the same
notation π∗. Thus we have obtained an extended diagram

k
[
[y]
]

= H0(Up,OUp
) π∗−−−−→ H0(U0,OU0) = k

[
[z]
]

inclusion

y yinclusion

k
(
(y)
)

= H0(Up \ {p},OUp
) π∗−−−−→ H0(U0 \ {p},OU0) = k

(
(z)
)
.

In particular, π∗
(
H0(C \ {p},OC)

)
becomes a well-defined subring of k

(
(z)
)
. Sim-

ilarly, since
H0(Up, π∗OUp

(ν)) ' H0(U0,OU0(ν)) = V (ν) ,

φ : FUp

∼→ π∗OU0(ν) induces an isomorphism φ : H0(Up,FUp
) ∼→ V (ν) . By using

the fact that π∗OU0(ν) is a free OUp-module, we have

H0(U∗p , π∗OUp(ν)) = lim−→
n
H0(Up, π∗OUp(ν) ⊗

OUp

OUp(n))

' H0(Up, π∗OUp
(ν)) ⊗

H0(Up,OUp )
H0(U∗p ,OUp

)

' V (ν) ⊗
k
[
[y]
] k((y))

= k
(
(z)
)
,

where U∗p = Up \ {p}. Therefore, we obtain extended isomorphisms

H0(Up \ {p},FUp
) ∼−→ H0(Up \ {p}, π∗OUp

(ν)) ∼−→ k
(
(z)
)

14



which we denote by the same notation φ. Thus we have

H0(Up,FUp
) ∼−−−−→

φ
V (ν)

inclusion

y yinclusion

H0(Up \ {p},FUp
) ∼−−−−→

φ
k
(
(z)
)
.

In particular, φ
(
H0(C \ {p},F)

)
becomes a well-defined subset of k

(
(z)
)
.

Theorem 2.7. For every quintet (C, p,F , π, φ) of level ν, let us define

W = φ
(
H0(C \ {p},F)

)
⊂ k

(
(z)
)
.

Then we have

Ker γ(ν)W ' H0(C,F) and Coker γ(ν)W ' H1(C,F) ,

where γ(ν)W is the natural map of (1.3).

Proof. Let U ⊂ C be an affine open subset of C containing p. Since C \ {p} is
an affine subset of C, we can compute the cohomology by using the affine covering
C = (C \ {p}) ∪ U . Because of Proposition 2.6 (1), we have

H0(C,F) ' H0(C \ {p},F) ∩H0(Up,FUp
)

' φ
(
H0(C \ {p},F)

)
∩ φ
(
H0(Up,FUp

)
)

= W ∩ V (ν)

= Ker γ(ν)W .

Next, let U ⊂ C be an affine open subset of C containing p such that F is locally
free on U . Then, by Proposition 2.6 (3) we have

H1(C,F) ' H0(U \ {p},F)
/(
H0(C \ {p},F) +H0(U,F)

)
' H0(Up \ {p},FUp

)
/(
H0(C \ {p},F) +H0(Up,FUp

)
)

' φ
(
H0(Up \ {p},FUp)

)/
φ
(
H0(C \ {p},F) +H0(Up,FUp)

)
= k

(
(z)
)/

(W + V (ν)
)

' Coker γ(ν)W .

This completes the proof.
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Corollary 2.8. Let q = (C, p,F , π, φ) ∈ Qr(µ, ν) be a quintet of rank r, index µ
and level ν. Define a Schur pair by χr,µ,ν(q) = (A,W ), where A = π∗

(
H0(C \

{p},OC)
)

and W = φ
(
H0(C \ {p},F)

)
. Then (A,W ) ∈ Sr(µ, ν) and we have a

well-defined map
χr,µ,ν : Qr(µ, ν) −→ Sr(µ, ν)

for every r > 0, µ, ν ∈ Z.

Proof. Since H0(C \ {p},OC) 6= k, we know that A 6= k. Note that F is an OC-
module and that φ : FUp

∼−→ π∗OU0(ν) is an OUp
-module isomorphism. Therefore,

W is an A-module, i.e. AW ⊂ W . As in the proof of Proposition 2.6 (2), let y be
a rational function on C which has a simple zero at p. Then we have

H0(C \ {p},OC) ⊂ H0(Up \ {p},OUp
) = k

(
(y)
)
↪→
π∗
k
(
(z)
)
.

Since π : U0 → Up is an r-sheeted covering ramified at p, the image π∗(y) of y is an
element of k

[
[z]
]

of order −r. Therefore, rank A = r.
On the other hand, since

Index γ(ν)W = dimkH
0(C,F)− dimkH

1(C,F) = µ ,

we have W ∈ G(µ, ν). Therefore,

χr,µ,ν(q) = (A,W ) ∈ Sr(µ, ν) .

This completes the proof.

3. Categorical equivalence of S(ν) and Q(ν).

In the previous section we defined a map

χr,µ,ν : Qr(µ, ν) −→ Sr(µ, ν)

from the set of quintets into the set of Schur pairs for every rank r, index µ and
level ν. In this section, we are going to extend this map to a contravariant functor
χ(ν) : Q(ν) → S(ν) which makes these categories (anti-) equivalent. In order to
establish the categorical equivalence, we have to show bijectivity of χr,µ,ν . This will
be done by giving an explicit construction of a quintet starting from a Schur pair.
In other words, we will define the inverse map of χr,µ,ν .

The main idea of constructing a quintet out of a Schur pair (A,W ) is the follow-
ing. First of all, we introduce a natural filtration in A by using the filtration (1.1)
of V . Then we define the graded algebra grA corresponding to A. Now the curve
is obtained by C = Proj(grA) and we will show that it is a one-point completion of
an affine curve SpecA. Thus Proj(grA) = SpecA ∪ {p}. The A-module structure
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on W defines a torsion free sheaf on the affine curve SpecA and the level structure
of W determines the extension of this sheaf to a sheaf on C. The other data π and
φ are constructed by identifying the formal variable z appearing in the definition of
Grassmannians with a local coordinate of C near the point p.

Now let us start with a Schur pair (A,W ) ∈ Sr(µ, ν) of rank r > 0, index µ
and level ν. We define the natural filtrations of A and W by A(n) = A ∩ V (n) and
W (n) = W ∩ V (n). Since Ker γ(ν)W = W ∩ V (ν) is of finite dimension, there is a
well-defined number

M = min{ordw
∣∣w ∈W}

such that W (M) 6= {0} and W (M−1) = {0}. Since dimk V
(n)
/
V (n−1) = 1 for every

n ∈ Z, we have

1 ≤ dimkW
(M) = dimkW

(M)/W (M−1) ≤ 1 ,

hence dimkW
(M) = 1. Note that the multiplication in V satisfies V (m)V (n) ⊂

V (m+n). So we have A(−1) ·W (M) ⊂W (M−1) = 0 and which means that A(−1) = 0.
Moreover, since A(0) · W (M) ⊂ W (M), A(0) must preserve the one-dimensional
subspace W (M) of V . Therefore, we can conclude that

(3.1) A(0) = A ∩ V (0) = k .

Let
K = {a−1b

∣∣ a, b ∈ A and a 6= 0} ⊂ V

be the field of quotients of A. Every element of K has an order which is divisible
by r = rankA, because the order of elements of A is a multiple of r. Namely, we
have

dimk A
(nr)
/
A(nr−r) ≤ 1

and
dimk K

(nr)
/
K(nr−r) ≤ 1

for every n ∈ Z, where we define K(n) = K ∩ V (n).

Proposition 3.1. Let (A,W ) ∈ Sr(µ, ν) be a Schur pair. Then there is a monic
element y ∈ K(−r) of order −r such that A ⊂ K ⊂ k

(
(y)
)
⊂ k

(
(z)
)

and

(3.2) A ∩ k
[
[y]
]

= k .

Proof. Let a be an arbitrary monic element of A of positive order, i.e. the leading
coefficient of a is 1 and ord a > 0. Since

r = G.C.D.{ord v | v ∈ A} ,
17



there is another monic elements b in A such that

(3.3) r = i(ord a)− j(ord b)

for some positive integers i and j. So define

y = a−ibj ∈ K ,

which is a monic element of K of order −r because of (3.3). Thus y ∈ K ∩V (−r) ⊂
K ∩ k

[
[z]
]
. Since k(y) ⊂ K, we have

dimkK
(nr)
/
K(nr−r) = 1

for every n ∈ Z, because y−n gives a monic element of K of order nr.
Let v ∈ K(nr) be an arbitrary element. Then we can choose a constant c0 ∈ k so

that v− c0y−n ∈ K(nr−r). Since y−n+1 is a monic element of order nr− r, there is
another constant c1 such that v− c0y−n − c1y−n+1 ∈ K(nr−2r). If we continue this
procedure, then we have a sequence of constants c0, c1, c2, · · · such that

v −
∞∑
`=0

c`y
−n+` ∈

⋂
m∈Z

V (m) = {0} .

Therefore, v =
∞∑̀
=0

c`y
−n+`, and which implies that k(y) ⊂ K ⊂ k

(
(y)
)
. Note that

k
(
(y)
)
∩ V (0) = k

[
[y]
]

and A ⊂ K ⊂ k
(
(y)
)
. Thus

A ∩ k
[
[y]
]

= A ∩ k
(
(y)
)
∩ V (0)

= A ∩ V (0)

= k

by (3.1). This completes the proof.

In order to construct a curve out of the algebra A, we have to show that A has
dimension one over k.

Proposition 3.2. Let NA = {ord v | v ∈ A} ⊂ N ∪ {0} be the set of the order of
elements of A. Then there exists a finite subset FA of N such that

(3.4) NA = r(N \ FA) ∪ {0} .

Moreover, the algebra A has dimension one over k.

Proof. Let a and b be the same elements used in the proof of Proposition 3.1, and
let α = ord a, β = ord b. Recall that iα − jβ = r by (3.3). As we have observed
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already, A(−1) = 0. Therefore, NA ⊂ rN∪{0}. In order to establish (3.4), it suffices
to show that NA contains arbitrary large multiple of r. So let α = rα′ and β = rβ′.
We claim that

(3.5) rn ∈ NA for every n ≥ jα′β′ .

Indeed, let n be an arbitrary integer greater than jα′β′. Applying the Euclid
division algorithm to n− jα′β′, we find unique integers m ≥ 0 and 0 ≤ ` < α′ such
that

(3.6) n = jα′β′ +mα′ + ` .

Therefore,

rn = rjα′β′ + rmα′ + r`

= jα′β +mα+ `(iα− jβ)

= (m+ i`)α+ (α′ − `)jβ

= ord(am+i` · b(α
′−`)j)

∈ NA .

This establishes (3.5). Now define FA = {n ∈ N
∣∣ rn /∈ NA}. Then FA is a finite

set, since its cardinality #FA is clearly smaller than jα′β′. This establises (3.4).
The above argument shows that

dimk A
(rn)
/
A(rn−r) = 1 for all n ≥ jα′β′ .

But since we used only a and b, we also have

dimk k[a, b](nr)
/
k[a, b](nr−r) = 1 for all n ≥ jα′β′ ,

where we define k[a, b](n) = k[a, b] ∩ V (n) and k[a, b] denotes the k-subalgebra of V
generated by 1, a and b. Therefore, we have

dimk A
/
k[a, b] ≤ #FA < jα′β′ .

This means that the dimension of A over k is at most two.
Now we have to show that a and b satisfy a non-trivial polynomial relation. So

let us assume that b /∈ k[a]. Let {u1, · · · , uq} be a k-linear basis for k[a, b](rjα
′β′−r)

and let
vn = am+i` · b(α

′−`)j for n ≥ jα′β′ ,

where m and ` are the unique integers of (3.6). Then {u1, u2, · · · , uq}∪{vn}n≥jα′β′
gives a k-linear basis for k[a, b]. Since none of the vn’s are powers of a and um’s
can contain only finitely many powers of a, a very high power aN for some large
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number N must be represented by a non-trivial linear combination of the basis
vectors u1, u2, · · · , uq and vn’s. But this is nothing but a non-trivial polynomial
relation which a and b satisfy. Therefore, k[a, b] has dimension one over k. Hence
so does A. This completes the proof.

In order to define a complete algebraic curve over k, we need a graded algebra
defined by

grA =
∞⊕
n=0

A(n) .

Theorem 3.3. Let grA be the graded algebra defined in the above. Then C =
Proj(grA) is a reduced irreducible complete algebraic curve over k of genus #FA,
where FA is the finite set of Proposition 3.2. Moreover, there is a smooth k-rational
point p on C such that

C = SpecA ∪ {p} .

Proof. Let a ∈ A be the element used in the proof of Proposition 3.2. We denote
by grA[a−1] the graded algebra generated by a−1 over grA and by (grA[a−1])0 its
homogeneous degree zero part. We have a natural identification

(grA[a−1])0 =
{
a−`v | ` ≥ 0 , v ∈ A and ord(a−`v) ≤ 0

}
.

Since the monic element y = a−ibj is of order −r, it is an element of (grA[a−1])0.
Therefore, k[y] ⊂ (grA[a−1])0. On the other hand, since

(grA[a−1])0 ⊂ K(0) ⊂
(
k
(
(y)
)
∩ V (0)

)
= k

[
[y]
]

because of the above identification, we have

k[y] ⊂ (grA[a−1])0 ⊂ k
[
[y]
]
.

Therefore, the (y)-adic completion of (grA[a−1])0 is equal to k
[
[y]
]
. So we define

(3.7) p = k
[
[y]
]
y ∩ (grA[a−1])0 ,

which is the maximal ideal of (grA[a−1])0 generated by y. Let

D+(a) = Spec(grA[a−1])0 .

This is an affine open subscheme of the projective scheme Proj(grA) = C. Since y
is a rational function on D+(a) vanishing at p ∈ D+(a), p is a smooth k-rational
point of D+(a) ⊂ C.
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The relation A∩k
[
[y]
]

= k of Proposition 3.1 means that every rational function
on C which is regular on SpecA as well as at the point p is a constant. Therefore,
SpecA ∪ {p} has no missing point in the complete curve C and which implies
C = SpecA ∪ {p}. Note that A is contained in the field V = k

(
(z)
)
. Therefore,

SpecA is reduced and irreducible, and hence so is C, because the attached point p
is a smooth point of C.

We have thus established that C is a reduced irreducible complete curve and p
is a smooth k-rational point on it. Now we can apply Proposition 2.6 (1) and (2)
in our situation. Let U ⊂ C be an affine open subset of C containing p such that
both of y and y−1 are regular on U \ {p}. Then we can compute the cohomology of
C by the affine covering C = SpecA ∪ U so that we have

H1(C,OC) ' H0(U \ {p},OC)
/(
H0(C \ {p},OC) +H0(U,OU )

)
' H0(Up \ {p},OUp

)
/(
H0(C \ {p},OC) +H0(Up,OUp

)
)

= k
(
(y)
)/

(A+ k
[
[y]
]
),

where Up = Spec k
[
[y]
]
. It is clear from (3.4) that

dimkH
1(C,OC) = #FA .

Thus the (arithmetic) genus of the curve C is the cardinality #FA of FA. This
completes the proof.

In the above proof, we obtained that

k[y] ⊂ (grA[a−1])0 ⊂ k
[
[y]
]
.

Therefore, Up is the formal completion of Spec(grA[a−1])0 = D+(a) along the point
p. Since D+(a) is a Zariski open subset of C, Up is also a completion of C along
p ∈ C.

Recall that y = a−ibj is a monic element of k
[
[z]
]

of order −r. Therefore, there
is a natural inclusion map π∗ : k

[
[y]
]
↪→ k

[
[z]
]

which defines a morphism

(3.8) π : U0 −→ Up

between the formal schemes U0 = Spec k
[
[z]
]

and Up = Spec k
[
[y]
]
. Since U0 can

be thought of as the formal completion of the affine z-line A1
k along the origin,

the morphism π satisfies the condition in item (4) of Definition 2.1. Let us now
construct a sheaf F on C and its local trivialization φ.

Theorem 3.4. Let (A,W ) ∈ Sr(µ, ν) be a Schur pair of rank r, index µ and level
ν, and let C = Proj(grA) be the curve defined in Theorem 3.3. Then there exist a
torsion free sheaf F of OC-modules of rank r on C satisfying

(3.9) H0(C,F) ' Ker γ(ν)W andH1(C,F) ' Coker γ(ν)W ,
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and an OUp-module isomorphism

φ : FUp

∼−→ π∗OU0(ν) ,

where Up is the formal completion of C along p ∈ C and FUp is the completion of
F along p.

Proof. Recall that we have an affine covering C = SpecA ∪D+(a) of the curve C,
where D+(a) is defined in the proof of Theorem 3.3. On SpecA, we have a natural
sheaf W∼, which is torsion free and of rank r. In order to construct a sheaf on
D+(a), we need a torsion free module over H0(D+(a),OC), where

H0(D+(a),OC) = (grA[a−1])0

= {a−`v | ` ≥ 0 , v ∈ A and ord(a−`v) ≤ 0} .

So let us define

W∞ = {a−`w
∣∣ ` ≥ 0 , w ∈W and ord(a−`w) ≤ ν} ⊂ k

(
(z)
)
.

This determines a torsion free rank r sheaf W∼
∞ on D+(a). We want to define a

sheaf F on C by gluing W∼ on SpecA and W∼
∞ on D+(a) together.

In order to do so, we have to show that there is a natural identityW∼
x = W∼

∞,x for
every x ∈ SpecA∩D+(a). So let x be a point of SpecA∩D+(a). Since x ∈ SpecA,
it corresponds to a prime ideal I of A such that a /∈ I. As a point of D+(a), x
corresponds also to a prime ideal

I∞ = {a−`f
∣∣ ` ≥ 0 , f ∈ I and ord(a−`f) ≤ 0}

of A∞ = (grA[a−1])0. Now we have

W∼
x = (A \ I)−1W

= {v−1w
∣∣ v ∈ A \ I, w ∈W}

⊂ k
(
(z)
)
,

and

W∼
∞,x = (A∞ \ I∞)−1W∞

= {(a−`v)−1a−mw
∣∣ `,m ≥ 0 , v ∈ A \ I, w ∈W , ord(a−`v) ≤ 0

and ord(a−mw) ≤ ν}
⊂ k

(
(z)
)
.

Let v−1w ∈W∼
x . Since ord a > 0, by taking ` > 0 large, we can make ord(a−`v) ≤ 0

and ord(a−`w) ≤ ν. Thus v−1w = (a−`v)−1a−`w ∈ W∼
∞,x, i.e. W∼

x ⊂ W∼
∞,x. Con-

versely, let (a−`v)−1a−mw ∈W∼
∞,x. If ` ≥ m, then (a−`v)−1a−mw = v−1(a`−mw) ∈
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W∼
x , because a`−mw ∈W . On the other hand, if ` < m, then am−`v ∈ A\I because

a /∈ I. Thus (a−`v)−1a−mw = (am−`v)−1w ∈ W∼
x , hence W∼

∞,x ⊂ W∼
x . Therefore,

we can define a sheaf F on C by gluing W∼ and W∼
∞ together on SpecA ∩D+(a).

Since Coker γ(ν)W ' V
/
(W + V (ν)) has finite dimension, there is an integer N

such that W has an element of order m for every m ≥ N . Let n ≤ ν. Then there
exists an integer ` such that

` · ord a+ n ≥ N .

Thus there is an element w ∈W of order ` ·ord a+n, and hence ord(a−`w) = n ≤ ν.
This means that W∞ = H0(D+(a),F) has an element of order n for every n ≤ ν.
Let Up be the formal completion of C along p as before and FUp

be the formal
completion of the sheaf F along p. Then we have

H0(Up,FUp) = H0(D+(a),F) ⊗̂
H0(D+(a),OC)

H0(Up,OUp)

= V (ν)

' H0(U0,OU0(ν))

' H0(Up, π∗OU0(ν)) .

This isomorphism determines an OUp
-module isomorphism

φ : FUp

∼−→ π∗OU0(ν) .

Finally, since we have W = H0(C \ {p},F), the same argument of Theorem 2.7
gives (3.9). This completes the proof.

Let us review what we have done so far. We started with a Schur pair (A,W ) ∈
Sr(µ, ν). Then we have constructed a curve C (Theorem 3.3), a point p (3.7), a
torsion free sheaf F (Theorem 3.4), a local covering π (3.8) and a local trivialization
φ (Theorem 3.4). Thus we have obtained a quintet (C, p,F , π, φ) ∈ Qr(µ, ν) out of
the Schur pair (A,W ). Note that the above construction depends on the choice of
the elements a and b used in the proof of Proposition 3.1. If we choose different
elements a′ and b′, then we end up with another local parameter y′, another local
covering π′ and another local trivialization φ′ of F . But since we defined F so that
we have H0(Up,FUp) = V (ν) canonically as above, the quintet (C, p,F , π′, φ′) is
identified with (C, p,F , π, φ) by Definition 2.1. In other words, (A,W ) ∈ Sr(µ, ν)
defines a unique quintet (C, p,F , π, φ) of Qr(µ, ν). Thus we have obtained the
inverse map of χr,µ,ν , because it is obvious from the construction that

H0(C \ {p},OC) = H0(SpecA,OC)
= A

and

H0(C \ {p},F) = H0(SpecA,F)
= W .

Thus we obtain the following
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Theorem 3.5. Let Sr(µ, ν) be the set of all Schur pairs of rank r, index µ and
level ν, and let Qr(µ, ν) denote the set of quintets of rank r, index µ and level ν.
Then there is a natural bijection

χr,µ,ν : Qr(µ, ν)
∼−→ Sr(µ, ν) .

For a quintet q = (C, p,F , π, φ), the corresponding Schur pair is given by

χr,µ,ν(q) = (A,W ) =
(
π∗(H0(C \ {p},OC)), φ(H0(C \ {p},F))

)
.

Definition 3.6. A contravariant functor χ(ν) : Q(ν)→ S(ν) is defined as follows:

(1) If q = (C, p,F , π, φ) ∈ Ob
(
Q(ν)

)
is an element of Qr(µ, ν), then we define

χ(ν)(q) = χr,µ,ν(q) ∈ Sr(µ, ν) .

(2) For a morphism (β, ψ) : (C1, p1,F1, π1, φ1)→ (C2, p2,F2, π2, φ2), we define

χ(ν)

(
(β, ψ)

)
= (α, ι) ,

where

α : π∗2
(
H0(C2 \ {p2},OC2)

)
−→ π∗1

(
H0(C1 \ {p1},OC1)

)
is given by the homomorphism

H0(C2 \ {p2},OC2)
β∗−→ H0(C1 \ {p1},OC1)

of cohomology groups associated with β : C1 → C2, and

ι : φ2

(
H0(C2 \ {p2},F2)

)
−→ φ1

(
H0(C1 \ {p1},F1)

)
is defined by the natural cohomology homomorphisms

H0(C2 \ {p2},F2)
ψ−→ H0(C2 \ {p2}, β∗F1)

β∗−→ H0(C1 \ {p1},F1) .

Theorem 3.7. The functor χ(ν) : Q(ν) → S(ν) makes these categories anti-
equivalent.

Proof. Only thing we have to show is that χ(ν) determines a well-defined bijective
map

(3.10) χ(ν) : MorQ(ν)(q1, q2) −→MorS(ν)

(
χ(ν)(q2), χ(ν)(q1)

)
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for every q1 and q2 in Ob
(
Q(ν)

)
. Let Ai = π∗i

(
H0(Ci \ {pi},OCi)

)
and Wi =

φi
(
H0(Ci\{pi},Fi)

)
, i = 1, 2. We need to show that α : A2 → A1 and ι : W2 →W1

are inclusion maps. The commutative diagram

H0(C2 \ {p2},OC2)
β∗−−−−→ H0(C1 \ {p1},OC1)

inclusion

y yinclusion

H0(U2 \ {p2},OU2)
β̂∗−−−−→ H0(U1 \ {p1},OU1)

π∗2

y yπ∗1
H0(U0 \ {0},OU0) H0(U0 \ {0},OU0)

shows that α is an inclusion map, and the following diagram

H0(C∗2 ,F2)
ψ−−−−→ H0(C∗2 , β∗F1)

β∗−−−−→ H0(C∗1 ,F1)

inclusion

y inclusion

y inclusion

y
H0(U∗2 ,F2Up2

)
ψ̂−−−−→
∼

H0(U∗2 , β̂∗F1Up1
)

β̂∗−−−−→
∼

H0(U∗1 ,F1Up1
)

φ2

yo β̂∗(φ1)

yo φ1

yo
H0(U∗2 , π2∗OU0(ν)) H0(U∗2 , β̂∗π1∗OU0(ν))

β̂∗−−−−→
∼

H0(U∗1 , π1∗OU0(ν))yo yo yo
H0(U∗0 ,OU0(ν)) H0(U∗0 ,OU0(ν)) H0(U∗0 ,OU0(ν)) ,

where C∗i = Ci \ {pi}, U∗i = Upi
\ {pi} and U∗0 = U0 \ {0}, shows that ι : W2 →W1

is indeed an inclusion map.
In order to establish the bijectivity of (3.10), let (α, ι) : (A2,W2) → (A1,W1)

be a morphism of the category S(ν). Then the inclusion α : A2 ↪→ A1 defines a
covering map β : C1 → C2. It also makes W1 an A2-module and hence defines
a sheaf β∗F1 on C2. The inclusion map ι : W2 ↪→ W1 then defines an injective
homomorphism ψ : F2 → β∗F1.

Since β maps the affine subscheme SpecA1 of C1 to SpecA2 surjectively, we have
β(p1) = p2, which verifies (2.1). If we choose the key element a of (3.3) from A2,
then α gives a natural inclusion map

(grA2[a−1])0 =
{
a−`v | ` ≥ 0 , v ∈ A2 and ord(a−`v) ≤ 0

}
↪→
{
a−`v | ` ≥ 0 , v ∈ A1 and ord(a−`v) ≤ 0

}
= (grA1[a−1])0
⊂ k

[
[z]
]
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which defines a surjective morphism β̂ : Up1 −→ Up2 . It satisfies (2.2) because of
this construction.

Similarly, we have

W2,∞ = {a−`w
∣∣ ` ≥ 0 , w ∈W2 and ord(a−`w) ≤ ν}

↪→ {a−`w
∣∣ ` ≥ 0 , w ∈W1 and ord(a−`w) ≤ ν}

= W1,∞

⊂ k
(
(z)
)
.

The above map determines a homomorphism ψ̂ : F2Up2
−→ β̂∗F1Up1

which satisfies
(2.3). Thus we have constructed a morphisn (β, ψ) between the corresponding
objects in Q(ν). This completes the proof.

Proposition 3.8. Let (A,W ) be a Schur pair of index zero. Then the sheaf F
of the corresponding quintet is semistable if W is a point of the big cell of the
Grassmannian.

Proof. If W ∈ G+(0, ν), then the sheaf F satisfies

H0(C,F) = H1(C,F) = 0

because of the isomorphism (3.9) of Theorem 3.4. Let 0→ L → F be a torsion free
subsheaf of F . Then by the Riemann-Roch Theorem, we have

deg L
rankL

=
dimkH

0(C,L)− dimkH
1(C,L) + (g − 1) · rankL

rankL

= g − 1− dimkH
1(C,L)

rankL
≤ g − 1

=
dimkH

0(C,F)− dimkH
1(C,F) + (g − 1) · rankF

rankF

=
deg F
rankF

,

where g is the genus of the curve C. Therefore, F is semistable.

4. Pseudo-differential operators acting on the Grassmannians.

We have established equivalence of the categories Q(ν) and S(ν) in the last
section. When we defined Q(ν), we noted that the thickened category Q(ν) of
Definition 2.3 is more natural from the geometric point of view because of its
coordinate-free nature. Now we can ask the following: what would be the corre-
sponding thickened category S(ν) so that our functor χ(ν) extends to an equivalence

26



of thickened categories? Certainly, S(ν) should have exactly the same objects as
S(ν) does. Then what would be a natural morphism among Schur pairs other than
inclusions?

The answer comes from an unexpected direction–from algebraic theory of pseudo-
differential operators. In this section, we investigate necessary accounts on pseudo-
differential operators and define the thickened category of Schur pairs. Then we
prove the equivalence of Q(ν) and S(ν).

Let us start with defining the function space we are going to use. So let

(4.1) R = k
[
[x]
]

be the ring of formal power series in one variable x with coefficients in k and let
∂ = d

dx be the differentiation with respect to x. The set of all formal ordinary
pseudo-differential operators with coefficients in R is defined by

(4.2) E =
{∑
n∈Z

fn∂
n
∣∣ fn ∈ R and fn = 0 for all n� 0

}
.

Every element of E has a form

P = a0∂
N + a1∂

N−1 + a2∂
N−2 + · · ·+ aN + aN+1∂

−1 + · · ·

for some finite integer N depending on P . We say that P is of order N if a0 6= 0
and monic if a0 = 1.

From the definition of (4.2), E has a natural structure of left R-module. It also
has a filtration defined by the order of operators

(4.3) · · · ⊃ E(n+1) ⊃ E(n) ⊃ E(n−1) ⊃ · · · ,

where

E(n) =
{∑
m∈Z

fm∂
m
∣∣ fm ∈ R and fm = 0 for all m > n

}
.

By defining {E(n)}n∈Z as a basis for open sets, E becomes a complete topological
space because of ⋃

n∈Z
E(n) = E and

⋂
n∈Z

E(n) = {0} .

For a function f ∈ R, we denote by f (i) the i-th derivative of f with respect to x.
The Leibniz rule

∂n · f =
∞∑
i=0

(
n

i

)
f (i)∂n−i

holds for an arbitrary integer n ∈ Z if we define(
n

i

)
=

Γ(n+ 1)
Γ(i+ 1)Γ(n− i+ 1)

=
n · (n− 1) · · · · · (n− i+ 1)

i · (i− 1) · · · · · 1
.
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Therefore, we can introduce an associative algebra structure in E as follows: Let

P =
∞∑
m=0

am∂
M−m and Q =

∞∑
n=0

bn∂
N−n be operators in E. Then we define

P ·Q =
∞∑
m=0

am∂
M−m ·

∞∑
n=0

bn∂
N−n

=
∞∑
m=0

∞∑
n=0

∞∑
i=0

(
M −m

i

)
amb

(i)
n ∂M+N−m−n−i

=
∞∑
`=0

(∑̀
m=0

`−m∑
i=0

(
M −m

i

)
amb

(i)
`−m−i

)
∂M+N−` .

Since the coefficient of ∂M+N−` is a finite sum for every ` ≥ 0, P ·Q is a well-defined
element in E.

An operator P ∈ E is said to be in the right normal form if P =
∞∑
m=0

am∂
M−m,

and in the left normal form if P =
∞∑
n=0

∂M−n · bn. The adjoint Leibniz rule

f∂n =
∞∑
i=0

(−1)i
(
n

i

)
∂n−i · f (i) ,

which can be easily checked, gives a way of translating the right normal form to the
left normal form and vice versa. For example, since

∞∑
m=0

am∂
M−m =

∞∑
m=0

∞∑
i=0

(−1)i
(
M −m

i

)
∂M−m−i · a(i)

m

=
∞∑
n=0

∂M−n ·

{
n∑
i=0

(−1)i
(
M − n+ i

i

)
a
(i)
n−i

}
,

we have

bn =
n∑
i=0

(−1)i
(
M − n+ i

i

)
a
(i)
n−i .

In particular, we have b0 = a0 and bM+1 = aM+1. This means that the order,
monicness and the residue (the coefficient of ∂−1) of an operator do not depend on
the expression (right or left normal form) of the operator. Thus the filtraton (4.4)
does not depend on the expression either.

The ring D of ordinary differential operators is defined by

(4.4) D =
{ ∞∑
n=0

fn∂
n
∣∣ fn ∈ R and fn = 0 for all n� 0

}
,
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which is a subring of E. Note that if P =
∑
n∈Z

fn∂
n =

∑
m∈Z

∂m · gm , then fn = 0

for all n < 0 if and only if gm = 0 for all m < 0. Thus the definition of D does
not depend on the choice of the expression of operators. The filtration (4.3) of E
induces a filtration

· · · ⊃ D(n+1) ⊃ D(n) ⊃ D(n−1) ⊃ · · · ⊃ D(0) = R

of D, where we define D(n) = D ∩ E(n).
Now let us consider the left maximal ideal Ex of E generated by x ∈ E and let

ρ : E −→ E/Ex denote the natural projection. In the left normal form, we have

ρ
(∑
n∈Z

∂n · fn(x)
)

=
∑
n∈Z

∂n · fn(0) =
∑
n∈Z

fn(0)∂n .

Therefore, we have an equality E
/
Ex = k

(
(∂−1)

)
. At this stage, we introduce an

identification

(4.5) ∂−1 = z .

Then k
(
(∂−1)

)
= k

(
(z)
)

= V , hence we obtain a k-linear map

(4.6) ρ : E −→ V = E
/
Ex .

Since ρ
( ∞∑
n=0

∂N−n · fn(x)
)

=
∞∑
n=0

fn(0)z−N+n ∈ V , we have ρ(E(n)) = V (n). Using

the above projection map, we can define the E-action on the vector space V =
E
/
Ex.

Definition 4.1. Let P ∈ E be an arbitrary pseudo-differential operator and let
v ∈ V be an arbitrary vector. Since V = E

/
Ex, there is an operator Q ∈ E such

that ρ(Q) = v. We define a k-linear map P : V −→ V by

Pv = ρ(PQ) ∈ V .

We have to check the well-definedness of this map. So let Q′ ∈ E be another
operator such that ρ(Q′) = ρ(Q) = v. Then

ρ(PQ′) = ρ
(
PQ′ + P (Q−Q′)

)
= ρ(PQ)

because P (Q−Q′) ∈ Ex. Thus P : V → V is well-defined. If P ∈ E is invertible,
then P−1 : V −→ V gives the inverse map of P : V → V , because

P−1ρ(PQ) = ρ(P−1PQ) = ρ(Q) .

Therefore, an invertible element P gives an automorphism of V . Moreover, if P is
of order zero, then it induces an automorphism P : V (n) ∼−→ V (n) for every n ∈ Z,
and hence a homeomorphism of V with respect to its topology.
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Proposition 4.2. Let P ∈ E be an invertible operator of order zero and let P :
V

∼→ V be the homeomorphism defined above. Then P induces an automorphism

P : G(µ, ν) ∼−→ G(µ, ν)

of the Grassmannian of index µ and level ν for every µ, ν ∈ Z.

Proof. Let W ∈ G(µ, ν). Since P : V ∼→ V is a homeomorphism, PW ⊂ V is a
closed subspace. Because PV = V and PV (ν) = V (ν), we have

Ker γ(ν)W = W ∩ V (ν)

' PW ∩ PV (ν)

= PW ∩ V (ν)

= Ker γ(ν)PW .

Similarly,

Coker γ(ν)W = V
/
(W + V (ν))

' PV
/
(PW + PV (ν))

= V
/
(PW + V (ν))

= Coker γ(ν)PW .

Therefore, Index γ(ν)W = Index γ(ν)PW . Thus P maps G(µ, ν) into itself, and its
inverse is given by P−1. This completes the proof.

More general element of E does not give an automorphism of the Grassmannians,
but it produces a vector field on them. In order to see this, let us recall that the
group Hom(W, V/W ) of continuous homomorphisms represents the tangent space
of the Grassmannian at the given point W . Now, for every pseudo-differential
operator P ∈ E, we define

(4.7) ΦW (P ) : W ↪→ V
P−→ V → V/W

which is obviously a continuous homomorphism of W into V/W . Thus ΦW (P ) ∈
TWG(µ, ν) and we can identify Φ(P ) a vector field on the Grassmannian. We say
that the algebra E acts on the Grassmannians infinitesimally, which means that
every element of E determines a vector field on the Grassmannians.

In Section 6, we will see that the action of the pseudo-differential operators of
constant coefficients recovers the entire KP system. From this Grassmannian point
of view, it turns out to be very easy to see why every integral manifold of the action
of constant coefficient operators has a natural structure of the Jacobian variety of
an algebraic curve.
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The other interesting class of action is the Virasoro action on the Grassmannian.
Let H = k

(
(∂−1)

)
· x. It has a natural structure of Lie algebra by the operator

bracket. Under the Fourier transformation, H becomes k
(
(z)
)
d
dz , which is the Lie

algebra of formal vector fields on U0 with finite order poles at the origin. The
Virasoro action on the Grassmannians was studied by many authors for the case of
k = C. See for example, [ADKP], [BS], [KNTY], and [Wit].

Here, let us make a remark on the V -action on V itself. Since V = k
(
(z)
)
, V

acts on V by multiplication. On the other hand, the identification z = ∂−1 makes
V the set of pseudo-differential operators with constant coefficients. Thus V =
k
(
(∂−1)

)
⊂ E acts on V = E

/
Ex by the left multiplication of pseudo-differential

operators given in Definition 4.1. The important point we have here is that both
actions of V on V described above have exactly the same results. When we defined
the Schur pair (A,W ) in Definition 1.2, we considered A and W subspaces of V =
k
(
(z)
)
. Certainly, W is a point of the Grassmannian, and hence W is a subspace of

V = E
/
Ex. However, since A acts on W , from functorial point of view, it is more

natural to regard
A ⊂ k

(
(∂−1)

)
⊂ E .

Therefore, whenever we use a Schur pair (A,W ) from now on, we understand that
A ⊂ k

(
(∂−1)

)
⊂ E and W ⊂ V = E

/
Ex.

Definition 4.3. A pseudo-differential operator T ∈ E is said to be admissible if it
is an invertible operator of order zero such that T · ∂ · T−1 ∈ k

(
(∂−1)

)
. The set of

all admissible operators is denoted by Γa.

Every admissible operator T has the following form:

T = c0T0 · ec1x,
T0 = 1 + a1(x)∂−1 + a2(x)∂−2 + · · · ,

where 0 6= c0 ∈ k, c1 ∈ k and an(x) is a polynomial in x of degree less than or equal
to n.

Definition 4.4. We define the thickened category S(ν) of Schur pairs as follows:

(1) Ob
(
S(ν)

)
= Ob

(
S(ν)

)
.

(2) A morphism T : (A2,W2) −→ (A1,W1) consists of twisted inclusions

TA2T
−1 ↪→ A1 and TW2 ↪→W1,

where T is an arbitrary admissible operator.

The following lemma is a key lemma to prove equivalence of thickened categories.
From now on, we have to assume that our field k has characteristic zero.
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Lemma 4.5. Let v ∈ k
(
(∂−1)

)
be an arbitrary monic element of order −1, where

k is a field of characteristic zero. Then there exists an admissible operator T ∈ Γa
such that T∂−1T−1 = v.

This is an easy consequence of Lemma 7.5.

Theorem 4.6. Let k be a field of characteristic zero. Then the functor χ(ν) of
Definition 3.6 induces a new functor

χ(ν) : Q(ν) −→ S(ν)

which makes these categories anti-equivalent.

Proof. Let us start with a morphism (β, ψ) : q1 → q2 between two quintets qi =
(Ci, pi,Fi, πi, φi) ∈ Ob

(
Q(ν)

)
. We have an automorphism h : U0

∼→ U0 and a ring
automorphism

k
[
[z]
]
3 f(z) h̄7−→ f(h̄(z)) ∈ k

[
[z]
]

of (2.5) which is given by h̄(z) = z+a2z
2+a3z

3+· · · . By the identification z = ∂−1,
we have h̄(∂−1) = ∂−1 + a2∂

−2 + a3∂
−3 + · · · ∈ k

(
(∂−1)

)
. Because of Lemma 4.5,

there is an admissible operator T1 ∈ Γa such that

T1∂
−1T−1

1 = h̄(∂−1) .

The ring automorphism h̄ : k
[
[z]
]
→ k

[
[z]
]

extends to a field automorphism h̄ :
k
(
(z)
)
→
(
(z)
)

in an obvious way. Thus

k
(
(∂−1)

)
3 f(∂−1) 7−→ f

(
h̄(∂−1)

)
= f(T1∂

−1T−1
1 )

= T1f(∂−1)T−1
1

∈ k
(
(∂−1)

)
.

The OU0-module isomorphism ξ : OU0(ν)
∼→ h∗OU0(ν) of (2.7) is given by the

multiplication of a single invertible element ξ ∈ O×U0
. Using the coordinate z on

U0, we can expand ξ =
∞∑
i=0

ciz
i, c0 6= 0. It determines an admissible operator T2 =

∞∑
i=0

ci∂
−i. Since it is an operator having only constant coefficients, T2AT

−1
2 = A for

every subset A of k
(
(∂−1)

)
.

Now, let Ai = π∗i
(
H0(Ci \ {pi},OCi

)
)

and Wi = φi
(
H0(Ci \ {pi},Fi)

)
, i = 1, 2.

Since we have
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H0(C2 \ {p2},OC2)
β∗−−−−→ H0(C1 \ {p1},OC1)

inclusion

y yinclusion

H0(U2 \ {p2},OU2)
β̂∗−−−−→ H0(U1 \ {p1},OU1)

π∗2

y yπ∗1
H0(U0 \ {0},OU0)

h̄−−−−→ H0(U0 \ {0},OU0) ,

we obtain

T1T2A2T
−1
2 T−1

1 = T1A2T
−1
1

= h̄(A2)

= h̄π∗2
(
H0(C2 \ {p2},OC2)

)
⊂ π∗1

(
H0(C1 \ {p1},OC1)

)
= A1 .

On the other hand, since π2∗h∗OU0(ν) = β̂∗π1∗OU0(ν), we have

H0(C∗2 ,F2)
ψ−−−−→ H0(C∗2 , β∗F1)

β∗−−−−→ H0(C∗1 ,F1)

inclusion

y inclusion

y inclusion

y
H0(U∗2 ,F2Up2

)
ψ̂−−−−→
∼

H0(U∗2 , β̂∗F1Up1
)

β̂∗−−−−→
∼

H0(U∗1 ,F1Up1
)

φ2

yo β̂∗(φ1)

yo φ1

yo
H0(U∗2 , π2∗OU0(ν))

π2∗(ξ)−−−−→
∼

H0(U∗2 , β̂∗π1∗OU0(ν))
β̂∗−−−−→
∼

H0(U∗1 , π1∗OU0(ν))yo yo yo
H0(U∗0 ,OU0(ν))

ξ−−−−→
∼

H0(U∗0 , h∗OU0(ν))
h∗−−−−→
∼

H0(U∗0 ,OU0(ν)) ,

where C∗i = Ci \ {pi}, U∗i = Upi \ {pi} and U∗0 = U0 \ {0}.
Since the isomorphism h∗ in the above diagram is a homomorphism from an

H0(U∗0 ,OU0)-module H0(U∗0 , h∗OU0(ν))

to an
h̄
(
H0(U∗0 ,OU0)

)
-module H0(U∗0 ,OU0(ν)),
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it is completely determined by its image h∗(1) of the generator

1 ∈ H0(U∗0 , h∗OU0(ν)).

Every element of this cohomology is of the form f(z) ·1, where f(z) ∈ H0(U∗0 ,OU0).
Hence

h∗
(
f(z) · 1

)
= f

(
h̄(z)

)
· h∗(1)

= T1 · f(∂−1) · T−1
1 · h∗(1) .

Therefore, we conclude that h∗ = T1, because of the following consistency:

h∗
(
f(z) · 1

)
= T1 · f(∂−1) · T−1

1 · T1 · 1
= T1 · f(∂−1)

= T1 · f(z) .

Thus we have

T1T2(W2) = h∗ξφ2

(
H0(C∗2 ,F2)

)
⊂ φ1

(
H0(C∗1 ,F1)

)
= W1 .

Let T = T1T2. Then it is an admissible operator and we have TA2T
−1 ⊂ A1 and

TW2 ⊂W1. Hence we have constructed a morphism

T : (A2,W2) −→ (A1,W1) .

Conversely, let T : (A2,W2) −→ (A1,W1) be a morphism between Schur pairs
defined by an admissible opertor T ∈ Γa. It means that we have

(4.8) TA2T
−1 ⊂ A1 and TW2 ⊂W1 .

Let Ci be the complete algebraic curve defined by Ai and Fi be the torsion free
sheaf corresponding to Wi, i = 1, 2. Note that W1 has a natural TA2T

−1-module
structure. Thus the inclusions of (4.8) define a morphism β : C1 −→ C2 and a sheaf
homomorphism ψ : F2 −→ β∗F1.

Now, since T is admissible, we have

Tk
[
[z]
]
T−1 = Tk

[
[∂−1]

]
T−1 ∼−→ k

[
[∂−1]

]
= k

[
[z]
]

and which gives a formal scheme automorphism

h : U0
∼−→ U0 .

Moreover, T gives an isomorphism between k
(
(∂−1)

)
-module V and Tk

(
(∂−1)

)
T−1-

module TV . Since V is generated by the identity element 1 ∈ V as a k
(
(∂−1)

)
-

module, T : V → V is determined by its image T · 1. Let

ξ = T · 1 = ρ(T ) ∈ V = k
[
[z]
]
.
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Then ξ is an invertible element of order zero and hence ξ ∈ O×U0
. Every element of

V is uniquely expressed as f(∂−1) · 1, where f(∂−1) ∈ k
(
(∂−1)

)
. We have

T ·
(
f(∂−1) · 1

)
= Tf(∂−1)T−1 · (T · 1)

= f(T∂−1T−1) · ξ
= f

(
h̄(z)

)
· ξ .

It is easy to check that h satisfies (2.5) and (2.6), and ξ defines an OU0-module
isomorphism

ξ : OU0(ν)
∼−→ h∗OU0(ν)

which satisfies (2.7). This completes the proof.

We say that (A1,W1) and (A2,W2) are isomorphic if there is an admissible
operator T such that A1 = TA2T

−1 and W1 = TW2.

Lemma 4.7. Let T ∈ Γa be an arbitrary admissible operator. Then T induces a
bijection

T : Sr(µ, ν)
∼−→ Sr(µ, ν)

defined by T · (A,W ) = (TAT−1, TW ).

Proof. Since T is invertible and (T−1TAT−1T, T−1TW ) = (A,W ), only thing we
have to check is that T · (A,W ) ∈ Sr(µ, ν) for every (A,W ) ∈ Sr(µ, ν). Since
T∂T−1 ∈ k

(
(∂−1)

)
, we have

TAT−1 ⊂ Tk
(
(∂−1)

)
T−1 ⊂ k

(
(∂−1)

)
.

Certainly, (TAT−1)TW = TAW ⊂ TW . Let us compute the rank of TAT−1.
Since ordP = ord(TPT−1) for every P ∈ E, we have {ord a | a ∈ A} = {ord b | b ∈
TAT−1}. Therefore, rankA = r = rankTAT−1. Finally, since ord T = 0, TW
is an element of the Grassmannian G(µ, ν) because of Proposition 4.2. Thus we
established that T · (A,W ) ∈ Sr(µ, ν). This completes the proof.

The set of isomorphism classes of Schur pairs of level µ and level ν is denoted
by S(µ, ν)/Γa. We call a morphism between two quintets an isomorphism if it is
invertible and the inverse is also a morphism. The set of isomorphism classes of
quintets of index µ and level ν is denoted by M(µ, ν). By Theorem 4.6, we obtain
a natural bijection

(4.9) χ :M(µ, ν) −→ S(µ, ν)/Γa .

35



5. Classification of commuting ordinary differential operators.

In this section, we prove that the setM(0,−1) of isomorphism classes of quintets
which has been introduced in Section 4 gives a complete classification of commuta-
tive algebras of ordinary differential operators containing a monic element.

We start this section with defining an extended differential algebra R̃ of R =
k
[
[x]
]
.

Definition 5.1. We denote by R̃ a commutative differential algebra defined over a
field k of characteristic zero satisfying the following conditions:

(1) R ⊂ R̃,
(2) k = {f ∈ R̃ | dfdx = 0}, where d

dx is the derivation operator.

Two important examples of such extension are k
(
(x)
)

and k
(
(x)
)
[logx]. We denote

by D̃ the ring of all ordinary differential operators with coefficients in R̃. Following
J.-L. Verdier [V], we use the terminology of ellipticity as follows:

Definition 5.2. A commutative k-subalgebra B of D̃ is said to be elliptic if B has a
monic element P of order greater than zero such that every coefficient of P belongs
to R.

It is interesting to know that the commutativity of B forces all the elements of B
to have regular coefficients.

Lemma 5.3. Every elliptic commutative subalgebra B ⊂ D̃ is indeed a subalgebra
of D, where D denotes the ring of all differential operators with coefficients in R.

Proof. Let P ∈ B be the regular monic element of order N > 0 of Definition 5.2.
Because of Lemma 7.5, there is an invertible regular pseudo-differential operator
X ∈ E of order zero such that ∂N = X−1PX. Define

(5.1) A = X−1BX .

Since B is commutative, we have

0 = X−1[Q , P ]X

= [X−1QX , X−1PX]

= [X−1QX , ∂N ]

for every Q ∈ B. It is easy to check that if a pseudo-differential operator with coef-
ficients in R̃ commutes with ∂N , then every coefficient of it is a constant. Therefore,
X−1QX ∈ k

(
(∂−1)

)
, namely, A ⊂ k

(
(∂−1)

)
. This means that

B = XAX−1 ⊂ Xk
(
(∂−1)

)
X−1 ∩ D̃ ⊂ E ∩ D̃ = D .
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This completes the proof.

For an elliptic commutative subalgebra B ⊂ D, we define

rankB = G.C.D.{ordQ | Q ∈ B} .

We denote by Br the set of all elliptic commutative subalgebras of D of rank r.
From algebraic point of view, it is natural to identify two elements of D if one is

obtained from the other by an inner automorphism of D. But since only invertible
elements of D are invertible functions, the above identification means that P ∈ D
and fPf−1 are identified for all f ∈ R×. It is also usually done in analysis.

Definition 5.4. The commutative algebras B1 and B2 in Br are said to be equiv-
alent if there is an invertible element f ∈ R× such that

B1 = f ·B2 · f−1 .

We denote by Br the set of equivalence classes of elliptic commutative subalgebras
of D of rank r.

We need a couple of more notations.

Definition 5.5.

(1) The set S+
r (0,−1)/Γa consists of the isomorphism classes of Schur pairs

(A,W ) of rank r, index 0 and level −1 such that W belongs to the big cell
of the Grassmannian G+(0,−1).

(2) The set M+
r (0,−1) consists of the isomorphism classes of quintets

(C, p,F , π, φ)

of rank r, index 0 and level −1 such that the torsion free sheaf F satisfies

dimkH
0(C,F) = dimkH

1(C,F) = 0 .

Because of Theorem 2.7, the bijection (4.9) induces a natural bijection between
S+
r (0,−1)/Γa andM+

r (0,−1).

Theorem 5.6. There is a canonical bijection

µr : Br −→M+
r (0,−1)

for every r ≥ 1. Moreover, because of Proposition 3.8, every vector bundle F corre-
sponding to a commutative algebra of ordinary differential operators is semistable.
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Proof. In order to prove the theorem, it suffices to construct a canonical bijection

βr : Br −→ S+
r (0,−1)/Γa ,

because we have the natural bijection χ :M+
r (0,−1) −→ S+

r (0,−1)/Γa.
Let [B] ∈ Br be the equivalence class of an elliptic commutative subalgebra B

of rank r. Choose an arbitrary element P of B of order greater than zero. Then
there is an invertible operator X ∈ E(0) of order zero such that X−1PX ∈ k

(
(∂−1)

)
(Lemma 7.5). Since every element of X−1BX commutes with an operator X−1PX
which has only constant coefficients, we know thatX−1BX ⊂ k

(
(∂−1)

)
. Now define

A = X−1BX and W = X−1ρ(D) ∈ G+(0,−1). By Sato’s lemma (Lemma 7.2), we
know that ρ(D) = V0 is a B-module. Therefore,

AW = X−1BX ·X−1V0

= X−1BV0

⊂ X−1V0

= W .

This means that W is an A-module. Of course, we have

r = rankB = G.C.D.{ordQ |Q ∈ B}
= G.C.D.{ord(X−1QX) |Q ∈ B}
= rankA .

Thus we have constructed a Schur pair (A,W ) ∈ S+
r (0,−1). If we have another

invertible operator X1 ∈ E(0) such that X−1
1 BX1 ⊂ k

(
(∂−1)

)
, then T = X−1X1 is

an admissible operator. Define A1 = X−1
1 BX1 and W1 = X−1

1 V0. Then we have

A = X−1BX = X−1X1AX
−1
1 X = TA1T

−1

and
W = X−1V0 = X−1X1W1 = TW1 .

Therefore, (A,W ) and (A1,W1) belong to the same isomorphism class of

S+
r (0,−1)/Γa.

Let f ∈ R+ be an invertible function. By using fX instead of X in the above
construction, we end up with the same Schur pair

(A,W ) =
(
(fX)−1fBf−1(fX), (fX)−1V0

)
because of the fact fV0 = V0.
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Thus we have constructed a well-defined map

βr : Br −→ S+
r (0,−1)

/
Γa .

In order to show the bijectivity of this map, let us construct its inverse. So we start
with a Schur pair (A,W ) ∈ S+

r (0,−1). Since W ∈ G+(0,−1), it defines a unique
operator S ∈ Γm by Sato’s theorem (Theorem 7.4). This operator satisfies that
SW = V0. Now let us define

B = SAS−1 ⊂ E ,

where we regard A as a subspace of k
(
(∂−1)

)
. We need to show that B = SAS−1 ⊂

D. But since AW ⊂W by definition, we have

B · V0 = SAS−1 · SW
= SAW

⊂ SW
= V0 .

Hence again by Sato’s lemma, we conclude that B ⊂ D. Thus every Schur pair
(A,W ) in S+

r (0,−1) gives rise to an elliptic commutative algebra of ordinary dif-
ferential operators.

Let us take another Schur pair (A1,W1) such that (A1,W1) = T · (A,W ) for
some T ∈ Γa. The point W1 = TW of the Grassmannian determines another monic
integral operator S1 so that W1 = S−1

1 V0. Therefore,

S−1
1 V0 = W1 = TW = TS−1V0 ,

i.e. S1TS
−1V0 = V0, which implies that S1TS

−1 ∈ D. But since S1TS
−1 is

a pseudo-differential operator of order zero, f = S1TS
−1 is indeed an invertible

function in R×. By the same argument that we used in the above, we know that
B1 = S1A1S

−1
1 ⊂ D. Now, we have

B1 = S1A1S
−1
1

= f · S · T−1A1T · S−1 · f−1

= f · S · T−1 · TAT−1 · T · S−1 · f−1

= f · S ·A · S−1 · f−1

= f ·B · f−1 .

Therefore, B1 and B are equivalent. Thus we have established that the map βr is
bijective. This completes the proof.
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Remark. The equivalence relation in Br defined by the action of an invertible func-
tion does not correspond to a morphism of S(ν).

Let Bmax be the set of all maximal elliptic commutative subalgebras of D. Then
for every B ∈ Bmax of rank r, the bijection βr gives a maximal Schur pair (AW ,W ),
where AW = {v ∈ V | vW ⊂W}. On the other hand, since the Schur map

s : Gfin(0,−1) −→
⋃
r∈N
Sr(0,−1)

of (1.7) is injective, a maximal Schur pairs can be identified with a point of the
Grassmannian itself by

W ←→ (AW ,W ) .

Therefore, we obtain the following.

Corollary 5.7. Let Bmax denote the subset of
⋃
r∈N
Br consisting of equivalence

classes of maximal commutative algebras and let

G+
fin(0,−1)

=
{
W ∈ G(0,−1)

∣∣AW 6= k and Kerα(−1)W = Cokerα(−1)W = 0
}
.

Then there is a natural bijection

β : Bmax −→ G+
fin(0,−1)

/
Γa .

Let us consider the rank one case. From Definition 2.4, we see that the set
M+

1 (0,−1) consists of (C, p, v,F), where C and p are as before, F is a torsion
free rank one sheaf with vanising cohomologies, and v ∈ TpC is a non-zero tangent
vector of the curve C at the non-singular point p. The morphism of (2.7) absorbs
all information of φ and hence we do not have it any more in the isomorphism class
of M+

1 (0,−1). But since we restricted the shape of the isomorphism h̄ as in (2.5),
it does not absorb π entirely. Indeed, the leading coefficient of π is invariant under
the application of h̄, and which can be identified naturally as a non-zero tangent
vector. Therefore, in the case of rank one, our Theorem 5.6 recovers exactly the
Krichever’s theorem in its precise form of statement which was given by Mumford
[Mum].

6. The KP flows on the quotients of the Grassmannians.

Throughout this section, we assume that k is a field of characteristic zero. In this
section, we define the KP flows on certain quotient spaces of the Grassmannians.
The result of [M1] and [M2] shows that every finite dimensional orbit of these flows
has a structure of the Jacobian variety of an algebraic curve. Combining this result
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with the theorem of categorical equivalence (Theorem 3.7) and the recent theory
of Hitchin [H] and Beauville–Narasimhan–Ramanan [BNR], one can prove that the
KP flows produce all generic vector bundles on an arbitrary algebraic curve of genus
greater than one.

Let us begin with defining the quotient space of G(µ, ν). Let

Γc = 1 + k
[
[∂−1]

]
· ∂−1 = 1 + V (−1)

be the group of monic pseude-differential operators with constant coefficients. Be-
cause of the fact that AW ∩ Γc = {1} by (3.1), the action of Γc on G(µ, ν) is
fixed–point–free. Hence we can define the quotient space

X(µ, ν) = G(µ, ν)/Γc

and we denote the natural projection by

Π : G(µ, ν) −→ X(µ, ν) .

Our Grassmannian G(µ, ν) has a structure of the principal Γc-bundle over X(µ, ν).
Every element P ∈ E defines a vector field Φ(P ) on each G(µ, ν) by (4.7). We

call a vector field

ε : G(µ, ν) 3W 7−→ εW ∈ Hom(W,V/W )

left Γc-invariant if
W

εW−−−−→ V/W

g−1

x yg
gW −−−−→

εgW

V/gW ,

i.e. εgW = g · εW · g−1 for every g ∈ Γc. Note that since Γc action has no fixed
points, g ∈ Γc defines canonical maps

gW 3 gw g−1

7−→ w ∈W

and
V/W 3 v mod W

g7−→ gv mod gW ∈ V/gW .

A vector field on G(µ, ν) does not descend toX(µ, ν) in general, but left Γc-invariant
ones do. For every operator P ∈ E, Φ

(
ρ(P−)

)
gives the vertical component of the

vector field Φ(P ) because ρ(P−) is an element of the Lie algebra V (−1) of the
commutative group Γc. In this sense, ρ(•−) can be viewed as a connection of the
principal Γc-bundle. For arbitrary two points W and W ′ of a fiber of Π, there
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is a unique element g ∈ Γc such that W ′ = gW , and which induces a canonical
isomorphism

Hom(W,V/W )/ΦW (V (−1)) ∼= Hom(gW, V/gW )/ΦgW (V (−1)) .

Therefore, we can define the tangent space of X(µ, ν) at a point Π(W ) by

TΠ(W )X(µ, ν) = Hom(W,V/W )/ΦW (V (−1)) ,

because the right hand side does not depend on the choice of the point W ∈
Π−1

(
Π(W )

)
.

Since every v ∈ V commutes with Γc and we have

ΦW (v) : W −−−−→ V
v−−−−→ V −−−−→ V/W

g−1

x g−1

x yg yg
ΦgW (v) :gW −−−−→ V −−−−→

v
V −−−−→ V/gW ,

the vector field Φ(v) on a Grassmannian defines a vector field

Π(W ) 7−→
∧
ΦΠ(W )(v) = ΦW (v) mod ΦW (V (−1))

on the quotient space X(µ, ν), and the definition does not depend on the choice of a

point on the fiber. Thus we obtain the set
∧
Φ(V ) of infinitely many commuting vector

fields on the quotient space. In this case, we also say that V has an infinitesimal
action on the quotient space X(µ, ν).

Definition 6.1. The infinite set
∧
Φ(V ) of commuting vector fields on X(µ, ν) is

called the (generalized) KP flows.

Remark. The infinitesimal action of tnz−n ∈ V on a point Π(W ) ∈ G+(0,−1)/Γc
corresponds to the n-th Lax equation of the KP system

∂L

∂tn
= [(Ln)+, L]

of [M2], where L = S · ∂ · S−1 is a monic operator of order one corresponding
to Π(W ) (which is called the Lax operator) and S is the monic operator of order
zero corresponding to W by the theorem of Sato (Theorem 7.4). Note that the
ambiguity of determining S from L coincides exactly with the Γc-action on the big
cell G+(0,−1).
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Definition 6.2. An integral manifold of the KP flows is a subvariety M ⊂ X(µ, ν)

such that TΠ(W )M coincides with
∧
ΦΠ(W )(V ) as a subspace of the tangent space

TΠ(W )X(µ, ν) for every Π(W ) ∈M .

Theorem 6.3. (cf. [M1], [M2]) Every finite dimensional integral manifold of the
KP flows on X(µ, ν) has a natural structure of the (generalized) Jacobian variety
of an algebraic curve. Moreover, the KP flows restricted on an integral manifold is
linear with respect to the natural linear structure of the Jacobian variety.

Proof. Let M be a finite dimensional integral manifold of the KP flows and let
Π(W ) be a point of M , where W ∈ G(µ, ν). The maximal stabilizer of W is given
by AW = {v ∈ V | vW ⊂W}.

Consider the linear map
∧
ΦΠ(W ) : V −→ Hom(W,V/W )/ΦW (V (−1)). Since

Ker
∧
ΦΠ(W ) = AW + V (−1), we have

TΠ(W )M ∼= V/(AW + k
[
[z]
]
) .

The finite dimensionality ofM thus implies that rank AW = 1. Therefore, we obtain
a rank one Schur pair (AW ,W ), which corresponds to a quintet (C, p,L, π, φ) with
a line bundle L. If we use TW instead of W , where T ∈ Γc, then we obtain
another Schur pair (TAWT−1, TW ) = (AW , TW ) and the corresponding quintet
(C ′, p′,L′, π′, φ′). These two quintets are isomorphic to one another in the sense of
Definition 2.4. Note that the Γc-action on the quintets corresponds to a morphism
such that the isomorphism h of (2.5) and (2.6) is the identity. In other words, every
point Π(W ) of M corresponds to an isomorphism class (C,P,L, π) ∈ Q1(µ, ν)/Γc,
because (2.7) wipes out the local trivialization φ completely when rank L = 1.
Under this correspondence, we have the canonical isomorphism

TΠ(W )M ∼= V/Ker
∧
ΦΠ(W )

∼= H1(C,OC)

which follows from the argument of the proof of Theorem 3.3. This isomorphism

means that the vector fields in
∧
Φ(V ) produce infinitesimal deformations of the line

bundle L. Therefore, integration of these vector fields must give the real deforma-
tions of L.

Every element v = t1z
−1 + t2z

−2 + · · · + tnz
−n ∈ V , where n is a sufficiently

large integer, defines a cohomology element v̄ ∈ H1(C,OC) by the above isomor-

phism. In order to integrate the vector field
∧
Φ(v), we need the exponential function.

Here, we have the natural exponential map exp : H1(C,OC) −→ Pic0(C). So let
`(v̄) ∈ Pic0(C) be the line bundle over C corresponding to v̄ = exp(t1z−1 + t2z

−2 +
· · · + tnz

−n). (Note that after replacing z by ∂−1, this quantity becomes the time
evolution operator of the KP system which was studied in [M3].) Now we identify

Picd(C) = {(C, p, π,L ⊗ `(v̄) ) | `(v̄) ∈ Pic0(C)} ,
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where d = deg L = µ + genus(C) − 1. Since `(v̄) gives the real deformation of L
by L ⊗ `(v̄), we can conclude that M ∼= Picd(C). The KP flows are nothing but
the infinitesimal version of this deformation, hence they are linear. If we regard
Picd(C) as the Jacobian variety of C, then we have completed the proof.

Since the infinitesimal V -action on the Grassmannians does not affect on the
stabilizers A, V defines an infinitesimal action on the set of Schur pairs Sr(µ, ν) of
arbitrary rank r, and hence the the set Sr(µ, ν)/Γc of isomorphism classes. There-
fore, we have an infinitesimal V -action on the set Qr(µ.ν)/Γc of isomorphism classes
of the higher rank quintets.

Let F be a generic semistable vector bundle of degree d and rank r defined on
a smooth algebraic curve C of genus g > 1. It is shown in [BNR] that there is an

r-sheeted ramified covering β :
∼
C −→ C over C and a line bundle L defined over

∼
C

such that F ∼= β∗L.
Choose a ramification point p ∈ C of β, a point p̃ ∈ β−1(p), a formal scheme

isomorphism π : U0 −→ Up̃ and an OUp̃
-module isomorphism φ : LUp̃

−→ π∗OU0(ν),
as in Definition 2.1, where ν is an arbitrarily fixed integer. Define µ = d− r(g− 1).

Thus we have constructed a quintet (
∼
C, p̃,L, π, φ) of index µ, level ν and rank 1. It

corresponds to a Schur pair (
∼
A,

∼
W ).

But we have another quintet (C, p,F , β̂ ◦π, π∗(φ) ) of the same index µ and level
ν but of rank r, which gives a Schur pair (A,W ). Let us choose an isomorphism
ψ : F −→ β∗L. Then we have a morphism

(β, ψ) : (
∼
C, p̃,L, π, φ) −→ (C, p,F , β̂ ◦ π, π∗(φ) )

which corresponds to an admissible operator T ∈ Γa. Since β is a projection and

ψ is an isomorphism, T gives TAT−1 = A ⊂
∼
A and TW =

∼
W . Therefore, T is

actually an element of Γc and Π(W ) determines a unique point of the space X(µ, ν).
Now consider the V -action (i.e. the integrated KP flows) on X(µ, ν) at Π(W ). On

the set Q1(µ, ν)/Γc in which (
∼
C, p̃,L, π, φ) belongs, the V -action produces Picδ(

∼
C),

where δ = deg L. Since each point (
∼
C, p̃,L ⊗ `(v̄), π, φv̄) of the orbit defines a

point (C, p, β∗
(
L ⊗ `(v̄)

)
, β̂ ◦ π, π∗(φv̄) ) of Qr(µ, ν)/Γc, V acts on Qr(µ, ν)/Γc at

the point (C, p,F , β̂ ◦ π, π∗(φ) ). In other words, we have introduced a V action
on the generic points of Qr(µ, ν)/Γc. According to the result of [BNR], the generic
vector bundles on C can be constructed as β∗

(
L⊗ `(v̄)

)
. Thus we have established

the following.

Theorem 6.4. Let (C, p,F , π, φ) ∈ Qr(µ, ν)/Γc be an isomorphism class of a quin-
tet consisting of a smooth curve C of genus greater than one and a generic semistable
vector bundle F of arbitrary rank and degree. We can define the KP action on this
quintet through the KP flows on X(µ, ν) at Π(W ), where (A,W ) is the Schur pair
corresponding to the quintet. Then the orbit of the KP action on Qr(µ, ν)/Γc is
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finite dimensional and contains all generic vector bundles on C of the given degree
and rank.

7. Appendix—a theorem of M. Sato.

In this section, we give a proof of the theorem of Sato [S], [SN]. The theorem is
stated in a little different formulation from the original one in order to make the
correspondence canonical. We also give a proof of the interesting characterization of
differential operators among pseudo-differential operators due to him. This charac-
terization corresponds to our stabilizer condition AW ⊂W , and hence it gives the
origin of the reason why a commutative algebra of ordinary differential operators
produces not only an algebraic curve but also a vector bundle on it.

Let k be a field of characteristic zero. In Section 4, we introduced our function
space R = k

[
[x]
]
. In this section, we need a topology of R. So let mx ⊂ R be the

unique maximal ideal. Since

∞⋃
n=0

mn
x = R and

∞⋂
n=0

mn
x = {0} ,

R is a complete topological space with respect to the mx-adic topology.

Definition 7.1. We define the valuation valx(f) of an element f ∈ R by

valx(f) = n⇐⇒ f ∈ mn
x \mn+1

x

⇐⇒ f has a zero of order n at x = 0 .

Let E be the ring of pseudo-differential operators and let D be the subring of
differential operators. We have a natural direct sum decomposition

(7.1) E = D ⊕ E(−1)

as a left, right or both-sided R-module. According to this decomposition, we write
P = P+ + P−, where P+ ∈ D and P− ∈ E(−1). For an operator

P =
∑
n∈Z

fn∂
n =

∑
m∈Z

∂m · gm ∈ E ,

we have

P+ =
∑
n≥0

fn∂
n =

∑
m≥0

∂m · gm and

P− =
∑
n<0

fn∂
n =

∑
m<0

∂m · gm .
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Thus the decomposition (7.1) does not depend on the expression of the operator.
Let us recall the natural projection ρ : E −→ E/Ex. Obviously, we have ρ(D) =

k[z−1], ρ(E(−1)) = V (−1) and hence V = k[z−1]⊕ V (−1), which corresponds to the
natural direct sum decomposition E = D ⊕ E(−1).

The following lemma due to M. Sato [SN] gives an intersting characterization of
differential operators among pseudo-differential operators and plays a central role
in the determination of commutative algebras of ordinary differential operators in
Section 5.

Lemma 7.2. A pseudo-differential operator P ∈ E is a differential operator if and
only if it preserves ρ(D) in V , namely

Pρ(D) ⊂ ρ(D) .

Proof. Every differential operator P ∈ D preserves ρ(D) because Pρ(Q) = ρ(PQ) ∈
ρ(D) for any Q ∈ D. In order to prove the converse, we need the mx-adic topology
of the function space R. Let P be a pseudo-differential operator and let

(7.2) P− =
∞∑
n=1

∂−n · fn(x)

be the E(−1)-part of P according to the decomposition of (7.1). The condition
Pρ(D) ⊂ ρ(D) implies that PD mod Ex ⊂ D mod Ex, that is

(7.3) (PQ)− ∈ Ex

for every Q ∈ D. Therefore, P− ∈ Ex because P · 1 modEx ∈ D modEx. Thus
valxfn ≥ 1 for all n ≥ 1. So let fm be the coefficient of (7.2) with the lowest
valuation and let valxfm = ` ≥ 1. Consider the operator (P · ∂`)−. Then we have

(P · ∂`)− = (P− · ∂`)−

=

( ∞∑
n=1

∂−n · fn · ∂`
)
−

=

( ∞∑
n=1

∑̀
i=0

∂−n+`−i(−1)i
(
`

i

)
f (i)
n

)
−

=

 ∞∑
j=1

∂`−j
∑̀
i=0

(−1)i
(
`

i

)
f

(i)
j−i


−

=
∞∑

j=`+1

∂`−j
∑̀
i=0

(−1)i
(
`

i

)
f

(i)
j−i .
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Since f (i)
n (0) = 0 for 0 ≤ i < `, we have

ρ
(
(P · ∂`)−

)
=

∞∑
j=`+1

(−1)`f (`)
j−`(0) · ∂`−j

=
∞∑
j=1

(−1)`f (`)
j (0)∂−j .

But we know that (P · ∂`)− ∈ Ex by (7.3). Thus f (`)
n (0) = 0 for all n ≥ 1. This

means that valxfm > `. But this contradicts with our assumption. Therefore, none
of the coefficient fn can have the lowest valuation. Namely, fn(x) = 0 for all n ≥ 1.
This means that P is a differential operator. This completes the proof.

Let us define another Grassmannian consisting of right D-modules.

Definition 7.3. The Sato Grassmannian is the set

SG+ = {J ⊂ E closed subspace of E | J ⊕ E(−1) = E and JD ⊂ J}

consisting of the right D-modules which are direct summand of E.

The following theorem is also due to Sato (cf. [SN] ).

Theorem 7.4.

(1) Let Γm be the group of monic zero-th order pseudo-differential operators and
let SG+ be the Sato Grassmannian defined as above. Then there is a natural
bijection σ : Γm

∼−→ SG+ given by

Γm 3 S
σ7−→ σ(S) = J = S−1D ∈ SG+ .

(2) Let G+(0,−1) be the big-cell of the Grassmannian of index 0 and level −1.
Then the natural projection ρ : E → V induces a bijection

ρ : SG+ ∼−→ G+(0,−1) .

Proof. (1) Let S ∈ Γm. Obviously, S−1D = J is a right D-module. Since S−1E =
E and S−1E(−1) = E(−1), we have

E = S−1E = S−1(D ⊕ E(−1)) = S−1D ⊕ S−1E(−1)

= S−1D ⊕ E(−1) .

Thus S−1D ∈ SG+.
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Injectivity of σ.
Suppose that σ(S1) = σ(S2) = J . Then S−1

1 D = S−1
2 D, which means S1S

−1
2 D =

D. For the operator 1 ∈ D, it gives S1S
−1
2 ·1 = S1S

−1
2 ∈ D. But since S1 ·S−1

2 ∈ Γm
and Γm ∩D = {1}, we have S1 · S−1

2 = 1 i.e. S1 = S2.

Subjectivity of σ.
Let J ∈ SG+ be an arbitrary element. Since E = J ⊕ E(−1), J contains a

monic zero-th order operator. Choose S ∈ Γm such that S−1 ∈ J and let S−1D
be the right D-module generated by S−1 in E. Since J is itself a right D-module,
S−1D ⊂ J .

Now let P ∈ J be an arbitrary element of order N ≥ 0. Since S−1 ∈ J is monic
of order 0, there is a differential operator QN ∈ D of order N such that

P − S−1QN ∈ J (N−1) = J ∩ E(N−1) .

We can use the same argument to find a QN−1 ∈ D ∩ E(N−1) such that

P − S−1QN − S−1QN−1 ∈ J (N−2) = J ∩ E(N−2) .

If we continue this process N -times, then we end up with

P − S−1
N∑
n=0

QN−n ∈ J (−1) = J ∩ E(−1) = {0} .

Therefore, P = S−1
N∑
n=0

QN−n ∈ S−1D, i.e. J ⊂ S−1D. Thus J = S−1D = σ(S).

(2) Let J ∈ SG+ be an arbitrary element. As we have established in the above,
there is an S ∈ Γm such that J = S−1D. Now, we have

ρ(J) = ρ(S−1D)

= {ρ(S−1Q) |Q ∈ D}
= S−1{ρ(Q) |Q ∈ D}
= S−1ρ(D) .

Since S−1 : V ∼→ V is a homeomorphism, we have

V = S−1V = S−1ρ(D)⊕ V (−1) .

Thus S−1ρ(D) ∈ G+(0,−1) and hence we have a well-defined map ρ : SG+ →
G+(0,−1).

Injectivity of ρ.
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Suppose we have ρ(S−1
1 D) = ρ(S−1

2 D). Then S−1
1 ρ(D) = S−1

2 ρ(D), i.e.,

S1S
−1
2 ρ(D) = ρ(D).

Therefore, S1S
−1
2 ∈ D ∩ Γm = {1}, namely, S1 = S2.

Surjectivity of ρ.
Let W ∈ G+(0,−1) be an arbitrary point. Since V = W ⊕ V (−1), we can choose

a basis {wn}n≥0 for W in the following form for every n ≥ 0:

wn = z−n +
∞∑
`=1

an`z
` .

In order to construct an operator S ∈ Γm, let S−1 = 1 +
∑∞
`=1 ∂

−` · s`(x) and
s0(x) = 1. Then the equation

w0 = S−1 · 1 = ρ(S−1) = 1 +
∞∑
`=1

s`(0)z`

determines all the constant terms of the coefficients as s`(0) = a0`, ` ≥ 1.
Now let us assume that we know s

(i)
` (0) for all ` ≥ 1 and 0 ≤ i < n. Note that

we have

S−1 · z−n

= ρ(S−1 · ∂n)

= ρ

( ∞∑
m=0

∂−m · sm(x) · ∂n
)

= ρ

( ∞∑
m=0

n∑
i=0

∂n−m−i · (−1)i
(
n

i

)
s(i)m (x)

)

= ρ

(
∂n +

∞∑
`=1

∂n−`
n∑
i=0

(−1)i
(
n

i

)
s
(i)
`−i(x)

)

= ∂n +
n−1∑
`=1

∂n−`
∑̀
i=0

(−1)i
(
n

i

)
s
(i)
`−i(0) +

n−1∑
i=0

(−1)i
(
n

i

)
s
(i)
n−i(0)

+
∞∑

`=n+1

∂n−`
n∑
i=0

(−1)i
(
n

i

)
s
(i)
`−i(0)

= z−n +
n−1∑
`=1

∑̀
i=0

(−1)i
(
n

i

)
s
(i)
`−i(0)z−n+` +

n−1∑
i=0

(−1)i
(
n

i

)
s
(i)
n−i(0)

+
∞∑
`=1

n∑
i=0

(−1)i
(
n

i

)
s
(i)
n+`−i(0)z` .
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The non-negative order terms of the above expression exactly coincides with

wn +
n−1∑
`=1

∑̀
i=0

(−1)i
(
n

i

)
s
(i)
`−i(0)wn−` +

n−1∑
i=0

(−1)i
(
n

i

)
s
(i)
n−i(0)w0 ,

which contains only known quantities. Therefore, the equation

S−1 · z−n

= z−n +
n−1∑
`=1

∑̀
i=0

(−1)i
(
n

i

)
s
(i)
`−i(0)z−n+` +

n−1∑
i=0

(−1)i
(
n

i

)
s
(i)
n−i(0)

+
∞∑
`=1

n∑
i=0

(−1)i
(
n

i

)
s
(i)
n+`−i(0)z`

= wn +
n−1∑
`=1

∑̀
i=0

(−1)i
(
n

i

)
s
(i)
`−i(0)wn−` +

n−1∑
i=0

(−1)i
(
n

i

)
s
(i)
n−i(0)w0

determines s(n)
` (0) for all ` ≥ 1. Thus we have obtained s`(x) =

∞∑
n=0

1
n!s

(n)
` (0)xn.

Now the operator S−1 = 1 +
∑∞
`=1 ∂

−` · s`(x) satisfies S−1ρ(D) = W as required.
This completes the proof.

By an easy calculation, we obtain the following.

Lemma 7.5. For every first order operator

L = ∂ + u1 + u2∂
−1 + u3∂

−2 + · · · ,

there exists an invertible zero-th order operator

X = s0 + s1∂
−1 + s2∂

−2 + · · ·

such that X−1LX = ∂. If X̄ is another operator satisfying the same equation
X̄−1LX̄ = ∂, then there is an invertible zero-th order operator Xc with constant
coefficients such that X̄ = X ·Xc.
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Differentialausdrücke, Archiv der Math. u. Phys., Drittle Reihe 4 (1903)
252–268.

[Wit] E. Witten: Quantum field theory, Grassmannians, and algebraic curves,
Commun. Math. Phys. 113 (1988) 529–600.

52


