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Abstract. The Eynard-Orantin recursion formula provides an effective tool
for certain enumeration problems in geometry. The formula requires a spectral
curve and the recursion kernel. We present a uniform construction of the
spectral curve and the recursion kernel from the unstable geometries of the
original counting problem. We examine this construction using four concrete
examples: Grothendieck’s dessins d’enfants (or higher-genus analogue of the
Catalan numbers), the intersection numbers of tautological cotangent classes
on the moduli stack of stable pointed curves, single Hurwitz numbers, and the
stationary Gromov-Witten invariants of the complex projective line.

1. Introduction

What is the mirror dual object of the Catalan numbers? We wish to make
sense of this question in the present paper. Since homological mirror symmetry is
a categorial equivalence, it does not require the existence of underlying spaces to
which the categories are associated. By identifying the Catalan numbers with a
counting problem similar to Gromov-Witten theory, we come up with an equation

(1.1) x = z +
1

z

as their mirror dual. It is not a coincidence that (1.1) is the Landau-Ginzburg model
in one variable [2,41]. Once the mirror dual object is identified, we can calculate the
higher-genus analogue of the Catalan numbers using the Eynard-Orantin topological
recursion formula. This recursion therefore provides a mechanism for calculating
the higher-order quantum corrections term by term.

The purpose of this paper is to present a systematic construction of genus
0 spectral curves of the Eynard-Orantin recursion formula [26, 28]. Suppose we
have a symplectic space X on the A-model side. If the Gromov-Witten theory of
X is controlled by an integrable system, then the homological mirror dual of X
is expected to be a family of spectral curves Σ. Let us consider the descendant
Gromov-Witten invariants of X as a function in integer variables. The Laplace
transform of these functions can be viewed as symmetric meromorphic functions
defined on the products of Σ. We expect that they satisfy the Eynard-Orantin
topological recursion on the B-model side defined on the curve Σ.
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More specifically, we construct the spectral curve using the Laplace transform of
the descendant Gromov-Witten type invariants for the unstable geometries (g, n) =
(0, 1) and (0, 2). We give four concrete examples in this paper:

• The number of dessins d’enfants of Grothendieck, which can be thought
of as higher-genus analogue of the Catalan numbers.

• The ψ-class intersection numbers 〈τd1
· · · τdn

〉g,n on the moduli spaceMg,n

of pointed stable curves [4,11,16,26,47,79].
• Single Hurwitz numbers [8,25,57].
• The stationary Gromov-Witten invariants of P1 [63,67].

The spectral curves we construct are listed in Table 1. The Eynard-Orantin recur-
sion formula for the single Hurwitz numbers [5,8,25,58] and the ψ-class intersec-
tion numbers [26] are known. Norbury and Scott conjecture that the stationary
Gromov-Witten invariants of P1 also satisfy the Eynard-Orantin recursion [63]. A
similar statement for the number of dessins d’enfants does not seem to be known.
We give a full proof of this fact in the paper.

Grothendieck’s Dessins

{
x = z + 1

z

y = −z

〈τd1
· · · τdn

〉g,n

{
x = z2

y = −z

Single Hurwitz Numbers

{
x = ze1−z

y = ez−1

Stationary GW Invariants of P1

{
x = z + 1

z

y = − log(1 + z2)

Table 1. Examples of spectral curves.

Let Dg,n(μ1, . . . , μn) denote the weighted count of clean Belyi morphisms of
smooth connected algebraic curves of genus g with n poles of order (μ1, . . . , μn).
We first prove

Theorem 1.1. For 2g − 2 + n ≥ 0 and n ≥ 1, the number of clean Belyi
morphisms satisfies the following equation:

(1.2) μ1Dg,n(μ1, . . . , μn) =

n∑
j=2

(μ1 + μj − 2)Dg,n−1(μ1 + μj − 2, μ[n]\{1,j})

+
∑

α+β=μ1−2

αβ

[
Dg−1,n+1(α, β, μ[n]\{1})+

∑
g1+g2=g

I�J={2,...,n}

Dg1,|I|+1(α, μI)Dg2,|J|+1(β, μJ)

]
,

where μI = (μi)i∈I for a subset I ⊂ [n] = {1, 2, . . . , n}.
The simplest case

D0,1(2m) =
1

2m
Cm

is given by the Catalan number Cm = 1
m+1

(
2m
m

)
. The next case D0,2(μ1, μ2) is

calculated in [45,46]. Note that the (g, n)-term appears also on the right-hand side
of (1.2). Therefore, this is merely an equation, not an effective recursion formula.
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Define the Eynard-Orantin differential form by

WD
g,n(t1, . . . , tn) = d1 · · · dn

∑
μ1,...,μn>0

Dg,n(μ1, . . . , μn)e
−(μ1w1+···+μnwn),

where the wj-coordinates and tj-coordinates are related by

ewj =
tj + 1

tj − 1
+

tj − 1

tj + 1
.

Then

Theorem 1.2. The Eynard-Orantin differential forms for 2g−2+n > 0 satisfy
the following topological recursion formula

(1.3) WD
g,n(t1, . . . , tn)

= − 1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1

[
WD

g−1,n+1(t,−t, t2, . . . , tn)

+

n∑
j=2

(
WD

0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn)

+WD
0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)
+

stable∑
g1+g2=g

I�J={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J|+1(−t, tJ )

]
.

This is now a recursion formula, since the topological type (g′, n′) of the Belyi
morphisms appearing on the right-hand side satisfy

2g′ − 2 + n′ = (2g − 2 + n)− 1,

counting the contributions from the disjoint union of the domain curves additively.
A corollary to the recursion formula is a combinatorial identity between the number
of clean Belyi morphisms and the number of lattice points on the moduli spaceMg,n

that has been studied in [11,56,60–62].

Corollary 1.3.
(1.4)

Dg,n(μ1, . . . , μn) =
∑

�1>
μ1
2

· · ·
∑

�n>
μn
2

n∏
i=1

2�i − μi

μi

(
μi

�i

)
Ng,n(2�1 − μi, · · · , 2�n − μn),

where Ng,n(μ1, . . . , μn) is defined by ( 5.4).

The recursion formula (1.3) is a typical example of the Eynard-Orantin recur-
sion we discuss in this paper. We establish this theorem by taking the Laplace
transform of (1.2). This is indeed a general theme. For every known case of the
Eynard-Orantin recursion appearing in an enumerative or geometric problem, the
proof has been established by taking the Laplace transform of a counting formula
like (1.2). For example, for the cases of single Hurwitz numbers [25,58] and open
Gromov-Witten invariants of C3 [82,83], the counting formulas similar to (1.2) are
called the cut-and-join equations [30,50,78,80,81].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

266 O. DUMITRESCU, M. MULASE, B. SAFNUK, AND A. SORKIN

The Laplace transform plays a mysterious role in Gromov-Witten theory. We
notice its appearance in Kontsevich’s work [47] that relates the Euclidean volume
of Mg,n and the intersection numbers on Mg,n, and also in the work of Okounkov-
Pandharipande [66] that relates the single Hurwitz numbers and the enumeration of
topological graphs. It has been proved that in these two cases the Laplace transform
of the quantities in question satisfies the Eynard-Orantin recursion [11,25,27,56,
58] for a particular choice of the spectral curve.

Then what is the role of the Laplace transform here? The answer we propose
in this paper is that the Laplace transform defines the spectral curve. Since the
spectral curve is a B-model object, the Laplace transform plays the role of
mirror symmetry.

The Eynard-Orantin recursion formula is an effective tool in certain geometric
enumeration. The formula originated in random matrix theory as a mechanism to
compute the expectation value of a product of the resolvent of random matrices ([1],
[22]). In [26,28] Eynard and Orantin propose a novel point of view, considering the
recursion as a means of defining meromorphic symmetric differential forms Wg,n

on the product Σn of a Riemann surface Σ for every g ≥ 0 and n > 0. They
derive in [26,28] many beautiful properties that these quantities satisfy, including
modularity and relations to integrable systems.

The effectiveness of the topological recursion in string theory is immediately
noticed [15,24,52,71]. A remarkable discovery, connecting the recursion formula
and geometry, is made by Mariño [52] and Bouchard, Klemm, Mariño and Pasquetti
[7]. It is formulated as the Remodeling Conjecture. This conjecture covers many
aspects of both closed and open Gromov-Witten invariants of arbitrary toric Calabi-
Yau threefolds. One of their statements says the following. Let X be an arbitrary
toric Calabi-Yau threefold, and Σ its mirror curve. Apply the Eynard-Orantin
recursion formula to Σ. Then Wg,n calculates the open Gromov-Witten invariants
of X. The validity of the topological recursion of [26,28] is not limited to Gromov-
Witten invariants. It has been applied to the HOMFLY polynomials of torus knots
[10], and understanding the role of quantum Riemann surfaces and certain Seiberg-
Witten invariants [36]. A speculation also suggests its relation to colored Jones
polynomials and the hyperbolic volume conjecture of knot complements [14].

From the very beginning, the effectiveness of the Eynard-Orantin recursion in
enumerative geometry was suggested by physicists. Bouchard and Mariño conjec-
ture in [8] that particular generating functions of single Hurwitz numbers satisfy
the Eynard-Orantin topological recursion. They have come up to this conjecture as
the limiting case of the remodeling conjecture for C3 when the framing parameter
tends to ∞. The spectral curve for this scenario is the Lambert curve x = ye−y.
The Bouchard-Mariño conjecture is solved in [5,25,58]. The work [25] also influ-
enced the solutions to the remodeling conjecture for C3 itself. The statement on
the open Gromov-Witten invariants was proved in [12,82,83], and the closed case
was proved in [6,84].

The Eynard-Orantin topological recursion starts with a spectral curve Σ. Thus
it is reasonable to propose the recursion formalism whenever there is a natural curve
in the problem we study. Such curves may include the mirror curve of a toric Calabi-
Yau threefold [7,52], the zero locus of an A-polynomial [14,36], the Seiberg-Witten
curves [36], the torus on which a knot is drawn [10], and the character variety of
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the fundamental group of a knot complement relative to SL(2,C) [14]. Now we
ask the opposite question.

Question 1.4. If an enumerative geometry problem is given, then how do we
find the spectral curve, with which the Eynard-Orantin formalism may provide a
solution?

In every work of [6,11,12,25–28,56,58,61,63,82,83], the spectral curve is
considered to be given. How do we know that the particular choice of the spectral
curve is correct? Our proposal provides an answer to this question: the Laplace
transform of the unstable geometries (g, n) = (0, 1) and (0, 2) determines the spec-
tral curve, and the topological recursion formula itself. The key ingredients of the
topological recursion are the spectral curve and the recursion kernel that is deter-
mined by the differential forms W0,1 and W0,2. In the literature starting from [26],
the word “Bergman kernel” is used for the differential form W0,2. But W0,2 has
indeed nothing to do with the classical Bergman kernel in complex analysis. It is a
universally given 2-form depending only on the geometry of the spectral curve. We
would rather emphasize in this paper that this “kernel” is the Laplace transform of
the annulus amplitude, which should be determined by the counting problem we
start with.

Although it is still vague, our proposal is the following

Conjecture 1.5 (The Laplace transform conjecture). If the unstable geome-
tries (g, n) = (0, 1) and (0, 2) make sense in a counting problem on the A-model
side, then the Laplace transform of the solution to these cases determines the spec-
tral curve and the recursion kernel of the Eynard-Orantin formalism, which is a
B-model theory. Thus the Laplace transform plays a role of mirror symmetry. The
recursion then determines the solution to the original counting problem for all (g, n).

The Eynard-Orantin recursion is a process of quantization [10,36]. Thus the
implication of the conjecture is that quantum invariants are uniquely determined
by the disk and annulus amplitudes. For example, single Hurwitz numbers hg,μ are
all determined by the first two cases h0,(μ1) and h0,(μ1,μ2). The present paper and
our previous work [25,58] establish this fact. The Lambert curve is the mirror dual
of the number of trees.

The organization of this paper is the following. In Section 2 we present the
Eynard-Orantin recursion formalism for the case of a genus 0 spectral curve. Higher
genus situations will be discussed elsewhere. Sections 3 and 4 deal with the count-
ing problem of Grothendieck’s dessins d’enfants. We present our new results on
this problem, which are Theorem 1.1 and Theorem 1.2. We are inspired by Ko-
dama’s beautiful talk [45] (that is based on [46]) to come up with the generating
function of the Catalan numbers as the spectral curve for this problem. We are
grateful to G. Gliner for drawing our attention to [45]. The counting problem of
the lattice points on Mg,n of [11,56,60,61] is closely related to the counting of
dessins, which is also treated in Section 4. The Eynard-Orantin recursion becomes
identical to the Virasoro constraint condition for the ψ-class intersection numbers
on Mg,n. We discuss this relation in Section 6, using Kontsevich’s idea that the

intersection numbers on Mg,n are essentially the same as the Euclidean volume of
Mg,n. Section 7 is devoted to single Hurwitz numbers. In our earlier work [25,58]
we used the Lambert curve as given. Here we reexamine the Hurwitz counting prob-
lem and derive the Lambert curve from the unstable geometries. We then consider



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

268 O. DUMITRESCU, M. MULASE, B. SAFNUK, AND A. SORKIN

the Norbury-Scott conjecture [63] in Section 8, which states that the generating
functions of stationary Gromov-Witten invariants of P1 satisfy the Eynard-Orantin
recursion. We are unable to prove this conjecture. What we establish in this section
is why the spectral curve of [63] is the right choice for this problem.

The subject of this paper is closely related to random matrix theory. Since
the matrix model side of the story has been extensively discussed by the original
authors [28], we do not deal with that aspect in the current paper.

2. The Eynard-Orantin differential forms and the topological recursion

We use the following mathematical definition for the topological recursion of
Eynard-Orantin for a genus 0 spectral curve. The differences between our definition
and the original formulation found in [26,28] are philosophical in nature. Indeed,
the original formula and ours produce the exact same answer in all examples we
examine in this paper.

Definition 2.1. We start with P1 with a choice of coordinate t. Let S ⊂ P1

be a finite collection of points and compact real curves such that the complement
Σ = P1 \S is connected. The spectral curve of genus 0 is the data (Σ, π) consisting
of a Riemann surface Σ and a simply ramified holomorphic map

(2.1) π : Σ � t �−→ π(t) = x ∈ P1

so that its differential dx has only simple zeros. Let us denote by R = {p1, . . . , pr} ⊂
Σ the ramification points, and by

U = �r
j=1Uj

the disjoint union of small neighborhood Uj around each pj such that π : Uj →
π(Uj) ⊂ P1 is a double-sheeted covering ramified only at pj . We denote by t̄ = s(t)
the local Galois conjugate of t ∈ Uj . The canonical sheaf of Σ is denoted by K.
Because of our choice of the coordinate t, we have a preferred basis dt for K and ∂/∂t
for K−1. The meromorphic differential forms Wg,n(t1, . . . , tn), g = 0, 1, 2, . . . , n =
1, 2, 3, . . . , are said to satisfy the Eynard-Orantin topological recursion if the
following conditions are satisfied:

(1) W0,1(t) ∈ H0(Σ,K).

(2) W0,2(t1, t2) = dt1·dt2
(t1−t2)2

− π∗ dx1·dx2

(x1−x2)2
∈ H0(Σ × Σ,K⊗2(2Δ)), where Δ is

the diagonal of Σ× Σ.
(3) The recursion kernel Kj(t, t1) ∈ H0(Uj ×C, (K−1

Uj
⊗K)(Δ)) for t ∈ Uj and

t1 ∈ C is defined by

(2.2) Kj(t, t1) =
1

2

∫ t̄

t
W0,2(·, t1)

W0,1(t̄)−W0,1(t)
.

The kernel is an algebraic operator that multiplies dt1 while contracts dt.
(4) The general differential forms Wg,n(t1, . . . , tn) ∈ H0(Σn,K(∗R)⊗n) are

meromorphic symmetric differential forms with poles only at the ramifi-
cation points R for 2g− 2+n > 0, and are given by the recursion formula

(2.3) Wg,n(t1, t2, . . . , tn) =
1

2πi

r∑
j=1

∮
Uj

Kj(t, t1)

[
Wg−1,n+1(t, t̄, t2, . . . , tn)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SPECTRAL CURVE OF EYNARD-ORANTIN RECURSION 269

+

No (0, 1) terms∑
g1+g2=g

I�J={2,3,...,n}

Wg1,|I|+1(t, tI)Wg2,|J|+1(t̄, tJ )

]
.

Here the integration is taken with respect to t ∈ Uj along a positively
oriented simple closed loop around pj , and tI = (ti)i∈I for a subset I ⊂
{1, 2, . . . , n}.

(5) The differential form W1,1(t1) requires a separate treatment because
W0,2(t1, t2) is regular at the ramification points but has poles elsewhere.

W1,1(t1) =
1

2πi

r∑
j=1

∮
Uj

Kj(t, t1)

[
W0,2(u, v) + π∗ dx(u) · dx(v)

(x(u)− x(v))2

]∣∣∣∣
u=t
v=t̄

(2.4)

=
1

2πi

r∑
j=1

∮
Uj

Kj(t, t1)

[
dt · dt̄
(t− t̄)2

]
.

Let y : Σ−→C be a holomorphic function defined by the equation

(2.5) W0,1(t) = y(t)dx(t).

Equivalently, we can define the function by contraction y = iXW0,1, where
X is the vector field on Σ dual to dx(t) with respect to the coordinate t.
Then we have an embedding

Σ � t �−→ (x(t), y(t)) ∈ C2.

(6) If the spectral curve has at most two branch points then we choose a
preferred coordinate t with the branch points located at t = ∞ and t = 0.
This results in differentials Wg,n that are Laurent polynomials in t and
serves to simplify many of the residue calculations.

Remark 2.2. The recursion (2.3) also applies to (g, n) = (0, 3), which gives
W0,3 in terms of W0,2. In [26, Theorem 4.1] an equivalent but often more useful
formula for W0,3 is given:

(2.6) W0,3(t1, t2, t3) =
1

2πi

r∑
j=1

∮
Uj

W0,2(t, t1)W0,2(t, t2)W0,2(t, t3)

dx(t) · dy(t) .

The philosophy being presented is that given an A-model type counting prob-
lem, the spectral curve describing the mirror B-model invariants is obtained by
taking the Laplace transform of the unstable geometries – the so called disk and
annulus amplitudes of the A-model. The mechanism by which this occurs is illus-
trated by several examples in the subsequent sections.

3. Counting Grothendieck’s dessins d’enfants

The A-model side of the problem we consider in this section is the count-
ing problem of Grothendieck’s dessins d’enfants (see for example, [72, 73]) for a
fixed topological type of Belyi morphisms [3]. We define functions Dg,n(μ1, . . . , μn)
which, in brief, are weighted counts of dessins d’enfants having n vertices of valence
μ1, . . . , μn. We find the spectral curve (3.13) by taking the Laplace transform of
the unstable functions D0,1 and D0,2. The section closes with the derivation of
recursion equation (3.16) satisfied by Dg,n which comes from studying the edge
contraction operation on graphs.
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One motivation for studying dessins d’enfant using the framework of Eynard-
Orantin recursion is the following. Gromov-Witten theory of an algebraic variety X
is an intersection theory of naturally defined cycles on the moduli stack Mg,n(X) of
stable morphisms from n-pointed algebraic curves of genus g to the target variety
X. Since we are considering tautological cycles, their 0-dimensional intersection
points are also natural. These points determine a finite set on Mg,n via the stabi-
lization morphism. If we expect that the Gromov-Witten theory of X satisfies the
Eynard-Orantin recursion, then we should also expect that the counting problem
of naturally defined finite sets of points on Mg,n may satisfy the Eynard-Orantin
recursion.

Pointed curves defined over Q form a dense subset of Mg. Using the natu-

ral correspondence between curves defined over Q and Belyi morphisms, we have
marked points on each such curve coming from the branch points above ∞ of the
morphism. By fixing the profiles over the branch points we arrive at a canonically
defined finite set of points on Mg,n.

More specifically, consider a Belyi morphism

(3.1) b : C−→P1

of a smooth algebraic curve C of genus g. This means b is branched only over
0, 1,∞ ∈ P1. By Belyi’s Theorem [3], C is defined over Q. Let q1, . . . , qn be the
poles of b with orders (μ1, . . . , μn) ∈ Zn

+ respectively. This vector of positive integers
is the profile of b at ∞. In our enumeration we label all poles of b. Therefore, an
automorphism of a Belyi morphism preserves the set of poles point-wise.

A clean Belyi morphism is a special class of Belyi morphism of even degree
that has profile (2, 2, . . . , 2) over the branch point 1 ∈ P1. We note that a complex
algebraic curve is defined over Q if and only if it admits a clean Belyi morphism.
Let us denote by Dg,n(μ1, . . . , μn) the weighted count of the number of genus g
clean Belyi morphisms of profile (μ1, . . . , μn) at ∞ ∈ P1. This is the number we
study in this section.

Grothendieck visualized the clean Belyi morphism by considering the inverse
image

(3.2) Γ = b−1([0, 1])

of the closed interval [0, 1] ⊂ P1 by b (see his “Esquisse d’un programme” reprinted
in [73]). It is a topological graph drawn on the algebraic curve C being considered
as a Riemann surface. We call each pre-image of 0 ∈ P1 by b a vertex of Γ. Since b
has profile (2, . . . , 2) over 1 ∈ P1, a pre-image of 1 is the midpoint of an edge of Γ.
The complement C \ Γ of Γ in C is the disjoint union of n disks centered at each
qi. By abuse of terminology we call each disk a face of Γ. Then by Euler’s formula
we have

2− 2g = |b−1(0)| − |b−1(1)|+ n.

The added structure obtained by its inclusion in an oriented surface make the graph
into a ribbon graph. A ribbon graph of topological type (g, n) is the 1-skeleton of
a cell-decomposition of a closed oriented topological surface C of genus g that
decomposes the surface into a disjoint union of 0-cells, 1-cells, and 2-cells. The
number of 2-cells is n. Alternatively, a ribbon graph can be defined as a graph with
a cyclic order assigned to the incident half-edges at each vertex.
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The concrete construction of [55] gives a Belyi morphism to any given ribbon
graph. Thus the enumeration of clean Belyi morphism is equivalent to the enu-
meration of ribbon graphs. Grothendieck’s original motivation for studying ribbon
graphs lies in the fact that the absolute Galois group Gal(Q/Q) acts faithfully on
the set of ribbon graphs.

An alternative description of a Belyi morphism is to use the dual graph

(3.3) Γ̌ = b−1([1, i∞]),

where

[1, i∞] = {1 + iy | 0 ≤ y ≤ ∞} ⊂ P1

is the vertical half-line on P1 with real part 1. This time the graph Γ̌ has n labeled
vertices of degrees (μ1, . . . , μn). Since we consider ribbon graphs in the context
of canonical cell-decomposition of the moduli space Mg,n, we use the terminology

dessin d’enfant (or just dessin) for a graph Γ̌ dual to a ribbon graph Γ. This dis-
tinction is important, because when we count the number of ribbon graphs, we
consider the automorphism of a graph that preserves each face, while the automor-
phism group of the dual graph, i.e., a dessin, preserves each vertex point-wise, but
can permute faces. We note that this terminology is different from that presented
in “Esquisse d’un programme,” where ribbon graphs were referred to as dessins
d’enfant (and dual graphs were not considered). In this dual picture, we define the
number of dessins with the automorphism factor by

(3.4) Dg,n(μ1, . . . , μn) =
∑

Γ̌ dessin of
type (g,n)

1

|AutD(Γ̌)|
,

where Γ̌ is a dessin of genus g with n labeled vertices with prescribed degrees
(μ1, . . . , μn), and AutD(Γ̌) is the automorphism of Γ̌ preserving each vertex point-
wise.

Our theme is to find the spectral curve of the theory by looking at the problem
for unstable curves (g, n) = (0, 1) and (0, 2). The dessins counted in D0,1(μ) for
an integer μ ∈ Z+ are spherical graphs that contain only one vertex of degree μ.
Since any edge of this graph has to start and end with the same vertex, it is a loop,
and thus μ is even. So let us put μ = 2m. Each graph contributes with the weight
1/|AutD(Γ̌)| in the enumeration of the number D0,1(μ). This automorphism factor
makes counting more difficult. Note that the automorphism group of a spherical
dessin with a single vertex is a subgroup of Z/(2m)Z that preserves the graph. If we
place an outgoing arrow to one of the 2m half-edges incident to the unique vertex
(see Figure 3.1), then we can kill the automorphism altogether. Since there are 2m
choices of placing such an arrow, the number of arrowed graphs is 2mD0,1(2m).
This is now an integer. With one cyclically ordered vertex, placing an arrow on
a half-edge is equivalent to choosing a total ordering for the half-edges which is
consistent with the cyclic ordering. Pairing the half-edges to form a graph with non-
intersecting edges is then equivalent to an arrangement of m pairs of parentheses.
The number of such arrangements is given by

(3.5) 2mD0,1(2m) = Cm =
1

m+ 1

(
2m

m

)
,

where Cm is the m-th Catalan number. We note that the Catalan numbers appear
in the same context of counting graphs in [38].
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Figure 3.1. An arrowed dessin d’enfant of genus 0 with one vertex.

Define the Laplace transform of D0,1(μ) by

(3.6) F̃D
0,1 =

∞∑
m=1

D0,1(2m)e−2mw.

Then the Eynard-Orantin differential

W̃D
0,1 = dF̃D

0,1 = −
∞∑

m=1

2mD0,1(2m)e−2mwdw = −
∞∑

m=1

Cme−2mwdw

is a generating function of the Catalan numbers. Actually a better choice is (see
[45,46])

(3.7) z(x) =
∞∑

m=0

Cm
1

x2m+1
=

1

x
+

1

x3
+

2

x5
+

5

x7
+

14

x9
+

42

x11
+ · · · .

The radius of convergence of this infinite Laurent series is 2, hence the series con-
verges absolutely for |x| > 2. The inverse function of z = z(x) near (x, z) = (∞, 0)
is given by

(3.8) x = z +
1

z
.

This can be easily seen by solving the quadratic equation z2 − xz + 1 = 0 with
respect to z, which is equivalent to the quadratic recursion

Cm+1 =
∑

i+j=m

Ci · Cj

of Catalan numbers. To take advantage of these simple formulas, let us define

(3.9) x = ew

and allow the m = 0 term in the Eynard-Orantin differential:

(3.10) WD
0,1 = −

∞∑
m=0

Cm
dx

x2m+1
.

Accordingly the Laplace transform of D0,1(2m) needs to be modified:

(3.11) FD
0,1 =

∞∑
m=1

D0,1(2m) e−2mw − w =
∞∑

m=1

D0,1(2m)
1

x2m
− log x.

From (3.7) and (3.10), we obtain

(3.12) WD
0,1 = −z(x) dx.
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In light of (2.5), we have identified the spectral curve for the counting problem of
dessins Dg,n(μ). It is given by

(3.13)

{
x = z + 1

z

y = −z
.

We note that the spectral curve has branch points at z = ±1, hence we introduce
our preferred coordinate t through the equation

(3.14) z =
t+ 1

t− 1
,

which will simplify the residue calculations in Section 4 and Appendix A.
To compute the recursion kernel of (2.2), we need to identify D0,2(μ1, μ2) for

the other unstable geometry (g, n) = (0, 2). In the dual graph picture, D0,2(μ1, μ2)

counts the number of spherical dessins Γ̌ with two vertices of degree μ1 and μ2,
counted with the weight of 1/|AutD(Γ̌)|. The computation was done by Kodama
and Pierce in [46, Theorem 3.1]. We also refer to a beautiful lecture by Kodama
[45].

Proposition 3.1 ([46]). The number of connected spherical dessins Γ̌ with two
vertices of degrees j and k, counted with the weight of 1/|AutD(Γ̌)|, is given by the
following formula.

(3.15) D0,2(μ1, μ2) =

⎧⎪⎨⎪⎩
1
4

1
j+k

(
2j
j

)(
2k
k

)
μ1 = 2j �= 0, μ2 = 2k �= 0

1
j+k+1

(
2j
j

)(
2k
k

)
μ1 = 2j + 1, μ2 = 2k + 1

.

In all other cases with μi > 0, D0,2(μ1, μ2) = 0. Here the automorphism group

AutD(Γ̌) is the topological graph automorphisms that fix each vertex, but may per-
mute faces.

The number of dessins satisfies the following:

Theorem 3.2. For g ≥ 0 and n ≥ 1 subject to 2g − 2 + n ≥ 0, the number of
dessins ( 3.4) satisfies the equation

(3.16) μ1Dg,n(μ1, . . . , μn) =
n∑

j=2

(μ1 + μj − 2)Dg,n−1

(
μ1 + μj − 2, μ[n]\{1,j}

)
+
∑

α+β=μ1−2

αβ

[
Dg−1,n+1(α, β, μ[n]\{1})+

∑
g1+g2=g

I�J={2,...,n}

Dg1,|I|+1(α, μI)Dg2,|J|+1(β, μJ)

]
,

where μI = (μi)i∈I for a subset I ⊂ [n] = {1, 2, . . . , n}. The last sum is over all
partitions of the genus g and the index set {2, 3, . . . , n} into two pieces.

Remark 3.3. Note that when g1 = 0 and I = ∅, Dg,n appears in the right-
hand side of (3.16). Therefore, this is an equation of the number of dessins, not a
recursion formula.

Proof. Consider the collection of genus g dessins with n vertices labeled by
the index set [n] = {1, 2, . . . , n} and of degrees (μ1, . . . , μn). The left-hand side of
(3.16) is the number of dessins with an outward arrow placed on one of the incident
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edges at the vertex 1. The equation is based on contracting this edge to a point.
There are two cases.

Case 1. The arrowed edge connects the vertex 1 and vertex j > 1. We then
contract the edge and put the two vertices 1 and j together as shown in Figure 3.2.
The resulting dessin has one less vertex, but the genus is the same as before.
The degree of the newly created vertex is μ1 + μj − 2, while the degrees of all
other vertices are unaffected. It is natural to mark the edge that was immediately
counterclockwise of the contracted edge, as indicated in Figure 3.2.

Figure 3.2. The operation that shrinks the arrowed edge to a
point and joins two vertices labeled by 1 and j together.

To make the bijection argument, we need to be able to reconstruct the original
dessin from the new one. Since both μ1 and μj are given as the input value, we
have to specify which edges go to vertex 1 and which go to j when we separate
the vertex of degree μ1 + μj − 2. For this purpose, what we need is a marker on
one of the incident edges. We group the marked edge and μi − 2 edges following it
according to the cyclic order. The rest of the μj−1 incident edges are also grouped.
Then we insert an edge and separate the vertex into two vertices, 1 and j, so that
the first group of edges are incident to vertex 1 and the second group is incident
to j, honoring their cyclic orders. In other words, the arrow in Figure 3.2 can be
reversed. The contribution from this case is therefore

n∑
j=2

(μ1 + μj − 2)Dg,n−1

(
μ1 + μj − 2, μ[n]\{1,j}

)
.

Case 2. The arrowed edge forms a loop that is attached to vertex 1. We
remove this loop from the dessin, and separate the vertex into two vertices. The
loop classifies all incident half-edges, except for the loop itself, into two groups: the
ones that follow the arrowed half-edge in the cyclic order but before the incoming
end of the loop, and all others (see Figure 3.3). Let α be the number of half-edges
in the first group, and β the rest. Then α + β = μ1 − 2, and we have created two
vertices of degrees α and β.

To recover the original dessin from the new one, we need to mark a half-edge
from each vertex so that we can put the loop back to the original place. The number
of choices of these markings is αβ.

The operation of the removal of the loop and the separation of the vertex
into two vertices certainly increases the number of vertices from n to n + 1. This
operation also affects the genus of the dessin. If the resulting dessin is connected,
then g goes down to g−1. If the result is the disjoint union of two dessins of genera
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Figure 3.3. The operation that removes a loop, and separates
the incident vertex into two vertices.

g1 and g2, then we have g = g1 + g2. Altogether the contribution from this case is∑
α+β=μ1−2

αβ

[
Dg−1,n+1(α, β, μ[n]\{1}) +

∑
g1+g2=g

I�J={2,...,n}

Dg1,|I|+1(α, μI)Dg2,|J|+1(β, μJ)

]
.

Note that the outward arrow we place defines the two groups of incident half-edges
uniquely, since one is after and the other before the arrowed half-edge according to
the cyclic order. Thus we do not need to symmetrize α and β. Indeed, if the arrow
is placed in the other end of the loop, then α and β are interchanged.

The right-hand side of the equation (3.16) is the sum of the above two contri-
butions. �

Remark 3.4. The equation (3.16) is considerably simpler, compared to the
recursion formula for the number of ribbon graphs with integral edge lengths that
is proved in [11, Theorem 3.3]. The edge removal operation of [11] is the dual
operation of the edge shrinking operations of Case 1 and Case 2 above, and the
placement of an arrow corresponds to the ciliation of [11]. In the dual picture, the
graphs enumerated in [11] are more restrictive than arbitrary clean dessins, which
makes the equation more complicated. We also note that [11, Theorem 3.3] is a
recursion formula, not just a mere relation like what we have in (3.16). In this
regard, (3.16) is indeed similar to the cut-and-join equation (7.28) of [30,78]. We
will come back to this point in Section 7.

The relation (3.16) becomes an effective recursion formula after taking the
Laplace transform.

4. The Laplace transform of the number of dessins

In this section we derive the Eynard-Orantin recursion formula for the generat-
ing functions of the number of dessins. The key technique is the Laplace transform.

Note that recursion equation (3.16) does not provide an effective recursion
formula, becauseDg,n(μ1, . . . , μn) appears in the equation in a complicated manner.
Our strategy is to compute the Laplace transform

FD
g,n(w1, . . . , wn) =

∑
μ1,...,μn>0

Dg,n(μ1, . . . , μn) e
−(μ1w1+···+μnwn),

and rewrite the recursion equation in terms of the Laplace transformed functions.
We then show that the symmetric differential forms

WD
g,n = d1 · · · dnFD

g,n
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satisfy the Eynard-Orantin recursion formula. This time it is an effective recursion
formula for the generating functions WD

g,n of the number Dg,n(μ1, . . . , μn) of clean
Belyi morphisms.

Since the projection x = z+1/z of the spectral curve to the x-coordinate plane
has two ramification points z = ±1, it is natural to introduce a coordinate that has
these ramification points at 0 and ∞. So we define

(4.1) z =
t+ 1

t− 1
.

Proposition 4.1. The Laplace transform of D0,2(μ1, μ2) is given by

(4.2) FD
0,2(t1, t2)

def
=

∑
μ1,μ2>0

D0,2(μ1, μ2) e
−(μ1w1+μ2w2) = − log

(
1− z(x1)z(x2)

)
= log(t1 − 1) + log(t2 − 1)− log(−2(t1 + t2)),

where z(x) is the generating function of the Catalan numbers ( 3.7), and the vari-
ables t, w, x, z are related by ( 3.9), ( 3.13), and ( 4.1). We then have

(4.3) WD
0,2(t1, t2) = d1d2F

D
0,2(t1, t2) =

dt1 · dt2
(t1 − t2)2

− dx1 · dx2

(x1 − x2)2
=

dt1 · dt2
(t1 + t2)2

.

Proof. In terms of x = ew, the Laplace transform (4.2) is given by

(4.4)
∑

μ1,μ2>0

D0,2(μ1, μ2) e
−(μ1w1+μ2w2)

=
1

4

∞∑
j,k=1

1

j + k

(
2j

j

)(
2k

k

)
1

x2j
1

1

x2k
2

+

∞∑
j,k=0

1

j + k + 1

(
2j

j

)(
2k

k

)
1

x2j+1
1

1

x2k+1
2

.

Since

(4.5) dx =

(
1− 1

z2

)
dz,

we have

(4.6) x
d

dx
=

z + 1
z

1− 1
z2

d

dz
=

z(z2 + 1)

z2 − 1

d

dz
.

To make the computation simpler, let us introduce

(4.7) ξ0(x) =
∞∑

m=0

(
2m

m

)
1

x2m+1
.

This will also be used in Section 8. In terms of z and t we have

(4.8) ξ0(x) =
1

2

(
1− x

d

dx

) ∞∑
m=0

1

m+ 1

(
2m

m

)
1

x2m+1

=
1

2

(
1− z(z2 + 1)

z2 − 1

d

dz

)
z = − z

z2 − 1
= − t2 − 1

4t
.

Note that

−
(
x1

d

dx1
+ x2

d

dx2

)(
1

4

∞∑
j,k=1

1

j + k

(
2j

j

)(
2k

k

)
1

x2j
1

1

x2k
2
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+

∞∑
j,k=0

1

j + k + 1

(
2j

j

)(
2k

k

)
1

x2j+1
1

1

x2k+1
2

)

=
1

2
(x1ξ0(x1)− 1)(x2ξ0(x2)− 1) + 2ξ0(x1)ξ0(x2)

= 2z1z2
1 + z1z2

(z11 − 1)(z22 − 1)

= −
(
z1(z

2
1 + 1)

z21 − 1

d

dz1
+

z2(z
2
2 + 1)

z22 − 1

d

dz2

)
(− log(1− z1z2)) .

In other words, we have a partial differential equation(
x1

d

dx1
+ x2

d

dx2

)(
FD
0,2(t1, t2) + log(1− z1z2)

)
= 0

for a holomorphic function in x1 and x2 defined for |x1| >> 2 and |x2| >> 2. Since
the first few terms of the Laurent expansions of − log

(
1− z(x1)z(x2)

)
using (3.7)

agree with the first few terms of the sums of (4.4), we have the initial condition
for the above differential equation. By the uniqueness of the solution to the Euler
differential equation with the initial condition, we obtain (4.2). Equation (4.3)
follows from differentiation of (4.2). �

In terms of the t-coordinate of (4.1), the Galois conjugate of t ∈ Σ under the
projection x : Σ−→C is −t. Therefore, the recursion kernel for counting of dessins
is given by

(4.9)

KD(t, t1) =
1

2

∫ −t

t
WD

0,2(·, t1)
WD

0,1(−t)−WD
0,1(t)

=
1

2

(
1

t+ t1
+

1

t− t1

)
1

t+1
t−1 − t−1

t+1

· 1

dx
· dt1

= − 1

64

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1.

One of the first two stable cases (2.4) gives us

(4.10) WD
1,1(t1) =

1

2πi

∫
γ

KD(t, t1)

[
WD

0,2(t,−t) +
dx · dx1

(x− x1)2

]
= − 1

2πi

∫
γ

KD(t, t1)
dt · dt
4t2

= − 1

128

(t21 − 1)3

t41
dt1,

where the integration contour γ consists of two concentric circles of a small radius
and a large radius centered around t = 0, with the inner circle positively and the
outer circle negatively oriented (Figure 4.1). The (g, n) = (0, 3) case is given by

(4.11) WD
0,3(t1, t2, t3) =

1

2πi

∫
γ

WD
0,2(t, t1)W

D
0,2(t, t2)W

D
0,2(t, t3)

dx(t) · dy(t)

= − 1

16

[
1

2πi

∫
γ

(t2 − 1)2(t− 1)2

(t+ t1)2(t+ t2)2(t+ t3)2
· dt
t

]
dt1dt2dt3

= − 1

16

(
1− 1

t21 t22 t23

)
dt1dt2dt3.
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Remark 4.2. The general formula (2.3) for (g, n) = (0, 3) also gives the same
answer. This is because WD

0,2 acts as the Cauchy differentiation kernel.

WD
0,3(t1, t2, t3) =

1

2πi

∫
γ

KD(t, t1)

[
WD

0,2(t, t2)W
D
0,2(−t, t3) +WD

0,2(t, t3)W
D
0,2(−t, t2)

]
=

1

64

[
1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2

(
1

(t+ t2)2(t− t3)2
+

1

(t+ t3)2(t− t2)2

)
dt

]
· dt1dt2dt3

=

[
− 1

32

(t21 − 1)3

t21

(
1

(t1 + t2)2(t1 − t3)2
+

1

(t1 + t3)2(t1 − t2)2

)
− 1

16

∂

∂t2

(
t2

t22 − t21

(t22 − 1)3

t22

1

(t2 + t3)2

)
− 1

16

∂

∂t3

(
t3

t23 − t21

(t23 − 1)3

t23

1

(t2 + t3)2

)]
dt1dt2dt3 = − 1

16

(
1− 1

t21 t22 t23

)
dt1dt2dt3.

Figure 4.1. The integration contour γ. This contour encloses an
annulus bounded by two concentric circles centered at the origin.
The outer one has a large radius r > maxj∈N |tj | and the negative
orientation, and the inner one has an infinitesimally small radius
with the positive orientation.

Theorem 4.3. Let us define the Laplace transform of the number of Grothen-
dieck’s dessins by

(4.12) FD
g,n(t1, . . . , tn) =

∑
μ∈Z

n
+

Dg,n(μ)e
−(μ1w1+···+μnwn),

where the coordinate ti is related to the Laplace conjugate coordinate wj by

ewj =
tj + 1

tj − 1
+

tj − 1

tj + 1
.

Then the differential forms

(4.13) WD
g,n(t1, . . . , tn) = d1 · · · dnFD

g,n(t1, . . . , tn)

satisfy the Eynard-Orantin topological recursion

(4.14) WD
g,n(t1, . . . , tn)

= − 1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1
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×
[

n∑
j=2

(
WD

0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn)+WD
0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)

+WD
g−1,n+1(t,−t, t2, . . . , tn) +

stable∑
g1+g2=g

I�J={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J|+1(−t, tJ )

]
.

The last sum is restricted to the stable geometries. In other words, the partition
should satisfy 2g1 − 1 + |I| > 0 and 2g2 − 1 + |J | > 0. The spectral curve Σ of the
Eynard-Orantin recursion is given by{

x = z + 1
z

y = −z

with the preferred coordinate t given by

t =
z + 1

z − 1
.

We give the proof of this theorem in the appendix.

5. Counting lattice points in moduli spaces of curves

The problem of counting dessins is closely related to the counting problem of
the lattice points of the moduli space Mg,n of smooth n-pointed algebraic curves
of genus g studied in [60,61]. Let us briefly recall the combinatorial model for the
moduli space Mg,n due to Thurston (see for example, [74]), Harer [37], Mumford
[59], and Strebel [76], following [55,56]. For a given ribbon graph Γ with e = e(Γ)

edges, the space of metric ribbon graphs is R
e(Γ)
+ /Aut(Γ), where the automorphism

group acts by permutations of edges (see [55, Section 1]). When we consider ribbon
graph automorphisms, we restrict ourselves to automorphisms that fix each 2-cell
of the cell-decomposition. We also require that every vertex of a ribbon graph has
degree 3 or more. Using the canonical holomorphic coordinate system on a topo-
logical surface of [55, Section 4] corresponding to a metric ribbon graph, realized
through Strebel differentials [76], we have an isomorphism of topological orbifolds
[37,59]

(5.1) Mg,n × Rn
+
∼= Rg,n

for (g, n) in the stable range. Here

Rg,n =
∐

Γ boundary labeled
ribbon graph
of type (g,n)

R
e(Γ)
+

Aut(Γ)

is an orbifold parametrizing metric ribbon graphs of a given topological type (g, n).
The gluing of orbi-cells is done by making the length of a non-loop edge tend to
0. The space Rg,n is a smooth orbifold (see [55, Section 3] and [74]). We denote
by π : Rg,n −→ Rn

+ the natural projection via (5.1), which is the assignment of the
perimeter length of each boundary to a given metric ribbon graph.

Take a boundary labeled ribbon graph Γ, with labels chosen from [n] =
{1, 2 . . . , n}. For the moment let us give a label to each edge of Γ by an index
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set [e] = {1, 2, . . . , e}. The edge-face incidence matrix is defined by

(5.2)
AΓ =

[
aiη
]
i∈[n], η∈[e]

;

aiη = the number of times edge η appears in face i.

Thus aiη = 0, 1, or 2, and the sum of the entries in each column is always 2. The Γ
contribution of the space π−1(μ1, . . . , μn) = Rg,n(μ) of metric ribbon graphs with
a prescribed perimeter μ = (μ1, . . . , μn) ∈ Rn

+ is the orbifold polytope

{x ∈ Re
+ | AΓx = μ}
Aut(Γ)

,

where x = (�1, . . . , �e) is the collection of edge lengths of the metric ribbon graph
Γ. We have

(5.3)
∑
i∈[n]

μi =
∑
i∈[n]

∑
η∈[e]

aiη�η = 2
∑
η∈[e]

�η.

Now let μ ∈ Zn
+ be a vector consisting of positive integers. The lattice point

counting function we consider is defined by

(5.4) Ng,n(μ) =
∑

Γ ribbon graph
of type (g,n)

∣∣{x ∈ Zn
+ | AΓx = μ}

∣∣
|Aut(Γ)|

for (g, n) in the stable range ([11,56,60,61]).
To find the spectral curve for lattice point counting, we need to identify the

unstable moduli M0,1 and the ribbon graph space R0,1. We recall that the orbifold
isomorphism (5.1) holds for (g, n) in the stable range by defining Rg,n as the space
of metric ribbon graphs of type (g, n) without vertices of degrees 1 and 2. For
(g, n) = (0, 1), there are no ribbon graphs satisfying these conditions. Let vj denote
the number of degree j vertices in a ribbon graph Γ of type (g, n). Then we have∑

j≥1

jvj = 2e,
∑
j≥1

vj = v,

where v is the total number of vertices of Γ. Hence

(5.5) 2(2g − 2 + n) = 2e− 2v =
∑
j≥1

(j − 2)vj = −v1 +
∑
j≥3

(j − 2)vj .

It follows that the number of degree 1 vertices v1 is positive when (g, n) = (0, 1).
In other words, N0,1(μ) = 0. Thus we conclude that there is no spectral curve for
this counting problem.

Still we can consider the Laplace transform of the number (5.4) of lattice points
of the moduli space Mg,n with a prescribed perimeter length. We define for every
stable (g, n)

(5.6) FL
g,n(t1, . . . , tn) =

∑
μ∈Z

n
+

Ng,n(μ)

n∏
i=1

1

zμi

i

,

where

z =
t+ 1

t− 1
,

and the Eynard-Orantin differential forms by

(5.7) WL
g,n(t1, . . . , tn) = d1 · · · dnFL

g,n(t1, . . . , tn).
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The following result is proven in [11], with inspiration from [61].

Theorem 5.1 ([11]). The differential forms WL
g,n(t1, . . . , tn) satisfy the Eynard-

Orantin topological recursion with respect to the same spectral curve ( 3.13) and the
recursion kernel ( 4.9) as the dessins counting problem, starting with exactly the
same first two stable cases

(5.8) WL
1,1(t1) = − 1

128

(t21 − 1)3

t41
dt1,

and

(5.9) WL
0,3(t1, t2, t3) = − 1

16

(
1− 1

t21 t22 t23

)
dt1dt2dt3.

Remark 5.2. It is somewhat surprising, because the spectral curve (3.13) has
nothing to do with the lattice point counting problem. As we have mentioned, the
(g, n) = (0, 1) and (0, 2) considerations for this problem do not produce the spectral
curve. This example illustrates that our philosophy is only a partial understand-
ing of Eynard-Orantin recursion, and a different approach is needed for A-model
invariants which do not have unstable geometric information.

In the next section, we will be studying Eynard-Orantin recursion for ψ-class
intersections on moduli spaces of stable curves. The spectral curve can be obtained
by a scaling limit from the lattice-point counting curve, with the link being provided
by the following theorem, which was established in [56].

Theorem 5.3 ([56]). The functions FL
g,n(t1, . . . , tn) of ( 5.6) for the stable range

2g−2+n > 0 are uniquely determined by the following differential recursion formula
from the initial values FL

0,3(t1, t2, t3) and FL
1,1(t1).

(5.10) FL
g,n(t1, . . . , tn)

=− 1

16

∫ t1

−1

[
n∑

j=2

tj
t2 − t2j

(
(t2 − 1)3

t2
∂

∂t
FL
g,n−1(t, t[n]\{1,j})−

(t2j − 1)3

t2j

∂

∂tj
FL
g,n−1(t[n]\{1})

)

+

n∑
j=2

(t2 − 1)2

t2
∂

∂t
FL
g,n−1(t, t[n]\{1,j})

+
1

2

(t2 − 1)3

t2
∂2

∂u1∂u2

(
FL
g−1,n+1(u1, u2, t[n]\{1})

+

stable∑
g1+g2=g

I�J=[n]\{1}

FL
g1,|I|+1(u1, tI)Fg2,|J|+1(u2, tJ )

)∣∣∣∣∣
u1=u2=t

]
dt.

Here [n] = {1, 2, . . . , n} is an index set, and the last sum is taken over all partitions
g1 + g2 = g and set partitions I � J = [n] \ {1} subject to the stability conditions
2g1 − 1 + |I| > 0 and 2g2 − 1 + |J | > 0. The initial values are given by

(5.11) FL
1,1(t1) = − 1

384

(t+ 1)4

t2

(
t− 4 +

1

t

)
and

(5.12) FL
0,3(t1, t2, t3) = − 1

16
(t1 + 1)(t2 + 1)(t3 + 1)

(
1 +

1

t1 t2 t3

)
.
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In the stable range FL
g,n(t1, . . . , tn) is a Laurent polynomial of degree 3(2n− 2 + n)

and satisfies the reciprocity relation

(5.13) FL
g,n(1/t1, . . . , 1/tn) = FL

g,n(t1, . . . , tn).

The leading terms of FL
g,n(t1, . . . , tn) form a homogeneous polynomial of degree

3(2g − 2 + n), and is given by
(5.14)

FK
g,n(t1, . . . , tn)

def
=

(−1)n

22g−2+n

∑
d1+···+dn
=3g−3+n

〈τd1
· · · τdn

〉g,n
n∏

j=1

(2dj − 1)!!

(
tj
2

)2dj+1

,

where

〈τd1
· · · τdn

〉g,n =

∫
Mg,n

ψd1
1 · · ·ψdn

n

is the ψ-class intersection number (see Section 7 for more detail about intersection
numbers). The special value at ti = 1 gives

(5.15) FL
g,n(1, 1, . . . , 1) = (−1)nχ(Mg,n).

Corollary 5.4. For every (g, n) with 2g − 2 + n > 0, we have the identity

(5.16) WD
g,n(t1, . . . , tn) = WL

g,n(t1, . . . , tn).

The differential form WD
g,n(t1, . . . , tn) is a Laurent polynomial in t21, . . . , t

2
n of degree

2(3g − 3 + n), with a reciprocity property

(5.17) WD
g,n(1/t1, . . . , 1/tn) = (−1)nt21 · · · t2n WD

g,n(t1, . . . , tn).

The numbers of dessins can be expressed in terms of the number of lattice points:
(5.18)

Dg,n(μ1, . . . , μn) =
∑

�1>
μ1
2

· · ·
∑

�n>
μn
2

n∏
i=1

2�i − μi

μi

(
μi

�i

)
Ng,n(2�1 − μi, · · · , 2�n − μn).

Remark 5.5. The relation (5.18) appears in [63, Section 2.1] in an abstract
setting.

Proof. The Eynard-Orantin topological recursion uniquely determines the
differential forms for all (g, n). Since WD

1,1(t) = WL
1,1(t) and WD

0,3(t1, t2, t3) =

WL
0,3(t1, t2, t3), we conclude that W

D
g,n(t1, . . . , tn) = WL

g,n(t1, . . . , tn) for 2g−2+n >
0.

By induction on 2g − 2 + n we can show that WD
g,n(t1, . . . , tn) is a Laurent

polynomial in t21, . . . , t
2
n. The statement is true for the initial cases (4.10) and

(4.11). The integral transformation formula (4.14) is a residue calculation at t = 0
and t = ∞. By the induction hypothesis, the right-hand side of (4.14) becomes

− 1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1

×
[

n∑
j=2

(
WD

0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn)+WD
0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)

+WD
g−1,n+1(t,−t, t2, . . . , tn) +

stable∑
g1+g2=g

I�J={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J|+1(−t, tJ )

]
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=
1

32

1

2πi

∫
γ

(t2 − 1)3

t2 − t21

1

t
· 1

dt
· dt1

[
n∑

j=2

2(t2 + t2j )

(t2 − t2j )
2
Wg,n−1(t, t2, . . . , t̂j , . . . , tn) dt · dtj

+WD
g−1,n+1(t, t, t2, . . . , tn) +

stable∑
g1+g2=g

I�J={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J|+1(t, tJ )

]
.

Clearly the residues at t = 0 and t = ∞ are Laurent polynomials in t21, . . . , t
2
n.

Because of (5.16), we have
(5.19)∑
μ∈Z

n
+

Dg,n(μ)
n∏

i=1

d

(
1

xμi

i

)
=
∑
ν∈Z

n
+

Ng,n(ν)
n∏

i=1

d

(
1

zνi

i

)
=(−1)n

∑
ν∈Z

n
+

Ng,n(ν)
n∏

i=1

dzνi
i ,

where xi = zi + 1/zi. The Galois conjugation t→− t corresponds to z→1/z. Since

WN
g,n(t1, . . . , tn) = (−1)nWN

g,n(−t1, . . . ,−tn),

the second equality of (5.19) follows. Multiply (5.19) by xμ1

1 · · ·xμn
n and take

residues at xi = ∞ for i = 1, . . . , n (which corresponds with residues at zi = 0
on the right-hand side). Then for every (μ1, . . . , μn) ∈ Zn

+ we have

(5.20) Dg,n(μ1, . . . , μn)μ1 · · ·μn

=

(
1

2πi

)n ∫
|z1|=ε

· · ·
∫
|zn|=ε

xμ1

1 · · ·xμn
n

∑
ν∈Z

n
+

Ng,n(ν)

n∏
i=1

dzνi
i .

Since (
zi +

1

zi

)μi

=

μi∑
�i=0

(
μi

�i

)
zμi−2�i
i ,

the residue of (5.20) comes from the term μi − 2�i + νi = 0, and we have

Dg,n(μ1, . . . , μn)μ1 · · ·μn

=
∑

�1>μ1/2

· · ·
∑

�n>μn/2

n∏
i=1

(2�i − μi)

(
μi

�i

)
Ng,n(2�1 − μ1, . . . , 2�n − μn).

The reciprocity relation, and the degree of the Laurent polynomial, is a conse-
quence of Theorem 5.3. This completes the proof of Corollary 5.4. �

6. The ψ-class intersection numbers on Mg,n

The crucial discovery of Konstevich [47] is the equality between the intersec-
tion numbers on the compact moduli space Mg,n and the Euclidean volume of
the moduli space Mg,n of smooth curves using isomorphism (5.1). The Feynman
diagram expansion of the Kontsevich matrix integral relates the Euclidean volume
with a τ -function of the KdV equations. The Eynard-Orantin recursion for the ψ-
class intersection numbers is precisely the Dijkgraaf-Verlinde-Verlinde formula [16]
of the intersection numbers.

In this section we take a scaling limit of the spectral curve obtained in Section 5
for the lattice point count and argue that it is the spectral curve which determines
intersection numbers on Mg,n. We then show that this same spectral curve can
be obtained by taking the Laplace transform of the unstable intersection numbers.
Due to its simple form, we are able to explicitly evaluate the residues involved in
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the Eynard-Orantin recursion formula. We prove that it is equivalent to the DVV
formula [16] for the intersection numbers of ψ-classes on Mg,n.

As we have noted, the derivative of the recursion formula (5.10) is not the
Eynard-Orantin recursion because the spectral curve is not defined by the unstable
geometries. Indeed, we have dFL

0,1 ≡ 0. However, when we associate the number

of lattice points with the ψ-class intersection numbers on Mg,n through a scaling
limit, we arrive in a setting where the unstable geometries do make sense. In
particular, there are coherent definitions for

∫
M0,1

ψd and
∫
M0,2

ψd1
1 ψd2

2 which, using

the Laplace transform philosophy of the present work, generate the spectral curve
independent of the lattice point count argument.

Let us recall a computation in [56, Section 4].

(6.1)∑
μ∈Z

n
+

Ng,n(μ)e
−〈μ,w〉=

∑
Γ ribbon graph
of type (g,n)

∑
μ∈Z

n
+

1

|Aut(Γ)|
∣∣{x ∈ Z

e(Γ)
+ | AΓx=μ}

∣∣e−〈μ,w〉

=
∑

Γ ribbon graph
of type (g,n)

1

|Aut(Γ)|
∑

x∈Z
e(Γ)
+

e−〈AΓx,w〉

=
∑

Γ ribbon graph
of type (g,n)

1

|Aut(Γ)|
∏

η edge
of Γ

∞∑
�η=1

e−〈aη,w〉�η

=
∑

Γ ribbon graph
of type (g,n)

1

|Aut(Γ)|
∏

η edge
of Γ

e−〈aη,w〉

1− e−〈aη,w〉 ,

where AΓ is the incidence matrix of (5.2), aη is the η-th column of AΓ, and 〈μ,w〉 =
μ1w1 + · · ·+ μnwn. By comparing (5.6) and (6.1), we see that we are substituting
ewi = zi in this computation. Therefore, we obtain

(6.2) FL
g,n(t1, . . . , tn) =

∑
Γ ribbon graph
of type (g,n)

1

|Aut(Γ)|
∏

η edge
of Γ

1∏n
i=1 z

aiη

i − 1
.

Thus the series (5.6) in zi converges for |zi| > 1. Since zi = ti+1
t1−1 , the ti→∞

limit picks up the limit of (5.6) as zi→1, and hence the information of Ng,n(μ) as
μi→∞. Since the orbifold isomorphism (5.1) is scale invariant under the action of
R+, making the perimeter length μ large is the same as making the mesh small in
the lattice point counting. Hence at the limit we obtain the Euclidean volume of
Mg,n considered by Kontsevich in [47]. This is why we expect that (5.14) holds.
Let us now consider the limit of the spectral curve (3.13) as t→∞. First we have

x = z +
1

z
= 2 +

4

t2 − 1

y = −z = −1− 2

t− 1
.

Ignoring the constant shifts of x and y, we obtain for a large t

(6.3)

{
x = 4

t2

y = − 2
t .
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Hence the spectral curve is given by the equation x = y2. We use t as the preferred
coordinate.

We now compare the Eynard-Orantin recursion with respect to this spectral
curve and the Witten-Kontsevich theory. We use (5.14) and define
(6.4)
WK

g,n(t1, . . . , tn) = d1 · · · dnFK
g,n(t1, . . . , tn)

=
(−1)n

22g−2+n

∑
d1+···+dn
=3g−3+n

〈τd1
· · · τdn

〉g,n
n∏

j=1

(2dj + 1)!!

(
tj
2

)2dj

d

(
tj
2

)

=
(−1)n

162g−2+n
wK

g,n(t1, . . . , tn) dt1 · · · dtn,

where wK
g,n(t1, . . . , tn) is the coefficient of the Eynard-Orantin differential form nor-

malized by the constant factor (−1)n

162g−2+n . Note that wK
g,n(t1, . . . , tn) is a polynomial

in t2i ’s with positive rational coefficients for (g, n) in the stable range.
Recall that in genus 0, the intersection numbers are determined by the formula

(6.5) 〈τd1
· · · τdn

〉0,n =

(
n− 3

d1, . . . , dn

)
,

provided
∑

di = n− 3. For (g, n) = (0, 1) and (0, 2), we have

〈τk〉0,1 = δk+2,0(6.6)

〈τk1
τk2

〉0,2 = (−1)k1 , k1 + k2 = −1.(6.7)

Therefore,

(6.8) WK
0,1(t) =

−1

16−1
〈τ−2〉(−3)!! t−4dt =

16

t4
dt = ydx,

in agreement with the spectral curve x = y2 (6.3). Similarly, we have

(6.9) FK
0,2(t1, t2) =

∞∑
d=0

(−1)d(2d− 1)!!(−2d− 3)!!

(
t1
2

)2d+1(
t2
2

)−2d−1

= −
∞∑
d=0

1

2d+ 1

(
t1
t2

)2d+1

= log

(
1− t1

t2

)
− 1

2
log

(
1− t21

t22

)
,

and hence

(6.10) WK
0,2(t1, t2) =

dt1 · dt2
(t1 − t2)2

− 1

2

dx1 · dx2

(x1 − x2)2
.

As a consequence, the recursion kernel is given by

(6.11) KK(t, t1) = −1

2

(
1

t+ t1
+

1

t− t1

)
t4

32

1

dt
dt1,

since dx1·dx2

(x1−x2)2
does not contribute to the kernel (being even in t and the kernel

involves an integral from t to −t). The Eynard-Orantin recursion for the Euclidean
volume then becomes

(6.12) WK
g,n(t1, . . . , tn)

= − 1

2πi

∫
γ∞

(
1

t+ t1
+

1

t− t1

)
t4

64

1

dt
dt1

[
WK

g−1,n+1(t,−t, t2, . . . , tn)
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+

n∑
j=2

(
dt · dtj
(t− tj)2

WK
g,n−1(−t, t2, . . . , t̂j , . . . , tn)

− dt · dtj
(t+ tj)2

WK
g,n−1(t, t2, . . . , t̂j , . . . , tn)

)

+

stable∑
g1+g2=g

I�J={2,...,n}

WK
g1,|I|+1(t, tI)W

K
g2,|J|+1(−t, tJ )

]
,

where the integral is taken with respect to a large negatively oriented circle γ∞
that encloses any of ±t1, . . . ,±tn. This is the larger circle of Figure 4.1. Here again
dx1·dx2

(x1−x2)2
does not contribute in the formula. Since the coefficients wK

g,n(t1, . . . , tn)

in the stable range are polynomials, the poles of the integrand of (6.12) in the
integration coutour are at t = ±ti’s. Therefore, we can perform the integral in
terms of the residue calculus at poles t = ±ti. First let us get rid of the factor
1/162g−2+n from (6.12). Since the recursion is an induction on 2g− 2+ n, we have
an overall factor 16 adjustment on the right-hand side. The integration contour is
negatively oriented, so the residue calculation at t = ±ti receives universally the
negative sign. This sign is exactly cancelled by the choice of the sign of wK

g,n in
(6.4). Thus the result of residue evaluation of (6.12) is

(6.13) wK
g,n(t1, . . . , tn) =

1

2
t41w

K
g−1,n+1(t1, t1, t2, . . . , tn)

+
1

2
t41

stable∑
g1+g2=g

I�J={2,...,n}

wK
g1,|I|+1(t1, tI)w

K
g2,|J|+1(t1, tJ)

+ t41

n∑
j=2

t21 + t2j
(t21 − t2j )

2
wK

g,n−1(t1, . . . , t̂j , . . . , tn)

+
1

2

n∑
j=2

(
∂

∂t

∣∣∣∣
t=tj

+
∂

∂t

∣∣∣∣
t=−tj

)(
1

t2 − t21
t5wK

g,n−1(t, t2, . . . , t̂j , . . . , tn)

)

=
1

2
t41

⎡⎢⎢⎣wK
g−1,n+1(t1, t1, t2, . . . , tn) +

stable∑
g1+g2=g

I�J={2,...,n}

wK
g1,|I|+1(t1, tI)w

K
g2,|J|+1(t1, tJ )

⎤⎥⎥⎦
+

n∑
j=2

∂

∂tj

[
tj

t21 − t2j

(
t41w

K
g,n−1(t[n]\{j})− t4jw

K
g,n−1(t[n]\{1})

)]
.

This is the same as [11, Theorem 5.2], and with a different choice of preferred
coordinate, [6, Lemma 6.1].

Let us adopt the normalized notation

(6.14) 〈σd1
· · ·σdn

〉g,n = 〈τd1
· · · τdn

〉g,n
n∏

i=1

(2di + 1)!!
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to make the formula shorter. Then

(6.15) wK
g,n(t1, . . . , tn) =

∑
d1,...,dn

〈σd1
· · ·σdn

〉g,n
n∏

j=1

t
2dj

j .

The DVV formula [16] for the Virasoro constraint condition on the ψ-class inter-
section numbers on Mg,n reads

(6.16) 〈σk

n∏
i=2

σdi
〉g,n =

1

2

∑
a+b=k−2

〈σaσb

n∏
i=2

σdi
〉g−1,n+1

+
1

2

∑
a+b=k−2

stable∑
g1+g2=g

I�J={2,...,n}

〈σa

∏
i∈I

σdi
〉g1,|I|+1 · 〈σb

∏
j∈J

σdj
〉g2,|J|+1

+

n∑
j=2

(2dj + 1)〈σk+dj−1

∏
i �=1,j

σdi
〉g,n−1.

We thus recover the discovery of [26]:

Theorem 6.1. The Eynard-Orantin recursion formula for the spectral curve
x = y2 is the Dijkgraaf-Verlinde-Verlinde formula [16] for the intersection numbers
〈τd1

· · · τdn
〉g,n on the moduli space Mg,n of pointed stable curves.

Proof. We extract the coefficient of

(6.17) t2k1

n∏
j=2

t
2dj

j

in (6.13) and compare the result with (6.16). It is obvious that the fifth line of
(6.13) produces the first and second lines of (6.16).

To compare the last lines of (6.13) and (6.16), we consider the case |tj | < |t1|
for all j ≥ 2 in (6.13). We then have the expansion

1

t21 − t2j
=

1

t21

1

1− t2j
t21

=
1

t21

∞∑
m=0

(
t2j
t21

)m

.

The (6.17)-term of the last line of (6.13) has two contributions. The first one comes
from

∂

∂tj

(
t21tj

∞∑
m=0

(
t2j
t21

)m

wK
g,n−1(t1, t2, . . . , t̂j , . . . , tn)

)
.

Since wK
g,n−1(t1, t2, . . . , t̂j , . . . , tn) does not contain tj , we set m = dj to produce the

right power 2dj of tj . The power of t1 has to be 2k. Thus from wK
g,n−1 we take the

term of t
2k+2dj−2
1 , whose coefficient is 〈σk+dj−1

∏
i �=1,j σdi

〉. The total contribution
from the first kind comes from the differentiation, which gives 2m+ 1 = 2dj + 1.

The second possible contribution for the (6.17)-term may come from

− ∂

∂tj

(
t5j
t21

∞∑
m=0

(
t2j
t21

)m

wK
g,n−1(t2, . . . , tn)

)
.

However, this term does not produce t2k1 , and hence does not contribute to the
(6.17)-term. This completes the proof of Theorem 6.1. �
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7. Single Hurwitz numbers

What is the mirror dual of the number of trees? The answer we wish to present
in this section is that it is the Lambert curve. This analytic curve serves as the
spectral curve for the Hurwitz counting problem, and comes from the the unstable
geometries (g, n) = (0, 1) and (0, 2) via the Laplace transform.

A Hurwitz cover is a holomorphic mapping f : C → P1 from a connected
nonsingular projective algebraic curve C of genus g to the projective line P1 with
only simple ramifications except for ∞ ∈ P1. Such a cover is further refined by
specifying its profile, which is a partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μn > 0) of the
degree of the covering d = |μ| = μ1+ · · ·+μn. The length �(μ) = n of this partition
is the number of points in the inverse image f−1(∞) = {p1, . . . , pn} of ∞. Each
part μi gives a local description of the map f , which is given by u �−→ u−μi in
terms of a local coordinate u of C around pi. The number hg,μ of the topological
types of Hurwitz covers of a given genus g and a profile μ, counted with the weight
factor 1/|Aut f |, is the single Hurwitz number we shall deal with in this section.

Another natural way of encoding single Hurwitz numbers is through the func-
tions

(7.1) Hg(μ) =
|Aut(μ)|

(2g − 2 + n+ |μ|)! · hg,μ.

Here,

(7.2) r = r(g, μ)
def
= 2g − 2 + n+ |μ|

is the number of simple ramification points of f by the Riemann-Hurwitz formula,
and Aut(μ) is the group of permutations of equal parts of the partition μ. Note
that multiplication by Aut(μ) is equivalent to counting Hurwitz covers where the
preimages of ∞ on C are marked.

One reason that explains why single Hurwitz numbers are interesting is a re-
markable formula due to Ekedahl, Lando, Shapiro and Vainshtein [21,34,49,66]
that relates Hurwitz numbers and Gromov-Witten invariants. For genus g ≥ 0 and
a partition μ of length �(μ) = n subject to the stability condition 2g − 2 + n > 0,
the ELSV formula states that

(7.3) Hg(μ) =
n∏

i=1

μμi

i

μi!

∫
Mg,n

Λ∨
g (1)∏n

i=1

(
1− μiψi

)
=

g∑
j=0

(−1)j
∑

k1,...,kn≥0

〈τk1
· · · τkn

cj(E)〉
n∏

i=1

μμi+ki

i

μi!
,

whereMg,n is the Deligne-Mumford moduli stack of stable algebraic curves of genus
g with n distinct smooth marked points, Λ∨

g (1) = 1 − c1(E) + · · · + (−1)gcg(E) is

the alternating sum of the Chern classes of the Hodge bundle E on Mg,n, ψi is the
i-th tautological cotangent class, and

(7.4) 〈τk1
· · · τkn

cj(E)〉 =
∫
Mg,n

ψk1
1 · · ·ψkn

� cj(E)

is the linear Hodge integral, which is 0 unless k1 + · · ·+ kn + j = 3g − 3 + n.
The Deligne-Mumford stackMg,n is defined as the moduli space of stable curves

satisfying the stability condition 2− 2g− n < 0. However, single Hurwitz numbers
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are well defined for unstable geometries (g, n) = (0, 1) and (0, 2), and their values
are

(7.5) H0((d)) =
dd−3

(d− 1)!
=

dd−2

d!
and H0((μ1, μ2)) =

1

μ1 + μ2
· μ

μ1

1

μ1!
· μ

μ2

2

μ2!
.

The ELSV formula remains valid for unstable cases by defining∫
M0,1

Λ∨
0 (1)

1− dψ
=

1

d2
,(7.6) ∫

M0,2

Λ∨
0 (1)

(1− μ1ψ1)(1− μ2ψ2)
=

1

μ1 + μ2
.(7.7)

Let us examine the (g, n) = (0, 1) case. We wish to count the number of Hurwitz
covers f : P1−→P1 of degree d with profile μ = (d). If d = 2, then f(u) = u2 is the
only map, since r = 1 and the two ramification points can be placed at u = 0 and
u = ∞. The automorphism of this map is Z/2Z. We now consider the case when
d ≥ 3. First we label all branch points. One is ∞, so let us place all others, the
images of simple ramification points, at the r-th roots of unity. Here r = d− 1. We
label these points with indices [r] = {1, 2, . . . , r}. Connect each r-th root of unity
with the origin by a straight line (see Figure 7.1). Let ∗ denote this star-like shape,
which has one vertex at the center and r half-edges. Then the inverse image f−1(∗)
is a tree-like shape with d vertices and rd half-edges. Here we call each inverse
image of 0 a vertex of f−1(∗). If f is simply ramified at p, then two half-edges
are connected at p and form a real edge that is incident to two vertices. Since
f(p) is one of the r-th root of unity, we give the same label to p. Thus all simple
ramification points are labeled with the index set [r]. Now we remove all half-edges
from f−1(∗) that are not made into an edge, and denote it by T . It is a tree on P1

that has d vertices and r = d − 1 edges. Note that except for the case d = 2, the
edge labeling gives a labeling of vertices. For example, if a vertex x is incident to
edges i1 < i2 < · · · < ik, then x is labeled by i1i2 · · · ik.

Figure 7.1. Counting the genus 0 single Hurwitz numbers with
the total ramification at ∞.
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Conversely, suppose we are given a tree with d labeled vertices by the index set
[d] = {1, 2, . . . , d} and r = d − 1 edges. At each vertex we can give a cyclic order
to incident edges by aligning them in the increasing order of the labels of the other
ends of the edges. Thus the tree becomes a ribbon graph (see Section 3), and hence
it can be placed on P1. Then by choosing the midpoint of each edge as a simple
ramification point and each vertex as a zero of f , we can construct a Hurwitz cover.
Recall that the number of trees with d labeled vertices is dd−2. Therefore,

H0((d)) =
dd−2

d!

is the number of trees with d unlabeled vertices.
Fix an n ≥ 1, and consider a partition μ of length n as an n-dimensional vector

μ = (μ1, . . . , μn) ∈ Zn
+

consisting of positive integers. The Laplace transform of Hg(μ) as a function in μ,

(7.8) Hg,n(w1, . . . , wn) =
∑
μ∈Z

n
+

Hg(μ)e
−(μ1(w1+1)+···+μn(wn+1)),

is the function we wish to compute. Note that the automorphism group Aut(μ) acts
trivially on the function e−(μ1(w1+1)+···+μn(wn+1)), which explains its appearance in
(7.1). The reason for shifting the variables wi �−→ wi + 1 is due to the asymptotic
behavior

μμ+k

μ!
e−μ ∼ 1√

2π
μk− 1

2

as μ approaches to ∞. These asymptotics also suggests that the holomorphic
function Hg,n(w1, . . . , wn) is actually defined on a double-sheeted overing on the
wi-plane, since

√
wi behaves better as a holomorphic coordinate.

In order to recover the spectral curve for single Hurwitz numbers, we must take
the Laplace transform of the unstable geometries. As was done with the count of
dessins, we introduce new parameters z and x, related through the (0, 1) geometry:

z =

∞∑
μ=1

μH0(μ)e
−μxμ.

We note that there are other, equally valid choices for the expansion of z in terms
of x,but the one presented here results in a function whose inverse has a closed form
expression. Following [25,58], the Laplace transform calculations are simplified by

introducing a series of polynomials ξ̂n(t) of degree 2n + 1 in t for n ≥ 0 by the
recursion formula

(7.9) ξ̂n(t) = t2(t− 1)
d

dt
ξ̂n−1(t)

with the initial condition ξ̂0(t) = t − 1. This differential operator appears in [32].

The functions ξ̂−1(t) and ξ̂0(t) were also used by Zvonkine [85] as the two funda-
mental functions that generate his algebra A.

Proposition 7.1 ([13,25]). Let

(7.10) x = e−w, z =
∞∑

μ=1

μμ−1

μ!
e−μ xμ, t− 1 =

∞∑
μ=1

μμ

μ!
e−μ xμ.
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Then the inverse function of z = z(x) is given by

(7.11) x = ze1−z ,

and the variables z and t are related by

(7.12) z =
t− 1

t
.

Moreover, we have

(7.13) ξ̂n(t) =
∞∑
μ=1

μμ+n

μ!
e−μ(w+1) =

∞∑
μ=1

μμ+n

μ!
e−μ xμ

for n ≥ 0.

Proof. The infinite series (7.13) has the radius of convergence 1, and for
|x| < 1, we can apply the Lagrange inversion formula to obtain (7.11). Since the
application of

− d

dw
= x

d

dx
= t2(t− 1)

d

dt

n-times to
∑∞

μ=1
μμ

μ! e−μ(w+1) produces
∑∞

μ=1
μμ+n

μ! e−μ(w+1), we obtain (7.9). If

we extend (7.13) formally to n = −1, then we have z = ξ̂−1(t). To obtain the
expression of z as a function of t, we need to solve the differential equation

t2(t− 1)
d

dt
· z = t− 1.

Its solution is z = c− 1
t . Since x = 0 ⇐⇒ z = 0 and x = 0 =⇒ t = 1, we conclude

that the constant of integration is c = 1. Thus z = 1− 1/t. �

Remark 7.2. The relation between our z as a function in x and the classical
Lambert W-function (see for example, [13]) is

z(x) = −W (−x/e).

Because of the ELSV formula (7.1), the Laplace transform of Hg(μ) becomes
a polynomial in ti, . . . , tn for (g, n) in the stable range. The result is

(7.14) FH
g,n(t1, . . . , tn) = Hg,n(w(t1), . . . , w(tn))

=
∑
μ∈Z

n
+

Hg(μ)e
−(μ1(w1+1)+···+μn(wn+1))

=
∑
μ∈Z

n
+

∑
k1+···+kn≤3g−3+n

〈τk1
· · · τkn

Λ∨
g (1)〉

n∏
i=1

μμi+ki

i

μi!
e−(μ1(w1+1)+···+μn(wn+1))

=
∑

k1+···+kn≤3g−3+n

〈τk1
· · · τkn

Λ∨
g (1)〉

n∏
i=1

ξ̂ki
(ti).

The Laplace transform (7.14) is no longer a polynomial for the unstable geometries
(g, n) = (0, 1) and (0, 2). We use (7.5) to calculate FH

0,1 and FH
0,2.

Theorem 7.3. The Laplace transform of the unstable cases (g, n) = (0, 1) and
(0, 2) are given by

(7.15) FH
0,1(t) =

1

2

(
1− 1

t2

)
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and

(7.16) FH
0,2(t1, t2) = log

(
z1 − z2
x1 − x2

)
− (z1 + z2) + 1,

where ti, xi, zi are related by ( 7.11) and ( 7.12).

Proof. The (0, 1) case is a straightforward computation.

FH
0,1(t) =

∞∑
k=d

H0((d)) e
−dxd =

∞∑
d=1

dd−2

d!
e−dxd = ξ̂−2(t).

This is a solution to the differential equation

t2(t− 1)
d

dt
ξ̂−2(t) = ξ̂−1(t) = z =

t− 1

t
.

Therefore, ξ̂−2(t) = c− 1
2

1
t2 for a constant of integration c. Here again we note

t = 1 =⇒ z = 0 =⇒ x = 0 =⇒ ξ̂−2(t) = 0.

This determines that c = 1
2 . Thus we have established (7.15).

Since

FH
0,2(t1, t2) =

∑
μ1,μ2≥1

1

μ1 + μ2
· μ

μ1

1

μ1!
e−μ1 · μ

μ2

2

μ2!
e−μ2 · xμ1

1 xμ2

2

and since z = ξ̂−1(t), (7.16) is equivalent to
(7.17)∑

μ1,μ2≥0
(μ1,μ2) �=(0,0)

1

μ1 + μ2
· μ

μ1

1

μ1!
e−μ1 · μ

μ2

2

μ2!
e−μ2 ·xμ1

1 xμ2

2 =log

(
e

∞∑
k=1

kk−1

k!
e−k · x

k
1 − xk

2

x1 − x2

)
,

where |x1| < 1, |x2| < 1, and 0 < |x1 − x2| < 1 so that the formula is an equation
of holomorphic functions in x1 and x2. Define

φ(x1, x2)

def
=

∑
μ1,μ2≥0

(μ1,μ2) �=(0,0)

1

μ1 + μ2
· μ

μ1
1

μ1!
e−μ1 · μ

μ2
2

μ2!
e−μ2 · xμ1

1 xμ2
2 − log

( ∞∑
k=1

kk−1

k!
e1−k · x

k
1 − xk

2

x1 − x2

)
.

Then

φ(x, 0) =
∑
μ1≥1

μμ1−1
1

μ1!
e−μ1xμ1 − log

( ∞∑
k=1

kk−1

k!
e−k · xk−1

)
− 1

= ξ̂−1(t)− log

(
ξ̂−1(t)

x

)
− 1 = 1− 1

t
− log

(
1− 1

t

)
+ log x− 1

= −1

t
− log

(
1− 1

t

)
− w = 0

because

x = e−w = ze1−z =

(
1− 1

t

)
e

1
t .

Here t is restricted on the domain Re(t) > 1. Since
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x1
∂

∂x1
log

(
e

∞∑
k=1

kk−1

k!
e−k · x

k
1 − xk

2

x1 − x2

)

= t21(t1 − 1)
∂

∂t1
log

(
ξ̂−1(t1)− ξ̂−1(t2)

)
− x1

∂

∂x1
log(x1 − x2)

= t21(t1 − 1)
∂

∂t1
log

(
− 1

t1
+

1

t2

)
− x1

x1 − x2

=
t1t2(t1 − 1)

t1 − t2
− x1

x1 − x2
,

we have(
x1

∂

∂x1
+ x2

∂

∂x2

)
log

(
e

∞∑
k=1

kk−1

k!
e−k · x

k
1 − xk

2

x1 − x2

)

=
t1t2(t1 − 1)− t1t2(t2 − 1)

t1 − t2
− x1 − x2

x1 − x2

= t1t2 − 1 = ξ̂0(t1)ξ̂0(t2) + ξ̂0(t1) + ξ̂0(t2).

On the other hand, we also have(
x1

∂

∂x1
+ x2

∂

∂x2

) ∑
μ1,μ2≥0

(μ1,μ2) �=(0,0)

1

μ1 + μ2
· μ

μ1

1

μ1!
e−μ1 · μ

μ2

2

μ2!
e−μ2 · xμ1

1 xμ2

2

=
∑

μ1,μ2≥0
(μ1,μ2) �=(0,0)

μ1 + μ2

μ1 + μ2
· μ

μ1

1

μ1!
e−μ1 · μ

μ2

2

μ2!
e−μ2 · xμ1

1 xμ2

2

= ξ̂0(t1)ξ̂0(t2) + ξ̂0(t1) + ξ̂0(t2).

Therefore,

(7.18)

(
x1

∂

∂x1
+ x2

∂

∂x2

)
φ(x1, x2) = 0.

Note that φ(x1, x2) is a holomorphic function in x1 and x2. Therefore, it has a
series expansion in homogeneous polynomials around (0, 0). Since a homogeneous
polynomial in x1 and x2 of degree n is an eigenvector of the differential operator
x1

∂
∂x1

+ x2
∂

∂x2
belonging to the eigenvalue n, the only holomorphic solution to the

Euler differential equation (7.18) is a constant. But since φ(x1, 0) = 0, we conclude
that φ(x1, x2) = 0. This completes the proof of (7.17), and hence Theorem 7.3. �

Definition 7.4. We define the symmetric differential forms for all g ≥ 0 and
n > 0 by

(7.19) WH
g,n(t1, . . . , tn) = d1 · · · dnFH

g,n(t1, . . . , tn),

and call them the Hurwitz differential forms.

The unstable cases are given by

(7.20) WH
0,1(t1) = d1F

H
0,1(t1) =

1

t31
dt1 =

z

x
dx,

and

(7.21) WH
0,2(t1, t2) = d1d2F

H
0,2(t1, t2) = d1d2 [log (z1 − z2)− log(x1 − x2)]
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= d1d2

[
log

(
1

t2
− 1

t1

)
− log(x1 − x2)

]
= d1d2 [log (t1 − t2)− log(x1 − x2)]

=
dt1 · dt2
(t1 − t2)2

− dx1 · dx2

(x1 − x2)2
.

We note that all quantities are expressible in terms of z, or equivalently, in t. Now
Definition 2.1 tells us that the spectral curve Σ of the single Hurwitz number is

(7.22)

{
x = ze1−z

y = z
x = ez−1.

The Lambert curve Σ defined by x = ze1−z, which is obtained by the Laplace
transform of the number of trees, is an analytic curve and its x-projection has a
simple ramification point at z = 1, since

dx = (1− z)e1−z dz.

The t-coordinate brings this ramification point to t = ∞. Let z̄ (resp. t̄) denote the
unique local Galois conjugate of z (reps. t). We also use

(7.23) t̄ = s(t),

which is defined by the functional equation

(7.24)

(
1− 1

t

)
e

1
t =

(
1− 1

s(t)

)
e

1
s(t) .

Although the Galois conjugate is only locally defined near the branched point t =
∞, we consider s(t) as a global holomorphic function via analytic continuation. For
Re(t) > 1, (7.24) implies

w(t) = − log x = −
(
1

t
−

∞∑
n=1

1

n

1

tn

)
=

∞∑
n=2

1

tn
.

When considered as a functional equation, (7.24) has exactly two solutions: t and

(7.25) s(t) = −t+
2

3
+

4

135
t−2 +

8

405
t−3 +

8

567
t−4 + · · · .

This is the deck-transformation of the projection π : Σ → C near t = ∞ and
satisfies the involution equation s

(
s(t)

)
= t. It is analytic on C \ [0, 1] and has

logarithmic singularities at 0 and 1.
Let us calculate the recursion kernel. Since

dx

x
=

1− z

z
dz =

dt

t2(t− 1)
=

s′(t)dt

s(t)2(s(t)− 1)
,

we have

(7.26)

KH(t, t1) =
1

2

∫ s(t)

t
WH

0,2(·, t1)
W0,1(s(t))−W0,1(t)

=
1

2

(
1

t− t1
− 1

s(t)− t1

)
t2(t− 1)
1
t −

1
s(t)

· 1

dt
· dt1

=
1

2

(
1

t− t1
− 1

s(t)− t1

)
ts(t)

s(t)− t
· t

2(t− 1)

dt
· dt1.
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Theorem 7.5 ([25,58]). The Hurwitz differential forms ( 7.19) for 2g−2+n >
0 satisfy the Eynard-Orantin recursion:

(7.27) WH
g,n(t1, . . . , tn) =

1

2πi

∮
γ∞

KH(t, t1)

[
WH

g−1,n+1(t, s(t), t2, . . . , tn)

+

No (0, 1)-terms∑
g1+g2=g

I�J={2,...,n}

WH
g1,|I|+1(t, tI)W

H
g2,|J|+1(s(t), tJ)

]
,

where γ∞ is a negatively oriented circle around ∞ whose radius is larger than any
of |tj |’s and |s(tj)|’s.

Remark 7.6. The recursion formula (7.27) was first conjectured by Bouchard
and Mariño in [8]. Its proofs appear in [5,25,58]. The method of [5] is to use a
matrix integral expression of the single Hurwitz numbers. The idea of [25,58] is
that the Laplace transform of the cut-and-join equation of [30,78] is the Eynard-
Orantin recursion. The cut-and-join equation takes the following form:

(7.28) r(g, μ)Hg(μ) =
∑
i<j

(μi + μj)Hg

(
μ(̂i, ĵ), μi + μj

)

+
1

2

n∑
i=1

∑
α+β=μi

αβ

⎛⎜⎜⎝Hg−1

(
μ(̂i), α, β

)
+

∑
g1+g2=g

ν1�ν2=μ(̂i)

Hg1(ν1, α)Hg2(ν2, β)

⎞⎟⎟⎠ .

Here μ is a partition of length n, and μ(̂i) and μ(̂i, ĵ) indicate the partition obtained
by deleting parts of μ.

Remark 7.7. As we have seen above, Hurwitz numbers for the unstable ge-
ometries determine the spectral curve and hence the shape of the recursion formula
(7.27). Since the recursion gives the Hurwitz numbers for all (g, n), we have thus
established that unstable (g, n) = (0, 1) and (0, 2) Hurwitz numbers determine all
other single Hurwitz numbers.

It is important to check if the formulas (2.4) and (2.6) agree with the geometry.
From definition (7.14) we calculate

FH
0,3(t1, t2, t3) = 〈τ0τ0τ0〉0,3ξ̂0(t1)ξ̂0(t2)ξ̂0(t3) = (t1 − 1)(t2 − 1)(t3 − 1),

which yields

(7.29) WH
0,3(t1, t2, t3) = dt1dt2dt3.

Since

dx(z) · dy(z) = (1− z)dz · dz =
dt · dt
t5

from (7.22) and (7.11), the general formula (2.6) yields

WH
0,3(t1, t2, t3) = − 1

2πi

∮
γ∞

WH
0,2(t, t1)W

H
0,2(t, t2)W

H
0,2(t, t3)

dx(t) · dy(t)

= −
[

1

2πi

∮
γ∞

t5

(t− t1)2(t− t2)2(t− t3)2
dt

]
dt1dt2dt3 = dt1dt2dt3,
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in agreement with geometry. Here we calculate the residue at t = ∞. Although

WH
0,2(t, ti) =

dt · dti
(t− ti)2

− dx · dxi

(x− xi)2
,

the second term does not contribute to the integral. This is because as t→∞, we
have x→1, and dx · dxi/(x− xi)

2 has no pole at x = 1.
Similarly,

FH
1,1(t1) = 〈τ1〉1,1ξ̂1(t1)− 〈τ0λ1〉1,1ξ̂0(t1) =

1

24
(t21 − 1)(t1 − 1),

and thus we have

(7.30) WH
1,1(t1) =

1

24
(t1 − 1)(3t1 + 1)dt1.

On the other hand, the general formula (2.4) gives

WH
1,1(t1) =

1

2πi

∮
γ∞

KH(t, t1)

[
WH

0,2(u, v) +
dx(u) · dx(v)
(x(u)− x(v))2

]∣∣∣∣ u=t
v=s(t)

=
1

2πi

∮
γ∞

KH(t, t1)
dt · s′(t)dt
(t− s(t))2

=

[
1

2πi

∮
γ∞

1

2

(
1

t− t1
− 1

s(t)− t1

)
ts(t)

s(t)− t
t2(t− 1)

s′(t)dt

(t− s(t))2

]
dt1

=
t1s(t1)

(t1 − s(t1))3
s(t1)

2(s(t1)− 1) dt1

−
[

1

2πi

∮
γ[0,1]

1

2

(
1

t− t1
− 1

s(t)− t1

)
ts(t)

s(t)− t
t2(t− 1)

s′(t)dt

(t− s(t))2

]
dt1,

where γ[0,1] is a contour circling around the slit [0, 1] in the t-plane in the positive
direction.

−2 −1 1 2

−2

−1

1

2

Figure 7.2. The contours of integration. The outer loop γ∞ is
the circle of a large radius oriented clock wise, and γ[0,1] is the thin
loop surrounding the closed interval [0, 1] in the positive direction.

Note that the integrand of the last integral is a holomorphic function in t on
γ[0,1], hence it has a finite value. It is also clear that as t1→∞, this integral tends
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to 0, because γ[0,1] is a compact space. Therefore, we conclude that

WH
1,1(t1) =

t1s(t1)

(t1 − s(t1))3
s(t1)

2(s(t1)− 1) dt1 +O(1/t1)

=

(
1

8
t21 −

1

12
t1 −

1

24

)
dt1 +O(1/t1),

since s(t) = −t+ 2/3 +O(1/t2). It agrees with (7.30) because of the following

Lemma 7.8. A solution to the topological recursion ( 7.27) is a polynomial in
t1.

Proof. The t1-dependence of WH
g,n(t1, . . . , tn) only comes from the factor(

1

t− t1
− 1

s(t)− t1

)
=

1

t
++

1

3

1

t2
+

(
t21 −

2

3
t1 +

2

9

)
1

t3
+

(
t21 −

2

3
t1 +

22

135

)
1

t4
+ · · ·

in the recursion kernel (7.26). Since each coefficient of the t-expansion of KH(t, t1)
is a polynomial in t1, the lemma follows. �

8. The stationary Gromov-Witten invariants of P1

In this section we study the generating functions of stationary Gromov-Witten
invariants of P1. The conjectural relation between these invariants and the Eynard-
Orantin topological recursion was first formulated in [63]. We identify the spectral
curve and the recursion kernel using the unstable geometries.

So our main object of this section is the Laplace transform of the stationary
Gromov-Witten invariants

(8.1) F P
1

g,n(x1, . . . , xn) =
∞∑

μ1,...,μn=0

〈τμ1
(ω) · · · τμn

(ω)〉g,n
n∏

i=1

μi!
n∏

i=1

1

xμi+1
,

where ω ∈ A0(P
1) is the point class generator, and

(8.2) 〈τμ1
(ω) · · · τμn

(ω)〉g,n =

∫
[Mg,n(P1,d)]virt

ψμ1

1 ev∗1(ω) · · ·ψ
μn

1 ev∗n(ω)

is a stationary Gromov-Witten invariant of P1. More precisely, Mg,n(P
1, d) is the

moduli stack of stable morphisms from a connected n-pointed curve (C, p1, . . . , pn)
into P1 of degree d such that f(pi), i = 1, . . . , n, are distinct, and evi is the natural
evaluation morphism

evi : Mg,n(P
1, d) � [f, (C, p1, . . . , pn)] �−→ f(pi) ∈ P1.

The Gromov-Witten invariant (8.2) vanishes unless

(8.3) 2g − 2 + 2d = μ1 + · · ·+ μn.

The sum in (8.1) is the Laplace transform if we identity

(8.4) x = ew.
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The extra numerical factor
∏n

i=1 μi! is included in (8.1) because of the polynomial
growth order of

(8.5) 〈τμ1
(ω) · · · τμn

(ω)〉g,n
n∏

i=1

μi!

for large μ that is established in [67]. Indeed (8.5) is essentially a special type of
Hurwitz number that counts the number of certain coverings of P1.

To determine the spectral curve and the annulus amplitude, we need to consider
unstable geometries (g, n) = (0, 1) and (0, 2). From [67] we learn

(8.6) 〈τμ1
(ω)〉0,1 = 〈τ2d−2(ω)〉0,1 =

(
1

d!

)2

.

To compute a closed formula for

F P
1

0,1(x) =

∞∑
μ1=0

〈τμ1
(ω)〉0,1 μ1!

1

xμ1+1
=

∞∑
d=1

(2d− 2)!

d!d!

1

x2d−1
,

we notice that the generating function of Catalan numbers (3.5)

z(x) =
∞∑

m=0

Cm
1

x2m+1

provides again an effective tool. Thus we have

(8.7)

(
x
d

dx
− 1

)
F P

1

0,1(x) = −2
∞∑
d=1

(2d− 2)!

(d− 1)!d!

1

x2d−1

= −2
∞∑

m=0

(2m)!

(m+ 1)!m!

1

x2m+1
= −2z(x).

The advantage of using the Catalan series z(x) is that we know its inverse function
(3.8). Using (4.6), we see that (8.7) is equivalent to

(8.8)

(
z3 + z

z2 − 1

d

dz
− 1

)
F P

1

0,1(z) = −2z.

The solution of (8.8) is given by

F P
1

0,1(z) = −2

z
−
(
z +

1

z

)
log(1 + z2) + c

(
z +

1

z

)
,

with a constant of integration c. Since

z→0 =⇒ x→∞ =⇒ F P
1

0,1→0,

we conclude that c = 2. We thus obtain

(8.9) F P
1

0,1(z) = 2z −
(
z +

1

z

)
log(1 + z2),

and therefore,

(8.10) W P
1

0,1(z) = dF P
1

0,1(z) = − log(1 + z2) d

(
z +

1

z

)
.
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Theorem 8.1. The spectral curve for the stationary Gromov-Witten invariants
of P1 is given by

(8.11)

{
x = z + 1

z

y = − log(1 + z2).

Remark 8.2. Since dx = 0 has two zeros at z = ±1, we also use as our
preferred coordinate

(8.12) t =
z + 1

z − 1
⇐⇒ z =

t+ 1

t− 1
.

We obtain a well defined branch of the log function appearing in the spectral curve
by removing {z = is | 1 ≤ s < ∞}, which corresponds in the t-plane with the right

semicircle of radius 1 connecting i to −i (see Figure 8.1). The expression of W P
1

0,1

in terms of the preferred coordinate is

(8.13) W P
1

0,1(t) =
8t

(t2 − 1)2
log

(
2(t2 + 1)

(t− 1)2

)
dt.

−1.5 −1.0 −0.5 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.5

1.0

1.5

Figure 8.1. The spectral curve for the stationary Gromov-Witten
invariants of P1 is the complex t-plane minus the semicircle.

Remark 8.3. The function x = z + 1
z is expected here, since it is the Landau-

Ginzburg model that is homologically mirror dual to P1 [2].

Remark 8.4. The Galois conjugate of x = z + 1
z is globally defined, and is

given by

(8.14) t �−→ t̄ = −t.

Remark 8.5. Since

(8.15)
1

1− z(x)
=

∞∑
k=0

z(x)k = 1 +

∞∑
n=0

(
n

�n
2 �

)
1

xn+1
,

we can express t in the branch near t = −1 as a function in x. The result is

(8.16) t+ 1 =
z(x) + 1

z(x)− 1
+ 1 = 2− 2

1− z(x)
= −

∞∑
n=0

2

(
n

�n
2 �

)
1

xn+1
,

which is also absolutely convergent for |x| > 2.
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Remark 8.6. We are using the normalized Gromov-Witten invariants (8.5) to
compute the Laplace transform (8.1). If we did not include the μ! factor in our
computation of the spectral curve, then we would have encountered the modified
Bessel function

I0(2x) =

∞∑
m=1

1

(m!)2
x2m,

instead of z(x), in computing (8.9). We note that I0(2x) appears in [19] in the
exact same context of computing the Gromov-Witten invariants of P1. We prefer
the Catalan number series z(x) over the modified Bessel function mainly because
the inverse function of z(x) takes a simple form x = z + 1

z .

Motivated by the technique developed in [8,25,58] for single Hurwitz numbers,
let us define

(8.17) ξn(t) =
∞∑
k=0

(
2k

k

)
kn

1

x2k+1
, n ≥ 0,

and

(8.18) ηn(t) =

∞∑
k=0

(
2k + 1

k

)
kn

1

x2k+2
, n ≥ 0.

We then have

(8.19) ξn+1(t) = −1

2

(
x
d

dx
+ 1

)
ξn(t) =

(
t4 − 1

8t

d

dt
− 1

2

)
ξn(t)

and

(8.20) ηn+1(t) = −1

2

(
x
d

dx
+ 2

)
ηn(t) =

(
t4 − 1

8t

d

dt
− 1

)
ηn(t).

The initial values are computed as follows:

(8.21) ξ0(t) =
1

2

(
1− x

d

dx

) ∞∑
m=0

1

m+ 1

(
2m

m

)
1

x2m+1

=
1

2

(
1− z(z2 + 1)

z2 − 1

d

dz

)
z = − z

z2 − 1
= − t2 − 1

4t
,

and similarly

(8.22) η0(t) = − (t+ 1)2

4t
.

We note that ξn(t) and ηn(t) are Laurent polynomials of degree 2n + 1 for every
n ≥ 0. Since they are defined as functions in x, we have the reciprocity property

(8.23)
ξn(1/t) = −ξn(t)

ηn(1/t) = ηn(t).

This follows from

t �−→ 1

t
=⇒ x �−→ −x.
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The annulus amplitude requires (g, n) = (0, 2) Gromov-Witten invariants.
They can be calculated from the (g, n) = (0, 1) invariants using the Topological
Recursion Relation [29]. The results are
(8.24)

〈τμ1
(ω)τμ2

(ω)〉0,2 =

{
1

(m1!)2(m2!)2
1

(m1+m2+1) μ1 = 2m1, μ2 = 2m2

1
(m1!)2(m2!)2

1
(m1+m2+2) μ1 = 2m1 + 1, μ2 = 2m2 + 1.

Theorem 8.7. The annulus amplitude is given by

(8.25) F P
1

0,2(z1, z2) = − log(1− z1z2).

Hence we have

(8.26) W P
1

0,2(t1, t2) =
dt1 · dt2
(t1 − t2)2

− dx1 · dx2

(x1 − x2)2
=

dt1 · dt2
(t1 + t2)2

.

Proof. From (8.24) we calculate

F P
1

0,2(z1, z2) =

∞∑
μ1,μ2=0

〈τμ1
(ω)τμ2

(ω)〉0,2 μ1!μ2!
1

xμ1+1
1

1

xμ2+1
2

=

∞∑
m1,m2=0

1

(m1 +m2 + 1)

(
2m1

m1

)(
2m2

m2

)
1

x2m1+1
1

1

x2m2+1
2

+
∞∑

m1,m2=0

1

(m1 +m2 + 2)
(2m1 + 1)(2m2 + 1)

(
2m1

m1

)(
2m2

m2

)
1

x2m1+2
1

1

x2m2+2
2

.

Thus we have(
x1

d

dx1
+ x2

d

dx2

)
F P

1

0,2(z1, z2)

= −2
∞∑

m1,m2=0

(
2m1

m1

)(
2m2

m2

)
1

x2m1+1
1

1

x2m2+1
2

− 2
∞∑

m1,m2=0

(2m1 + 1)(2m2 + 1)

(
2m1

m1

)(
2m2

m2

)
1

x2m1+2
1

1

x2m2+2
2

= −2ξ0(x1)ξ0(x2)− 2z′(x1)z
′(x2)

= −2
z1

z21 − 1

z2
z22 − 1

− 2
z21

z21 − 1

z22
z22 − 1

= −2
z1z2(1 + z1z2)

(z21 − 1)(z22 − 1)
,

where ξ0(x) is calculated in (8.21), and from (4.5) we know

z′(x) =
dz

dx
=

z2

z2 − 1
.

On the other hand,(
x1

d

dx1
+ x2

d

dx2

)
(− log(1− z1z2))

=

(
z1(z

2
1 + 1)

z21 − 1

d

dz1
+

z2(z
2
2 + 1)

z22 − 1

d

dz2

)
(− log(1− z1z2))

=

(
(z21 + 1)

z21 − 1
+

(z22 + 1)

z22 − 1

)
z1z2

1− z1z2
= −2

z1z2(1 + z1z2)

(z21 − 1)(z22 − 1)
.
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Therefore,(
x1

d

dx1
+ x2

d

dx2

)(
F P

1

0,2(z1, z2) + log(1− z1z2)
)

=

(
x1

d

dx1
+ x2

d

dx2

)( ∞∑
μ1,μ2=0

〈τμ1
(ω)τμ2

(ω)〉0,2 μ1!μ2!
1

xμ1+1
1

1

xμ2+1
2

−
∞∑

n=1

1

n

( ∞∑
m=0

Cm
1

x2m+1
1

∞∑
m=0

Cm
1

x2m+1
2

)n)
= 0.

Since the kernel of the Euler differential operator consists of constant functions, and
since actual computation shows that the first few expansion terms of the Laurent
series

∞∑
μ1,μ2=0

〈τμ1
(ω)τμ2

(ω)〉0,2 μ1!μ2!
1

xμ1+1
1

1

xμ2+1
2

−
∞∑

n=1

1

n

( ∞∑
m=0

Cm
1

x2m+1
1

∞∑
m=0

Cm
1

x2m+1
2

)n

are 0, we complete the proof of (8.25). �

Using ξn(t) and ηn(t) of (8.17) and (8.18) and the classical topological recursion
relation [29], we can systematically calculate the Laplace transform of stationary
Gromov-Witten invariants. First let us consider (g, n) = (0, 3). Since the sum of
the descendant indices of

〈τμ1
(ω)τμ2

(ω)τμ3
(ω)〉0,3

is even, we have

(8.27)

〈τ2m1
(ω)τ2m2

(ω)τ2m3
(ω)〉0,3 =

1

m2
1m

2
2m

2
3

,

〈τ2m1
(ω)τ2m2+1(ω)τ2m3+1(ω)〉0,3 =

(m2 + 1)(m3 + 1)

m2
1(m2 + 1)2(m3 + 1)2

.

The Laplace transform is therefore

(8.28)

F P
1

0,3(t1, t2, t3) =
∑

μ1μ2μ3≥0

〈τμ1
(ω)τμ2

(ω)τμ3
(ω)〉0,3μ1!μ2!μ3!

1

xμ1+1
1

· 1

xμ2+1
2

· 1

xμ3+1
3

=
∑

m1,m2,m3≥0

(
2m1

m1

)(
2m2

m2

)(
2m3

m3

)
1

x2m1+1
1

· 1

x2m2+1
2

· 1

x2m3+1
3

+
∑

m1,m2,m3≥0

(
2m1

m1

)(
2m2 + 1

m2

)(
2m3 + 1

m3

)
1

x2m1+1
1

· 1

x2m2+2
2

· 1

x2m3+2
3

+
∑

m1,m2,m3≥0

(
2m1 + 1

m1

)(
2m2

m2

)(
2m3 + 1

m3

)
1

x2m1+2
1

· 1

x2m2+1
2

· 1

x2m3+2
3

+
∑

m1,m2,m3≥0

(
2m1 + 1

m1

)(
2m2 + 1

m2

)(
2m3

m3

)
1

x2m1+2
1

· 1

x2m2+2
2

· 1

x2m3+1
3
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= ξ0(t1)ξ0(t2)ξ0(t3) + ξ0(t1)η0(t2)η0(t3) + η0(t1)ξ0(t2)η0(t3) + η0(t1)η0(t2)ξ0(t3)

= − 1

16
(t1 + 1)(t2 + 1)(t3 + 1)

(
1− 1

t1t2t3

)
,

which is indeed a Laurent polynomial. Since it is an odd degree polynomial in
ξn(t)’s, we have the reciprocity

F P
1

0,3(1/t1, 1/t2, 1/t3) = −F P
1

0,3(t1, t2, t3).

The n = 1 stationary invariants are concretely calculated in [67]. We have

(8.29)

〈τ2d〉1,1 =
1

24

(
1

d!

)2

(2d− 1)

〈τ2d+2〉2,1 =

(
1

d!

)2(
1

5! 42
(2d− 1) +

1

242

(
2d− 1

2

))
〈τ2g−2+2d〉g,1 =

(
1

d!

)2 g∑
�=1

(
2d− 1

�

) ∑
ki>0

k1+···+k�=g

�∏
i=1

1

(2ki + 1)! 4ki
.

We thus obtain

(8.30) F P
1

1,1(t1) =
1

24

∞∑
d=0

(
2d

d

)
(2d− 1)

1

x2d+1
1

=
1

24
(2ξ1(t1)− ξ0(t1))

= − 1

384

(
t31 − 7t1 +

7

t1
− 1

t31

)
.

To calculate the g = 2 case we need to do the following.

(8.31) F P
1

2,1(t1) =

∞∑
d=0

(2d+ 2)!

d! d!

(
1

5! 42
(2d− 1) +

1

242

(
2d− 1

2

))
1

x2d+3
1

=

(
d

dx1

)2 ∞∑
d=0

(
2d

d

)(
1

5! 42
(2d− 1) +

1

242
(2d2 − 3d+ 1)

)
1

x2d+1
1

=

(
− (t2 − 1)2

8t

d

dt

)2 [
1

5! 42
(2ξ1(t1)− ξ0(t1)) +

1

242
(2ξ2(t1)− 3ξ1(t1) + ξ0(t1))

]
= − 1

219 · 32 · 5
(t2 − 1)3

t9
(
525t121 −1470t101 +1107t81+527t61+1107t41−1470t21+525

)
.

Proposition 8.8. F P
1

g,1(t1) is a Laurent polynomial of degree 6g − 3 with the
reciprocity

F P
1

g,1(1/t1) = −F P
1

g,1(t1).

Proof. First we calculate the binomial coefficient(
2d− 1

�

)
=

1

�!
(2d−1)(2d−2) · · · (2d−�)=

1

�!

(
2�d� − �(�+ 1)

2
d�−1 + · · ·+ (−1)��!

)
as a polynomial in d, and then replace each di with ξi(t1). The result is a linear com-
bination of ξ0(t1), . . . , ξ�(t1). Let Ξ�(t1) denote the resulting Laurent polynomial
of degree 2�+ 1. Then we have an expression
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(8.32)

F P
1

g,1(t1)=

(
d

dx1

)2g−2 ∞∑
d=0

(
2d

d

) g∑
�=1

(
2d− 1

�

) ∑
ki>0

k1+···+k�=g

�∏
i=1

1

(2ki + 1)! 4ki

1

x2d+1
1

=

(
− (t2 − 1)2

8t

d

dt

)2g−2

⎡⎢⎢⎣ g∑
�=1

Ξ�(t1)
∑
ki>0

k1+···+k�=g

�∏
i=1

1

(2ki + 1)! 4ki

⎤⎥⎥⎦ ,

which is a Laurent polynomial of degree 2(2g−2)+2g+1 = 6g−3. The reciprocity
property follows from (8.23) and the x1 expression of (8.32), where x1 changes
to −x1. In particular, the even order differentiation in x1 is not affected by this
change. �

The Eynard-Orantin recursion is for the differential forms W P
1

g,n(t1, . . . , tn). In
order to find the recursion kernel we use (8.13) and (8.26) to compute

(8.33) KP
1

(t, t1) =
1

2

∫ −t

t
W P

1

0,2(·, t1)
W P1

0,1(−t)−W P1

0,1(t)

=
1

2

(
1

t+ t1
+

1

t− t1

)
1

log
(

2(t2+1)
(t+1)2

)
− log

(
2(t+1)
(t−1)2

) (t2 − 1)2

−8tdt
· dt1

=
1

16

(
1

t+ t1
+

1

t− t1

)
1

log
(

(t−1)2

(t+1)2

) (t2 − 1)2

tdt
· dt1.

We note the reciprocity property of the kernel

(8.34) KP
1

(1/t, 1/t1) = −KP
1

(t, t1).

The topological recursion (2.3) becomes

(8.35) W P
1

g,n(t1, t2, . . . , tn) =
1

2πi

∮
γ

KP
1

(t, t1)

[
W P

1

g−1,n+1(t,−t, t2, . . . , tn)

+

No (0, 1) terns∑
g1+g2=g

I�J={2,3,...,n}

W P
1

g1,|I|+1(t, tI)W
P
1

g2,|J|+1(−t, tJ )

]
,

where the residue calculation is taken along the integration contour γ (see Fig-
ure 4.1) consisting of two concentric circles of radius ε and 1/ε for a small ε centered
around t = 0, with the inner circle positively oriented and the outer circle negatively
oriented. Since there is a log singularity in the complex t-plane, we cannot use the
residue calculus method to evaluate the integral at t = t1 and t = −t1. Thus the
residue calculation of (8.35) is performed around the neighborhood of t = 0 and
t = ∞.

So let us provide two expansion formulas for the kernel KP
1

(t, t1), assuming
that t1 ∈ C∗ is away from the log singularity of Figure 8.1. The transcendental

factor of KP
1

(t, t1) has an expansion

(8.36)
4

t log
(

(t−1)2

(t+1)2

) = − 1

t2
+

1

3
+

4

45
t2 +

44

945
t4 +

428

14175
t6 +

10196

467775
t8 + · · ·
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around t = 0. The denominator of the coefficient of t2k−2 is given by

2k+1∏
q=3, prime

q� 2k
q−1� = 3�k� · 5� k

2 � · 7� k
3 � · · · ,

which is the same as μ(Lk) of [39, Lemma 1.5.2]. The expansion of 1
t+t1

+ 1
t−t1

at
t = 0 is given by

1

t+ t1
+

1

t− t1
= −2t

1

t21

1

1− t2

t21

= −2

∞∑
n=0

t2n+1

t2n+2
1

.

From the expression (8.33) and the above consideration, we know that around t = 0,

KP
1

(t, t1) starts from t−1, and that the coefficient of t2n−1 is a Laurent polynomial

in t21 starting from 1
32 t

−(2n+2)
1 up to t−2

1 with rational coefficients. More concretely,
we have

(8.37)

KP
1

(t, t1) =

[
1

t

(
1

32

1

t21

)
+ t

(
1

32

1

t41
− 7

96

1

t21

)
+ t3

(
1

32

1

t61
− 7

96

1

t41
+

71

1440

1

t21

)
+ t5

(
1

32

1

t81
− 7

96

1

t61
+

71

1440

1

t41
− 191

30240

1

t21

)
+ t7

(
1

32

1

t101
− 7

96

1

t81
+

71

1440

1

t61
− 191

30240

1

t41
− 23

28350

1

t21

)
+t9

(
1

32

1

t121
− 7

96

1

t101
+

71

1440

1

t81
− 191

30240

1

t61
− 23

28350

1

t41
− 233

935550

1

t21

)
+· · ·

]
1

dt
·dt1.

Similarly, around t = ∞ we have

(8.38) KP
1

(t, t1) =

[
− t3

1

32
+ t

(
− 1

32
t21 +

7

96

)
+

1

t

(
− 1

32
t41 +

7

96
t21 −

71

1440

)
+

1

t3

(
− 1

32
t61 +

7

96
t41 −

71

1440
t21 +

191

30240

)
+

1

t5

(
− 1

32
t81 +

7

96
t61 −

71

1440
t41 +

191

30240
t21 +

23

28350

)
+

1

t7

(
− 1

32
t101 +

7

96
t81 −

71

1440
t61 +

191

30240
t41 +

23

28350
t21 +

233

935550

)
+ · · ·

]
1

dt
· dt1.

Theorem 8.9. The Eynard-Orantin differential form W P
1

g,n(t1, . . . , tn) is a Lau-

rent polynomial in t21, t
2
2, . . . , t

2
n of degree 2(3g−3+n) in the stable range 2g−2+n >

0. It satisfies the reciprocity property

(8.39) W P
1

g,n(1/t1, . . . , 1/tn) = (−1)nW P
1

g,n(t1, . . . , tn)

as a meromorphic symmetric n-form. The highest degree terms form a homogeneous
polynomial of degree 2(3g − 3 + n), which is given by
(8.40)

Ŵ P
1

g,n(t1, . . . , tn) =
(−1)n

22g−2+2n

∑
k1,...,kn≥0

〈τk1
· · · τkn

〉g,n
n∏

i=1

[
(2k1 + 1)!!

(
ti
2

)2ki

dti

]
.
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Indeed it is the same as the generating function of the ψ-class intersection numbers
( 6.4).

Proof. The statement is proved by induction on 2g−2+n using the recursion
(8.35). The initial cases (g, n) = (1, 1) and (g, n) = (0, 3) are easily verified from
the concrete calculations below. Since we are expanding 1

t+t1
+ 1

t−t1
around t = 0

and t = ∞, it is obvious that the recursion produces a Laurent polynomial in
t21, t

2
2, . . . , t

2
n as the result.

Equation (8.38) tells us that the residue calculation at infinity increases the
degree by 4. This is because the leading term of the coefficient of t−(2n+1) is t2n+4

1 ,
and the residue calculation picks up the term t2n. By the induction hypothesis, the
right-hand side of (8.35) without the kernel term has homogenous degree 2(3g −
3 + n)− 4. The reciprocity property also follows by induction using (8.34).

The leading terms of W P
1

g,n(t1, . . . , tn) satisfy a topological recursion themselves.
We can extract the terms in the kernel that produce the leading terms of the
differential forms from (8.36) or (8.38). The result is

(8.41) KWK(t, t1) = − 1

32
t3

∞∑
k=0

t2n1
t2n

1

dt
·dt1 = −1

2

(
1

t− t1
+

1

t+ t1

)
1

32
t4 · 1

dt
·dt1,

which is identical to [11, Theorem 7.4], and also to (6.11). Since the topological
recursion uniquely determines all the differential forms from the initial condition,
and again since the (g, n) = (0, 3) and (1, 1) cases satisfy (8.40), by induction we
obtain (8.40) for all stable values of (g, n). �

The (g, n) = (1, 1) Eynard-Orantin differential form is computed using (2.4).

(8.42)

W P
1

1,1(t1)=
1

2πi

∫
γ

KP
1

(t, t1)

[
W P

1

0,2(t,−t)+
dx · dx1

(x− x1)2

]
=− 1

2πi

∫
γ

KP
1

(t, t1)
dt · dt
4t2

= − 1

64

⎛⎝ 1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
1

log
(

(t−1)2

(t+1)2

) (t2 − 1)2

t3
dt

⎞⎠ dt1

=

(
− 1

128
t21 +

7

384
+

7

384

1

t21
− 1

128

1

t41

)
dt1.

This is in agreement with W P
1

1,1(t1) = dF P
1

1,1(t1) and (8.30). From (8.35) we have

(8.43) W P
1

0,3(t1, t2, t3)

=
1

2πi

∫
γ

KP
1

(t, t1)
[
W P

1

0,2(t, t2)W
P
1

0,2(−t, t3) +W P
1

0,2(t, t3)W
P
1

0,2(−t, t2)
]

= − 1

16

(
1 +

1

t21 t22 t23

)
dt1dt2dt3,

which is also in agreement with (8.28).
Norbury and Scott conjecture the following

Conjecture 8.10 (Norbury-Scott Conjecture [63]). For (g, n) in the stable
range we have

(8.44) W P
1

g,n(t1, . . . , tn) = d1 · · · dnF P
1

g,n(t1, . . . , tn).
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The conjecture is verified for g = 0 and g = 1 cases in [63], with numeri-
cal evidence provided for higher degree cases. We recall that the Eyanrd-Orantin
recursion for simple Hurwitz numbers is essentially the Laplace transform of the
cut-and-join equation [25]. For the case of the counting problem of clean Belyi mor-
phisms the recursion is the Laplace transform of the edge-contraction operation of
Theorem 3.2.

Question 8.11. What is the equation among the stationary Gromov-Witten
invariants of P1 whose Laplace transform is the Eynard-Orantin recursion ( 8.35)?

Appendix A. Calculation of the Laplace transform

In this appendix we give the proof of Theorem 4.3.

Proposition A.1. Let us use the xj-variables defined by xj = ewj , and write

WD
g,n(t1, . . . , tn) = wg,n(x1, . . . , xn) dx1 · · · dxn.

Then the Laplace transform of the recursion formula ( 3.16) is the following differ-
ential recursion:

(A.1) − x1 wg,n(x1, . . . , xn)

=
n∑

j=2

∂

∂xj

(
1

xj − x1
(wg,n−1(x2, . . . , xn)− wg,n−1(x1, x2, . . . , x̂j , . . . , xn))

)
+ wg−1,n+1(x1, x1, x2, . . . , xn) +

∑
g1+g2=g

I�J={2,...,n}

wg1,|I|+1(x1, xI)wg2,|J|+1(x1, xJ).

Proof. The operation we wish to do is to apply

(−1)n
∑

μ1,...,μn>0

μ2 · · ·μn

n∏
i=1

1

xμi+1
i

to each side of (3.16). Then by (4.13), the left-hand side becomes wg,n(x1, . . . , xn).
The second line of (3.16) is straightforward. Let us just consider the first term,

since the computation of the second term is the same.

(−1)n
∑

μ1,...,μn>0

μ2 · · ·μn

n∏
i=1

1

xμi+1
i

∑
α+β=μ1−2

αβDg−1,n+1(α, β, μ2, . . . , μn)

=− 1

x1
(−1)n+1

∑
μ2,...,μn>0

∑
α,β>0

αβμ2 · · ·μnDg−1,n+1(α, β, μ2 . . . , μn)
1

xα+1
1

· 1

xβ+1
1

n∏
i=2

1

xμi+1
i

= − 1

x1
wg−1,n+1(x1, x1, x2, . . . , xn).

Thus the second line of (3.16) produces

− 1

x1

(
wg−1,n+1(x1, x1, x2, . . . , xn)+

∑
g1+g2=g

I�J={2,...,n}

wg1,|I|+1(x1, xI)wg2,|J|+1(x1, xJ)

)
.

To calculate the operation on the first line of (3.16), let us fix j > 1 and set
ν = μ1 + μj − 2 ≥ 0. Then
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(A.2) (−1)n
∑

μ1,...,μn>0

μ2 · · ·μn(μ1 + μj − 2)

×Dg,n−1(μ1 + μj − 2, μ2, . . . , μ̂j , . . . , μn)
n∏

i=1

1

xμi+1
i

= −
∞∑
ν=0

∑
μ2,...,μ̂j ,...,μn>0

(−1)n−1νμ2 · · · μ̂j · · ·μn

×Dg,n−1(ν, μ2, . . . , μ̂j , . . . , μn)
1

xν+1
1

∏
i �=1,j

1

xμi+1
i

ν+1∑
μj=1

μjx
μj−2
1

1

x
μj+1
j

.

Assuming |x1| < |xj |, we calculate

(A.3)

ν+1∑
μj=1

μjx
μj−2
1

1

x
μj+1
j

= − 1

x2
1

∂

∂xj

ν+1∑
μj=0

(
x1

xj

)μj

= − 1

x2
1

∂

∂xj

⎛⎜⎝ 1

1− x1

xj

−

(
x1

xj

)ν+2

1− x1

xj

⎞⎟⎠
= − 1

x2
1

∂

∂xj

(
1

1− x1

xj

)
+ xν

1

∂

∂xj

(
1

xj − x1

1

xν+1
j

)
.

We then substitute (A.3) in (A.2) and obtain

(A.4) = wg,n−1(x1, x2, . . . , x̂j , . . . , xn)
1

x2
1

∂

∂xj

(
1

1− x1
xj

)

− 1

x1

∂

∂xj

(
1

xj − x1
wg,n−1(x2, . . . , xj , . . . , xn)

)
= − 1

x1

∂

∂xj

(
1

xj − x1
(wg,n−1(x2, . . . , xj , . . . , xn)− wg,n−1(x1, x2, . . . , x̂j , . . . , xn))

)
.

This completes the proof. �

Proof of Theorem 4.3. When the curve is split into two pieces, the second
term of the third line of (A.1) contains contributions from unstable geometries
(g, n) = (0, 1) and (0, 2). We first separate them out. For g1 = 0 and I = ∅, or
g2 = 0 and J = ∅, we have a contribution of

2w0,1(x1)wg,n(x1, x2, . . . , xn).

Similarly, for g1 = 0 and I = {j}, or g2 = 0 and J = {j}, we have

2
n∑

j=2

w0,2(x1, xj)wg,n−1(x1, . . . , x̂j , . . . , xn).

Since WD
0,1 and WD

0,2 are defined on the spectral curve, it is time for us to switch to
the preferred coordinate t of (4.1) now. We thus introduce
(A.5)

WD
g,n(t1, . . . , tn) = wD

g,n(t1, . . . , tn) dt1 · · · dtn = wg,n(x1, . . . , xn) dx1 · · · dxn.

Since w0,1(x) = −z(x), we have

w0,1(x) = − t+ 1

t− 1
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w0,2(x1, x2) =
1

(t1 + t2)2
(t21 − 1)2

8t1

(t22 − 1)2

8t2

wg,n(x1, . . . , xn) = (−1)nwD
g,n(t1, . . . , tn)

n∏
i=1

(t2i − 1)2

8ti
.

Thus (A.1) is equivalent to

2

(
t21 + 1

t21 − 1
− t1 + 1

t1 − 1

)
wD

g,n(t1, . . . , tn)

=

n∑
j=2

(
(t21 − 1)2(t2j − 1)2

16(t21 − t2j )
2

8tj
(t2j − 1)2

wD
g,n−1(t1, . . . , t̂j , . . . , tn)

+
∂

∂tj

(
(t21 − 1)(t2j − 1)

4(t21 − t2j )

8t1
(t21 − 1)2

(t2j − 1)2

8tj
wD

g,n−1(t2, . . . , tn)

))

+
(t21 − 1)2

8t1

⎛⎜⎜⎝wD
g−1,n+1(t1, t1, t2, . . . , tn) +

stable∑
g1+g2=g

I�J={2,...,n}

wD
g1,|I|+1(t1, tI)w

D
g2,|J|+1(t1, tJ )

⎞⎟⎟⎠
+ 2

n∑
j=2

1

(t1 + tj)2
(t21 − 1)2

8t1
wD

g,n−1(t1, . . . , t̂j , . . . , tn)

=
n∑

j=2

((
tj(t

2
1 − 1)2

2(t21 − t2j )
2
+

1

(t1 + tj)2
(t21 − 1)2

4t1

)
wD

g,n−1(t1, . . . , t̂j , . . . , tn)

+
t1

t21 − 1

∂

∂tj

(
(t2j − 1)3

4tj(t21 − t2j )
wD

g,n−1(t2, . . . , tn)

))

+
(t21 − 1)2

8t1

⎛⎜⎜⎝wD
g−1,n+1(t1, t1, t2, . . . , tn) +

stable∑
g1+g2=g

I�J={2,...,n}

wD
g1,|I|+1(t1, tI)w

D
g2,|J|+1(t1, tJ )

⎞⎟⎟⎠ .

Since

2

(
t21 + 1

t21 − 1
− t1 + 1

t1 − 1

)
= − 4t1

t21 − 1
,

we obtain

(A.6) wD
g,n(t1, . . . , tn) = −

n∑
j=2

(
∂

∂tj

(
(t2j − 1)3

16tj(t21 − t2j )
wD

g,n−1(t2, . . . , tn)

)

+
(t21 − 1)3

16t21

t21 + t2j
(t21 − t2j )

2
wD

g,n−1(t1, . . . , t̂j , . . . , tn)

)

− (t21 − 1)3

32t21

⎛⎜⎜⎝wD
g−1,n+1(t1, t1, t2, . . . , tn) +

stable∑
g1+g2=g

I�J={2,...,n}

wD
g1,|I|+1(t1, tI)w

D
g2,|J|+1(t1, tJ )

⎞⎟⎟⎠ .

Now let us compute the integral

(A.7) WD
g,n(t1, . . . , tn) = − 1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1
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×
[

n∑
j=2

(
WD

0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn)

+WD
0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)
+WD

g−1,n+1(t,−t, t2, . . . , tn) +

stable∑
g1+g2=g

I�J={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J|+1(−t, tJ )

]
.

Recall that for 2g−2+n > 0, wD
g,n(t1, . . . , tn) is a Laurent polynomial in t21, . . . , t

2
n.

Thus the third line of (A.7) is immediately calculated because the integration con-
tour γ of Figure 4.1 encloses ±t1 and contributes residues with the negative sign.
The result is exactly the last line of (A.6). Similarly, since

WD
0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn) +WD

0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

= −
(

1

(t+ tj)2
+

1

(t− tj)2

)
wD

g,n−1(t, t2, . . . , t̂j , . . . , tn) dt dt dt2 · · · d̂tj · · · dtn,

the residues at ±t1 contribute

−
(t21 − 1)3(t21 + t2j)

16t21(t
2
1 − t2j)

2
wD

g,n−1(t1, . . . , t̂j , . . . , tn).

This is the same as the second line of the right-hand side of (A.6).
Within the contour γ, there are second order poles at ±tj for each j ≥ 2 that

come from WD
0,2(±t, tj). Note that WD

0,2(t, tj) acts as the Cauchy differentiation
kernel. We calculate

1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2

n∑
j=2

(
wD

0,2(t, tj)w
D
g,n−1(−t, t2, . . . , t̂j , . . . , tn)

+ wD
0,2(−t, tj)wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)
= − 1

32

∂

∂tj

((
1

tj + t1
+

1

tj − t1

)
(t2j − 1)3

t2j
wD

g,n−1(tj , t2, . . . , t̂j , . . . , tn)

)
= − 1

16

∂

∂tj

(
1

t2j − t21

(t2j − 1)3

tj
wD

g,n−1(tj , t2, . . . , t̂j , . . . , tn)

)
.

This gives the first line of the right-hand side of (A.6). We have thus completed
the proof of Theorem 4.3. �
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