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Abstract: We present an asymptotic expansion for quaternionic self-adjoint matrix inte-
grals. The Feynman diagrams appearing in the expansion are ordinary ribbon graphs
and their non-orientable counterparts. We show that the 2N × 2N Gaussian Orthogonal
Ensemble (GOE) and N × N Gaussian Symplectic Ensemble (GSE) have exactly the
same expansion term by term, except that the contributions from graphs on a non-ori-
entable surface with odd Euler characteristic carry the opposite sign. As an application,
we give a new topological proof of the known duality for correlations of characteristic
polynomials, demonstrating that this duality is equivalent to Poincaré duality of graphs
drawn on a compact surface. Another consequence of our graphical expansion formula
is a simple and simultaneous (re)derivation of the Central Limit Theorem for GOE, GUE
(Gaussian Unitary Ensemble) and GSE: The three cases have exactly the same graphical
limiting formula except for an overall constant that represents the type of the ensemble.
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1. Introduction

The purpose of this paper is to establish an asymptotic expansion for quaternionic self-
adjoint matrix integrals in terms of Feynman diagrams and to give a new topological
proof of the various characteristic polynomial dualities discovered by [2, 6, 7, 17].

Recent developments in the theory of random matrices exhibit particularly rich struc-
tures. Although originally introduced by Wigner as a model for heavy nuclei, random
matrices appear almost ubiquitously in modern mathematics. Mathematical applications
pertain, for example, to number theory, combinatorics, probability theory, and geometry
of moduli spaces of Riemann surfaces (see for example, [1, 3, 10, 11, 15, 16, 21, 25,
27] and articles in [4] and references cited therein). In physics, ’t Hooft’s discovery [24]
that quantum chromodynamics (QCD) simplifies in the limit where the number of col-
ors N (i.e. gauge group SU(N)) is large relied on a graphical expansion in terms of
“fat” or “ribbon” graphs. Hermitian matrix integrals appear in this context as generating
functions for oriented ribbon graphs [3, 5].

Graphical expansions of gauge theories with other gauge groups were studied in the
early 1980s (for example, see [18, 8, 9]). In particular, it was recognized that SO(2N)-
gauge theory and Sp(N)-gauge theory are identical in their graphical expansions, except
that the parameter N in the SO(2N)-theory has to be replaced with−N [18]. This dual-
ity is also noted in more recent works (see for example, [20, 28]). A characteristic feature
that distinguishes these gauge theories from the SU(N)-gauge theory is the appearance
of graphs drawn on non-orientable surfaces. Real symmetric matrix integrals have been
used as generating functions for these non-orientable ribbon graphs [10, 14, 23, 26].
Although the integration in the GOE and GSE matrix integrals is over real and quatern-
ionic self-adjoint matrices, rather than so(2N) and sp(N) Lie algebra valued fields of
the gauge theory case, on the basis of the Sp(N)-gauge theory and “SO(−2N)-gauge
theory” equivalence, an N×N quaternionic self-adjoint matrix integral should also give
a generating function for non-orientable ribbon graphs identical with the 2N × 2N real
symmetric matrix integral, with the parameter N replaced by −N . We show that this
is indeed the case and our method also implies a simple graphical proof of the gauge
theory result of [18]. As discussed in the Conclusion, since our proof is based on the
construction of a new topological invariant of punctured surfaces, it generalizes to a
large class of models.

In this article, we develop a graphical expansion technique for an N ×N self-adjoint
quaternionic matrix integral, and directly verify its duality with a real symmetric matrix
integral of size 2N . As an immediate consequence of the graphical expansion formu-
las, we give a new topological proof of the known duality for k-fold correlations of
characteristic polynomials of N ×N matrices for Gaussian Orthogonal, Gaussian Uni-
tary, and Gaussian Symplectic Ensembles [2, 6, 7, 17]. For the GUE model expressed
in terms of ribbon graphs, this N -k duality [6, 7] is precisely the Poincaré duality of
graphs drawn on a compact oriented surface. Similarly, the relation between GOE and
GSE correlations stems from the combination of Poincaré duality, this time including
non-orientable surfaces, and our graphical expansion formula. It is interesting to note
that the machinery of fermionic integrations employed in [6, 7] is equivalent to a very
simple switch from a graph on a surface to its dual graph.
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An N ×N matrix X with entries in the ring of quaternions

H = R⊕ iR⊕ jR⊕ kR

is self-adjoint if X� = X, where X denotes the quaternionic conjugation of X defined
by

x + iy + jz+ kw = x − iy − jz− kw ∈ H.

Our result for the self-adjoint quaternionic matrix integral is

log



∫

[dX] exp
(
−N tr X2 +∑j

2Ntj
j

tr Xj
)

∫
[dX] exp(−N tr X2)




=
∑
�∈G

(−2N)χ(S�)

|Aut(�)|
∏
j

t
v

(j)
�

j . (1.1)

Exact conventions are given later, at present it suffices to indicate that the sum is over
all graphs � drawn on compact orientable and non-orientable surfaces S� , and χ(S�)

is the Euler characteristic of the surface S� uniquely defined by the graph �. Our proof
of this result is based on viewing the GOE integral over real symmetric matrices as
fundamental. The crucial observation is that the contribution of any given graph � in the
GOE, GUE and GSE is a topological invariant of the surface S� with f� marked points
on it, where f� denotes the number of faces of the cell-decomposition of S� defined by
the graph �. The connectivity of the space of triangulations of two dimensional surfaces
then allows any graphical contribution to be calculated from a simple representative
graph for any given topology.

Writing the results for all three ensembles in a uniform notation (see (5.2)) makes
the expected duality

GOE←→ G̃SE

GUE←→ GUE (1.2)

GSE←→ G̃OE

manifest. The middle line for the GUE is a (trivial) self-duality. The tilde on the right
hand side indicates that equality holds upon doubling/halving the matrix size and an
overall sign change for contributions of graphs where the Euler characteristic χ(S�) is
odd.

Although not discussed in the main text, it is indeed possible to generalize the usual
Schwinger trick to quaternionic source terms, and represent a Gaussian symplectic inte-
gral as non-commutative quaternionic differentiations. The result is a sum over both
orientable and non-orientable ribbon graphs, and is easily verified to agree with ours
for simple graphs. This method is described in Appendix A. We also note that a partial
result for quaternionic expansions has been obtained in [13].

If we reduce our integral (1.1) to a symplectic Penner model by setting t1 = t2 = 0
and

tj = −z
j
2−1, j ≥ 3,
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then we can explicitly compute the asymptotic expansion in z of

lim
m→∞ log



∫
RN |�(k)|2α

∏N
i=1 exp

(
−∑2m

j=2
k
j
i

j

(
z

αN

)j/2−1
)
dki

∫
RN |�(k)|2α

∏N
i=1 exp

(
− k2

i

2

)
dki


 (1.3)

utilizing the Selberg integration formula and the asymptotic analysis technique of [19],
where α is either a positive integer or its reciprocal. We demonstrate that the duality for
GOE and GSE of (1.1) extends to the same type of duality between an arbitrary positive
integer α and 1/α for (1.3) with the sign change for all terms with odd powers of N in
the asymptotic expansion.

The orthogonal Penner model gives the orbifold Euler characteristic of the moduli
spaces of smooth real algebraic curves with an arbitrary number of marked points [10].
Also, the original Penner model [21] provides the orbifold Euler characteristic of the
moduli spaces of pointed algebraic curves over C [11]. The GOE-GSE duality shows
that the symplectic Penner model is identical to the orthogonal Penner model, except
for doubling the matrix size and an overall sign change for contributions from surfaces
of odd Euler characteristic.

From the graphical expansion formulas for matrix integrals, one can uniformly derive
the Central Limit Theorem for Gaussian random matrix ensembles. This result follows
as a direct consequence of ’t Hooft’s original large N limit in which planar ribbon graphs
dominate: we derive a precise limiting formula for GOE, GUE and GSE matrix ensem-
bles in terms of planar two-vertex ribbon graphs. The formula is the same for all three
ensembles except for an overall constant, which is parallel to the equivalence of SO(N),
SU(N) and Sp(N)-gauge theories it large N .

The material is organized as follows: In Sect. 2 we introduce the matrix integrals
studied in this paper. Our conventions for the topological data of surfaces are given in
Sect. 3 as well as our theorem and its proof for the graphical expansion of matrix inte-
grals. Examples, including a comparison with the first few terms of the Penner model,
are given in Sect. 4. The GOE-GSE duality appears in Sect. 5. The central formula of
this paper is Eq. (5.2) which gives the graphical expansion for the GOE, GUE and GSE
simultaneously in a manifestly duality invariant form. Its application to characteristic
polynomial duality is in Sect. 6. The extended version of the duality for Penner type
models is found in Sect. 7 while detailed derivations of the formulæ there are presented
in Appendix B. Section 8 concerns the Central Limit Theorem for Gaussian random
matrix ensembles. In the Conclusions (Sect. 9) we discuss possible further generaliza-
tions. In particular, the construction of a graphical topological invariant of surfaces with
marked points necessary for the proof of our main result is rather general and may be
applied to higher algebraic structures.

2. Matrix Integrals

The object of our study is the integral over self-adjoint matrices1

Z(β)(t, N) =
∫

[dX]
(β)

exp
(
− 1

4 tr X2 +∑∞j=1
tj
2j

tr Xj
)

∫
[dX]

(β)
exp

(
− 1

4 tr X2
) (2.1)

1 We employ various normalizations throughout the paper, so it is convenient to divide through by the
free matrix integral.
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as a function of the “coupling constants” t = (t1, t2, t3, . . . ) and the size N of the matrix
variable X. Here

X = S +
β−1∑
i=1

eiAi (2.2)

is built from real, N×N , symmetric and antisymmetric matrices S and Ai , respectively.
The parameter β takes values 1, 2 or 4 depending on whether we study real, complex or
quaternionic self-adjoint matrices and in turn Gaussian orthogonal, unitary or symplec-
tic ensembles (GOE, GUE, GSE). The imaginary units ei are then drawn from one of
three sets,

ei ∈



∅ , β = 1 ,

{i : i2 = −1} , β = 2 ,

{i, j, k : i2 = j2 = k2 = ijk = −1} , β = 4 .

(2.3)

The self-adjoint condition

X† ≡ X
� = X , ei = −ei , (2.4)

is implied by antisymmetry of the matrices Ai . Finally, the measure [dX]
(β)

is the transla-

tion invariant Lebesgue measure of the vector space of real dimension 1
2N(β(N−1)+2)

spanned by independent matrix elements of S and Ai . This measure is invariant, respec-
tively, under orthogonal, unitary and symplectic transformations

X 
−→ U†XU, (2.5)

where U†U = 1 and U = U0 +
∑β−1

i=1 eiUi for real N ×N matrices U0 and Ui .
The matrix integral (2.1) is a holomorphic function in (t1, t2, . . . , t2m) if we fix m > 0

and restrict the coupling constants to satisfy

Re(t2m) < 0 and t2m+1 = t2m+2 = t2m+3 = · · · = 0.

Under this restriction, Zβ(t, N) has a unique Taylor expansion in (t1, t2, . . ., t2m−1) and
an asymptotic expansion in t2m as t2m → 0 while keeping Re(t2m) < 0. Let us intro-
duce a weighted degree of the coupling constants by deg(tn) = n. Then the asymptotic
expansion of the truncated integral Zβ(t, N) has a well-defined limit as m→∞ in the
ring

(Q[N ]) [[t1, t2, t3, . . . ]]

of formal power series in infinitely many variables with coefficients in the polynomial
ring of N with rational coefficients [19]. The subject of our study in what follows is this
asymptotic expansion of Zβ(t, N) as a function in infinitely many variables.
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3. Graphical Expansion

The graphs appearing in our asymptotic expansion of the matrix integrals (2.1) are those
drawn on orientable as well as non-orientable surfaces. To avoid confusion with an
already well-established convention that ribbon graphs are drawn on orientable sur-
faces, we propose the terminology Möbius graphs. Let us recall that a ribbon graph �

is a graph with a cyclic order chosen at each vertex for half-edges adjacent to it. Equiv-
alently, it is a graph drawn on a compact oriented surface S giving a cell-decomposition
of it. The complement S \� of the graph � on S is the disjoint union of f� open disks (or
faces) of the surface. Since a ribbon graph � defines a unique oriented surface on which
it is drawn as the 1-skeleton of a cell-decomposition, we denote the surface by S� .

Similarly, a Möbius graph is drawn on a compact surface, orientable or non-orient-
able, giving a cell-decomposition of the surface. It can be viewed as a ribbon graph with
twisted edges. A Möbius graph � also uniquely defines the surface S� in which it is
embedded.

Let G be the set of connected Möbius graphs. A graph � ∈ G consists of a finite
number of vertices and edges. Let v(j)

� denote the number of j -valent vertices of �. Then
the number of vertices and edges are given by

v� =
∑
j

v
(j)
� and e� = 1

2

∑
j

jv
(j)
� . (3.1)

The unique compact surface S� has f� faces and its Euler characteristic is

χ(S�) = v� − e� + f� . (3.2)

We will also need the number of faces with a given number of edges, so denote the
number of j -gons in the cell-decomposition of S� by f

(j)
� whereby the Poincaré dual

formulæ to Eqs. (3.1) are

f� =
∑
j

f
(j)
� and e� = 1

2

∑
j

jf
(j)
� . (3.3)

A Möbius graph � also determines the orientability of S� and we define

�� =
{

1 S� orientable ,

−1 S� non-orientable .
(3.4)

By genus of S� we mean

g(S�) = 1− 2−
1+��

2 χ(S�) . (3.5)

Thus χ(S�) = 2 − 2g(S�) for an orientable surface and χ(S�) = 1 − g(S�) if it is
non-orientable. We also define the parity of χ(S�) by

�� = (−1)χ(S�) , (3.6)

while many results can be written compactly in terms of

	� = 1

2

(
1+ ��

)
− �� =




0 � orientable ,

1 � non-orientable, χ(S�) odd ,

2 � non-orientable, χ(S�) even .
(3.7)

Our main result is:
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Theorem 3.1. The logarithm of the asymptotic expansion of the matrix integral Z(β)

(t, N) is expressed as a sum over connected Möbius graphs:

log
(
Z(β)(t, N)

)
=
∑
�∈G

(−4+ 6β − β2)
1− 1

2 	�− 1
2 χ(S�)

(2− β)
	�

β
f�−1

N
f�

|Aut(�)|
∏
j

t
v

(j)
�

j

∈ (Q[N ]) [[t1, t2, t3, . . . ]]. (3.8)

Remark.

(1) We define (2− β)	� = 1 when β = 2 and 	� = 0.

(2) For every connected Möbius graph �, the monomial
∏

j t
v

(j)
�

j is a finite product
of total degree 2e� .

(3) The only reason to consider log Zβ(t, N) is because it yields a compact for-
mula (3.8): Zβ(t, N) itself has an expansion in terms of graphs although a given
summand may have a mixture of orientable and non-orientable connected com-
ponents.

The automorphism group Aut(�) of a Möbius graph � is a group of automorphisms
of the cellular complex S� consisting of v� vertices, e� edges and f� faces. When S� is
orientable, the group Aut(�) may contain orientation-reversing automorphisms as well.
We note that a cyclic rotation of half-edges around a vertex corresponds to the invariance
of the trace under a cyclic permutation

tr (M1M2M3 · · ·Mn) = tr (MnM1M2 · · ·Mn−1), (3.9)

and an orientation-reversing flip of vertex with adjacent half-edges corresponds to the
invariance of the trace of symmetric matrices

tr (S1S2S3 · · · Sn) = tr (SnSn−1Sn−2 · · · S1) (3.10)

reversing the order of multiplication.
The proof of the theorem involves two main ingredients. The first is to view GUE and

GSE matrix integrals as the coupling of a singlet or triplet of skew-symmetric matrix inte-
grals to the fundamental GOE integral. When β = 1, Eq. (3.8) is the Möbius graphical
expansion of a symmetric matrix integral [10, 26, 23, 14]:

Fig. 3.1. Two equivalent Möbius graphs consisting of two vertices, three edges, and one face. The graphs
are interchanged by a vertex flip
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log
(
Z(β=1)(t, N)

)
=
∑
�∈G

Nf�

|Aut(�)|
∏
j

t
v

(j)
�

j . (3.11)

This formula follows immediately from the fact that the Wick contraction of any pair of
symmetric matrices S = (Sab) obeys

〈SabScd〉 = δacδbd + δadδbc , (3.12)

which is denoted graphically as an edge of a Möbius graph (see Fig. 3.2). These edges
connect vertices of the type

tj

2j
tr Sj = tj

2j

N∑
a1,... ,aj=1

Sa1a2Sa2a3 · · · Saj a1 , (3.13)

as depicted in Fig. 3.3. The factor (2j)−1 in (3.13) is precisely the one required to cancel
the over-counting implied by the identities (3.9) and (3.10). Therefore the overall weight
of any given graph is as quoted in (3.11).

In contrast, for a pair of antisymmetric matrices A = (Aab) the Wick contraction
yields

〈AabAcd〉 = δacδbd − δadδbc. (3.14)

This is depicted in Fig. 3.4.

+

b
a

c
d

c
d

b
a

Sab Scd

Fig. 3.2. Propagator for symmetric matrices

aj a1

a1

a2

a2
a3a3

a4

aj-1
aj

V
V’

b 1

b 2

b 2
b 3

b 3
b 1

Fig. 3.3. Two vertices connected at the half edge labeled by a1a2 to the half edge labeled by b2b1. For
the GOE a second graph with a twisted edge connecting a1a2 to b1b2 is also present since the ribbon
edges are not directed
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-
b
a

c
d

c
d

b
a

Aab Acd

Fig. 3.4. Propagator for antisymmetric matrices

The minus sign for untwisted edges will play a crucial rôle in what follows. Notice
that since the exponent of the Gaussian part of (2.1) is

−1

4

N∑
a=1

S2
aa −

1

2

∑
1≤a<b≤N

(
S2

ab +
β−1∑
i=1

A2
iab

)
, (3.15)

there are no non-vanishing Wick contractions between symmetric and antisymmetric
matrices. Therefore the model (2.1) is a sum over graphs with edges of either of the two
types (3.12) or (3.14). Furthermore 〈AiAj 〉 is only non-vanishing when i = j so edges
“emitted” at vertices are only connected when they carry the same imaginary units ei .

If we call e0 = 1 and A0 = S, a j -valent vertex now looks like

1

2j
tr Xj = 1

2j
tr

β−1∑
α=0

eαAα =
∑

{(α1,... ,αj )}/∼

ρ(α1, . . . , αj )

2j
tr

j∏
k=1

Aαk
eαk

. (3.16)

The last sum runs over all j -tuples of integers 0, 1, . . . , β − 1 modulo the equivalence
relation

(α1, . . . , αj ) ∼ (β1, . . . , βj ) iff tr (Aα1 · · ·Aαj
) = tr (Aβ1 · · ·Aβj

) . (3.17)

The multiplicities ρ(α1, . . . , αj ) are non-zero only when the product

eα1 · · · eαj
= ±1 . (3.18)

In other words, the vertex (3.16) is real. Observe that the numbers

2j

ρ(α1, . . . , αj )
(3.19)

count the number of automorphisms of a vertex with a given configuration of units eα

sprinkled at every edge, with respect to rotations and vertex flips. For example, for β = 4
and j = 3,

1

6
tr X3 = 1

6
tr (1.S)3

+1

2
tr
(

1.S i.A1 i.A1 + 1.S j.A2 j.A2 + 1.S k.A3 k.A3

)

+1

1
tr
(
i.A1 j.A2 k.A3

)
. (3.20)
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On the first line, the trace of three identical symmetric matrices can be cycled and
reversed, so 2j = 6 is the correct automorphism factor. On the second line the terms
with a single symmetric and a pair of antisymmetric matrices can only be flipped yield-
ing two automorphisms. The term on the third line has no automorphisms. We will keep
track of the matrix type by “sprinkling” units {1, ei} over the set of Möbius graphs (see
Fig. 3.5).

Orchestrating the above observations yields the following:

Lemma 3.2. The matrix integral log
(
Z(β)(t, N)

)
may be computed as a sum over Möbi-

us graphs � with weight

µ�Nf�

|Aut(�)| (3.21)

multiplied by a single power of tj for each j -valent vertex in �. The factor µ� is calcu-
lated by

(1) Writing down all possible configurations of units eα ∈ {1, e1, . . . eβ−1} at each vertex
such that their product is ±1.

(2) Counting these signed configurations with an additional minus sign for every un-
twisted edge with imaginary units ei at each end.

The proof of this lemma follows from our previous remarks and by examining the
Wick contraction for antisymmetric matrices (3.14). A sample computation of µ� is
given in Fig. 3.5.

Our proof is completed by computing the numbers µ� , which requires a second major
ingredient:

Lemma 3.3. The quantity µ� is a topological invariant of the n-punctured surface S� \
{p1, p2, . . . , pn}, where the removed points are all distinct and n = f� is the number
of faces of the cell decomposition defined by �.

The proof of this crucial lemma is almost a triviality. Graphs are identified if they
are equivalent under rotations and flips of their vertices (Fig. 3.1), so it suffices to show
that µ� is invariant under contraction of an untwisted edge. This operation is depicted
in Fig. 3.6.

This relation is obvious since the products of units at either vertex must be real and the
Wick contraction corresponding to an untwisted edge with units eα at either end comes
with an overall factor +1. We remark that an analogous relation involving a vertex flip
for the contraction of a twisted edge follows.

We now compute the invariant µ� for a graph of arbitrary topology. Since µ� is
topological, we may employ a standard graph for each distinct topology labeled by the
orientability �� , number of faces f� and genus g(S�). The key theorem from topology
we need here is the connectivity of the space of all triangulations of a compact surface
with a fixed number of vertices under the action of a diagonal flip [12] (see Fig. 3.7). A
diagonal flip of a triangulation is exactly the fusion move of the dual Möbius graph.

For orientable surfaces, the connectivity of concern implies the path connectivity
of the moduli space Mg,n of smooth complete algebraic curves defined over C with n

marked points. The connectivity of triangulations of non-orientable surfaces has been
also established.

Now note that because of the invariance of µ� under edge contraction, we can expand
all vertices of valence greater than 3 and contract all vertices of valence 1 and 2 to create
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=
1

1
1

1

+1

+
1

i
1

i

+1

+
1

j

1

j

+1

+
1

k

1

k

+1

+
i

1
i

1

–1

+
j

1
j

1

–1

+
k

1
k

1

–1

+
i

i
i

i

–1

+
j

j
j

j

–1

+
k

k
k

k

–1

+
i

j
i

j

+1

+
i

k
i

k

+1

+
j

i
j

i

+1

+
j

k
j

k

+1

+
k

i
k

i

+1

+
k

j
k

j

+1

Fig. 3.5. Computation of µ� for a non-orientable Möbius graph �. Here χ(S�) = 0. The surface S� is
a Klein bottle. The contributions ±1 add to yield µ� = 4 = (2− β)2 (for β = 4)
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e1

e2

e3

e4

e5

e6ei
ei =

e1

e2

e3

e4

e5

e6

Fig. 3.6. Edge contraction

Fig. 3.7. The diagonal flip operation for a triangulation

Fig. 3.8. A standard Möbius graph that represents an orientable surface of genus g with n marked points.
It consists of n− 1 tadpoles on the left and g bi-petal flowers on the right

a trivalent graph. Since the dual of a trivalent graph is a triangulation of the surface and
the number of vertices of the triangulation is the number n = f� of faces of the Möbius
graph �, the connectivity of the space of triangulations implies that our invariant µ� is
a constant for each topology of a given n-punctured surface. In the actual computation,
it is convenient to use the following representatives for each of the three topological
classes:

(1) Orientable (� = 1); a standard graph is given in Fig. 3.8.
(2) Non-orientable (� = −1), odd genus; with standard graph given in Fig. 3.9.
(3) Non-orientable (� = −1), even genus; a standard graph is in Fig. 3.10.

Finally, it is easy to calculate µ� for each one particle irreducible component (subgraphs
which remain connected after cutting a single edge):

= β , (3.22)
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Fig. 3.9. A standard Möbius graph drawn on a non-orientable surface of genus g = 2k+1 with n marked
points. In addition to n − 1 tadpoles on the left it has k orientable bi-petal flowers on the right and a
non-orientable one added at the top

Fig. 3.10. A standard Möbius graph representing a non-orientable surface of genus g = 2k with n
marked points. It has n− 1 orientable tadpoles on the left, k bi-petal orientable flowers on the right and
a non-orientable tadpole added at the top

= 1+ 3(β − 1)− (β − 1)(β − 2) , (3.23)

= 2− β , (3.24)

= (2− β)2 . (3.25)

Each of the above calculations is rather similar: A single line emitted from a tadpole
subgraph can only ever carry the unit e0 = 1. As an example, (3.23) arises from (i) plac-
ing all 1’s on the remaining four lines, (ii) 1’s on one loop and imaginary units ei on the
other which can be done in 2(β − 1) ways, (iii) the same imaginary unit on both loops
giving β − 1 possibilities, (iv) different imaginary units which can only be achieved for
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the quaternions and in 6 = (β − 1)(β − 2) different ways incurring a minus sign since
−1 = ij ij (say).

Therefore we find

µ� = (−4+ 6β − β2)
1− 1

2 	�− 1
2 χ(S�)

(2− β)
	�

β
f�−1

. (3.26)

This result combined with the first lemma above completes the proof of our main theo-
rem.

Finally, we prove the gauge theory result of [18]. In the SO(2N) case the integration
is over antisymmetric matrix valued gauge fields. The expansion is again in terms of
Möbius graphs with a relative minus sign for each twisted edge. As shown in [18], in the
Sp(N) theory, a twisted edge gets a minus sign as well as a directed factor J = −J�
(the 2N ×2N symplectic metric) on each line. Therefore the symplectic and orthogonal
graphs differ only by a possible relative minus sign which can again be computed for
the standard graphs in Figs. 3.8–3.10 since this relative sign is also invariant under edge
contraction. The result is, of course, a factor (−)χ(S�).

4. Examples

A simple consistency check is the case β = 2. Clearly, non-orientable graphs give a
vanishing contribution as required for hermitian matrix integrals. To obtain a more con-
ventional normalization, we rescale X −→ β1/2 X in (2.1) and absorb all but one power
of β in the couplings t , so that

log



∫

[dX]
(β)

exp
(
− β

4 tr X2 +∑∞j=1
βtj
2j

tr Xj
)

∫
[dX]

(β)
exp

(
− β

4 tr X2
)




=
∑
�∈G

(−4+ 6β − β2)
1− 1

2 	�− 1
2 χ(S�)

(2− β)
	�

β
χ(S�)−1

N
f�

|Aut(�)|
∏
j

t
v

(j)
�

j . (4.1)

Hence when β = 2,

log



∫

[dX]
(2)

exp
(
− 1

2 tr X2 +∑∞j=1
tj
j

tr Xj
)

∫
[dX]

(2)
exp

(
− 1

2 tr X2
)




=
∑
�∈G

2N
f�

|Aut(�)|
∏
j

t
v

(j)
�

j . (4.2)

We note that

∑
�∈G

2N
f�

|Aut(�)|
∏
j

t
v

(j)
�

j =
∑
�∈R

N
f�

|AutR(�)|
∏
j

t
v

(j)
�

j , (4.3)

where R denotes the set of all connected ribbon graphs and AutR(�) the automor-
phism group of a ribbon graph disallowing orientation-reversing automorphisms. To
see (4.3), let � be an oriented ribbon graph. Then either (a) � and its flip �̌ are iso-
morphic as a ribbon graph; or (b) they are different ribbon graphs. In case (a), we have
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|Aut(�)| = 2|AutR(�)|. If (b) is the case, then Aut(�) ∼= AutR(�), but � and �̌ appear
as different graphs on the right hand side while they are the same as a Möbius graph
in G.

Together, Eqs. (4.3) and (4.2) constitute the well-known result for the hermitian
matrix integral [3].

A less trivial test for the β = 4, GSE model is a comparison with the Penner model.
To begin with we re-express (3.8) in yet another normalization, together with a special-
ization t1 = t2 = 0:

log



∫

[dX]
(4)

exp
(
− 1

2 tr X2 +∑∞j=3
tj
j

tr Xj
)

∫
[dX]

(4)
exp

(
− 1

2 tr X2
)




=
∑
�∈G

(−1)χ(S�)

|Aut(�)| (2N)
f�
∏
j≥3

t
v

(j)
�

j . (4.4)

Here we have employed the useful identity

(−1)	� = (−1)χ(S�) . (4.5)

The Penner substitution

tj −→ −zj/2−1, j ≥ 3 (4.6)

yields the graphical expansion

lim
m→∞ log



∫

[dX]
(4)

exp
(
−∑2m

j=2
zj/2−1

j
tr Xj

)

∫
[dX]

(4)
exp

(
− 1

2 tr X2
)


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=
∑
�∈G

(−1)e�

|Aut(�)| (2N)
f�

(−1)χ(S�)(−z)e�−v� . (4.7)

Equation (4.7) is valid as an asymptotic expansion of the integral for z → 0 while
keeping z > 0, as an element of a formal power series ring (Q[N ])[[z]].

The integral on the left hand side can be evaluated explicitly (see (7.2) and (7.3) of
Sect. 7). The leading terms as an expansion in z are

lim
m→∞ log


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exp
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j=2
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j
tr Xj
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exp
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− 1

12
N − 1

2
N2 + 2

3
N3
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z+O(z2) . (4.8)
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On the other hand, our graphical expansion yields

∑
�∈G

(−)e� (−2N)
b�

ze�−v�

|Aut(�)| (4.9)

= (−2N)3z

{
(−1)2

4
+ (−1)3

4
+ (−1)3

12

}

+ (−2N)2z

{
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2
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2
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4
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8
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4
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12
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8
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+ O(z2)

=
(
− 1

12
N − 1

2
N2 + 2

3
N3
)

z+O(z2) .

Needless to say agreement is perfect. In fact, as we shall show in Sect. 7, agreement to
all orders amounts to known results for the orbifold Euler characteristic of the moduli
space of real algebraic curves.

5. Duality for Matrix Integrals

An additional change of variables X −→ N1/2X in (4.1), absorption of all but a single
N in the couplings t , as well as the substitution

β = 2α , (5.1)

yields

log
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t
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This formula is invariant under

α −→ α−1 and N −→ −αN . (5.3)

Remark. (1) The duality holds graph by graph2.
(2) The α = 1 GUE model is self-dual since χ(S�) is even for orientable graphs.
(3) The graphical expansion of the α = 2, N × N GSE model is identical to that of

the α = 1/2 GOE model if the size of the matrices are doubled and the contri-
bution of every Möbius graph embedded in a non-orientable surface of odd Euler
characteristic is multiplied by −1.

One might wonder whether matrix integrals exist whose graphical expansion coin-
cides exactly with the image of (5.2) under the duality (5.3).Although we have no definite
answer to this question at this point, in the next section we show that the combination
of Poincaré duality and the one discovered here underly the dualities for correlations of
characteristic polynomials [2, 6, 7, 17].

6. Characteristic Polynomial Duality

The average of products of characteristic polynomials obey dualities between GOE and
GSE models [7]:

∫
[dS]N×N

(1)
exp

(
− N

2 tr S2
) ∏k

�=1 detN×N(λ� − S)

∫
[dS]N×N
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exp
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− N

2 tr S2
)

=
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(4)
exp(−N tr X2) HdetNk×k(�−

√−1 X)
∫

[dX]k×k

(4)
exp(−N tr X2)

, (6.1)

as well as a self duality for the GUE case3 [6]:

∫
[dX]N×N

(2)
exp

(
− N

2 tr X2
) ∏k

�=1 detN×N(λ� −X)

∫
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(
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exp
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2 tr Y 2
)

detNk×k(�−
√−1 Y )

∫
[dY ]k×k

(2)
exp

(
− N

2 tr Y 2
) . (6.2)

The duality relates expectations of k-fold products of distinct characteristic polynomials
of N × N matrices to averages over the N th power of determinants of certain k × k

matrices. Here, � = diag(λ1, . . . , λk) is a diagonal k × k matrix of real entries. The
quaternionic determinant H det in (6.1) is defined by

Hdetk×kM = det1/2
2k×2k C(M) , (6.3)

2 Physicists would call this a T -duality – valid order by order in perturbation theory.
3 One might question the reality of the integrals on the right-hand sides of (6.2) and (6.1) since an

explicit
√−1 appears in the determinants. It is clear, however, from both the graphical expansions below

and the original derivation in [6, 7] that both integrals are real.
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where the 2k× 2k matrix C(M) is obtained from the k× k quaternion valued matrix M

by replacing the quaternionic units by their representation in terms of Pauli matrices4

1→ I2×2, ei → iσi (i = 1, 2, 3).
To begin with, we demonstrate that the N -k duality for GUE models follows from

the usual ribbon graph expansion along with Poincaré duality of graphs on a compact
oriented surface. The first step is to represent the determinants as vertices of the graph-
ical expansion. Let us assume that the parameter λ� satisfies λ� > λ > 0 for every �

and some positive λ, and let �λ denote the set of all N × N hermitian matrices whose
eigenvalues are contained in the bounded interval [−λ, λ]. Then for every X ∈ �λ, we
have a convergent power series expansion in λ−1

� :

det
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λ�

)
= exp

(
tr log
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))
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)
, (6.4)

where �c
λ is the complement of �λ in the space of all N ×N hermitian matrices. Since

�λ is a compact space, the first integral on the right-hand side of (6.4) is a conver-
gent power series in λ−1

1 , λ−1
2 , . . ., λ−1

k . Set tj = −tr �−j . Then Re(tj ) < 0, and as
λ → +∞, tj → 0. Thus the ribbon graph expansion provides each coefficient of the
power series expansion of this integral in tj as λ → +∞. The second integral on the
right-hand side of (6.4) is a polynomial in λ−1

� whose coefficients converge to 0 as λ goes
to infinity since �c

λ approaches the empty set and the integrand is bounded. Therefore,
we obtain an asymptotic expansion formula

log
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4 The Pauli matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 1

)
.
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The computation of
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 (6.6)

can be performed similarly: First we decompose the space of all k×k hermitian matrices
into two pieces, one consisting of matrices with eigenvalues in [−λ, λ], and the other
its complement. If λ� > λ for every �, then detN(I −√−1 Y�−1) can be expanded as
before. Asymptotically as an element of (Q[N ])[[λ−1

1 , . . . , λ−1
k ]], we have
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The appearance of the term tr (Y�−1)m instead of tr Ym occurring in (6.7) replaces
products of traces over identity matrices

Nf� =
∏
j

(tr I j )f
(j)
� (6.8)

incurred in (3.8) as one travels around each face of the graph �, by

∏
j

(tr �−j )f
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� . (6.9)

(Recall that f
(j)
� denotes the number of j -gons in the cell-decomposition of S� defined

by the graph �.) Therefore,
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where we used

(−1)v�−e� = (−1)χ(S�)−f� = (−1)f� .
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Let us denote by �∗ the dual graph of a ribbon graph � drawn on a compact oriented
surface S� . We note that AutR(�) ∼= AutR(�∗) and




v
(j)
� = f

(j)
�∗ ,

e� = e�∗ ,

f
(j)
� = v

(j)
�∗ .

(6.11)

Since one and two valent vertices are included in the set of ribbon graphs R, the map

∗ : R −→ R

is a bijection. [Contrast this situation to the Penner model in Sect. 4, where the couplings
t1 = t2 = 0 and Poincaré duality does not apply.] Therefore,

∑
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1

|AutR(�)| (−1)v�Nf�−e�
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(tr �−j )f
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� . (6.12)

This implies that the matrix integrals (6.5) and (6.6) have the same asymptotic expansion.
The N -k duality in Eq. (6.2) is a polynomial identity of degree Nk in (Q[N ])[λ1,

λ2, . . . , λk], where we define deg(λ�) = 1. We must now consider also disconnected
graphs, since there is no logarithm. The coefficient of the degree Nk − d term of (6.2)
is therefore determined by a partition d = 2(e1 + e2 + · · · + em) corresponding to the
product of m connected graphs consisting of ei edges. The contributions of connected
graphs are computed in (6.5) and (6.6). We note that the duality (6.12) holds for every
surface even when the number of edges is fixed. Therefore, the asymptotic equality we
have derived implies the polynomial identity (6.2). In other words, the N -k duality of [6]
is a simple consequence of the Poincaré duality of graphs on a compact oriented surface.

Our derivation of the characteristic polynomial duality between the GOE and GSE
models goes quite similarly. Here again we see that the duality is a consequence of our
graphical expansion formula (3.8) and Poincaré duality:

Using the same trick for characteristic polynomials as in the GUE case, from the
expansion formula (3.8) we obtain an asymptotic expansion formula for the GOE side
of the duality
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(Note the non-standard normalization of the Gaussian exponent yields the factor 2−e� .)
Its GSE counterpart requires some care: The “characteristic polynomial” of a k × k

quaternionic matrix X is defined by

H det(�−√−1 X) = det1/2(�I2k×2k −
√−1 C(X))

and

tr Xj = 1

2
tr C(X)j .

Thus if all eigenvalues of X are in [−λ, λ] and λ� > λ > 0, then
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Therefore, we have an asymptotic expansion
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where we have used the fact that

(−1)	�+e�+v� = (−1)f�

that follows from (4.5). (In addition the non-standard Gaussian exponent normalization
now accounts for the absence of explicit factors k in the graphical expansion.) We now
see that (6.13) and (6.14) are equal again through the dual construction of a Möbius
graph.

The polynomial identity (6.1) follows from the equality of the asymptotic expan-
sions. This time each term of (6.1) may have contributions from both orientable and
non-orientable graphs, but since the dual graph construction works for each surface, the
equality holds.

7. The Penner Model

The Penner model for the hermitian matrix integral provides an effective tool to com-
pute the orbifold Euler characteristic of the moduli space of smooth algebraic curves
defined over C with an arbitrary number of marked points [21, 11]. It was discovered
in [10] that the Penner model of the real symmetric (or GOE) matrix integral yields the
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orbifold Euler characteristic of the moduli spaces of real algebraic curves. Due to the
GOE-GSE duality (5.3), we see that the symplectic Penner model is identical to the GOE
case, except for the matrix size and an overall sign for contributions of non-orientable
surfaces. As we shall see, of the three main classes of Möbius graphs – oriented, non-
orientable odd χ(S�) and non-orientable even χ(S�) – only the first two survive the
Penner substitution for the couplings, or in other words, the orbifold Euler characteristic
vanishes when χ(S�) is even. Therefore the third symplectic Penner type model is not
an independent topological quantity.

We also show that the generalized Penner model expressed in terms of Vandermonde
determinants to powers in 2(N∪1/N) exhibits an extended duality that agrees with (5.3)
when the power of the Vandermonde is restricted to 1, 2 or 4. Many explicit formulæ and
derivations are reserved for Appendix B.

The symplectic Penner model introduced in Sect. 4 reads
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m→∞ log
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|Aut(�)| (2N)
f�

(−1)χ(S�)(−z)e�−v� , (7.1)

to be viewed as an element of the formal power series ring (Q[N ])[[z]]. This integral
is indeed explicitly computable. Symplectic invariance of the measure and integrand
allows us to diagonalize the matrix variable X −→ diag(k1, k2, . . . , kN) so that:

lim
m→∞ log



∫

[dX]
(4)

exp
(
−∑2m

j=2
zj/2−1

j
tr Xj

)

∫
[dX]

(4)
exp

(
− 1

2 tr X2
)




= lim
m→∞ log



∫
RN �4(k)

∏N
i=1 exp

(
−∑2m

j=2
zj/2−1

j
k
j
i

)
dki

∫
RN �4(k)

∏N
i=1 exp

(
− k2

i

2

)
dki


 , (7.2)

where

�(k) =
∏
i<j

(ki − kj )

is the Vandermonde determinant. Using the asymptotic expansion technique established
in [19], the Selberg integral formula and the Stirling formula, an explicit asymptotic
expansion, even valid for every α ∈ N, can be computed for the integral

K(z, N, α) = lim
m→∞ log



∫
RN �2α(k)

∏N
i=1 exp

(
−∑2m

j=2
zj/2−1

j
k
j
i

)
dki

∫
RN �2α(k)

∏N
i=1 exp

(
− k2

i

2

)
dki


 . (7.3)

(In what follows K(z, N, α) should be regarded as the asymptotic expansion, not the
underlying integral; an explicit expression is given in Appendix B.) Specializing to the
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α = 1 hermitian case yields a very compact result corresponding to the original formula
of Penner [21]:

K(z, N, 1) =
∑

g≥0,n>0
2−2g−n<0

(2g + n− 3)!(2g − 1)

(2g)!n!
b2gN

n(−z)2g+n−2

=
∑
�∈R

(−1)e�

|AutR(�)|N
f�(−z)e�−v� . (7.4)

Identifying n with f� and g as the genus yields the well known generating function of
the Euler characteristic χ(Mg,n) of the moduli of complex algebraic curves of genus g

and n marked points.
For the α = 2 symplectic case a similar simplification occurs and (7.3) can be

written in terms of the α = 1 hermitian result plus additional terms corresponding to
non-orientable surfaces of even genus g = 2q with m+ 1− 2q marked points

K(z, N, 2) = 1

2
K(z, 2N, 1)

− 1

2

∑
q≥0,n>0

1−2q−n<0

(2q + n− 2)!(22q−1 − 1)

(2q)! n!
b2q(2N)n(−z)2q+n−1.

(7.5)

Comparing (7.5) with (7.1), we obtain

∑
�: f�=n, g(S�)=2q

(−1)e�

|Aut(�)| =
1

2

(2q + n− 2)!(22q−1 − 1)

(2q)! n!
b2q, (7.6)

where the summation is over all connected non-orientable Möbius graphs with n > 0
faces that are drawn on a non-orientable surface of genus 2q satisfying a hyperbolicity
condition 1− 2q − n < 0. The formula (7.6) is in exact agreement with the formula for
the orbifold Euler characteristic of the moduli space of smooth real algebraic curves of
genus 2q with n marked points that can be found in [10 and 20].

To study the GOE-GSE duality for the Penner model, we need the expansion of
the analog of formula (7.3) valid for the single power of the Vandermonde determinant
relevant to the GOE model. Indeed an integral formula for

J (z, N, γ ) = lim
m→∞log



∫
RN |�(k)|2/γ

∏N
i=1 exp

(
−∑2m

j=2
zj/2−1

j
k
j
i

)
dki

∫
RN |�(k)|2/γ

∏N
i=1 exp

(
− k2

i

2

)
dki


 , (7.7)

valid for every positive integer γ ∈ N (i.e. for all powers 2/N of the Vandermonde) was
derived in [10] in order to compute (7.6). (See Appendix B.)

The matrix integrals K(z, N, α) and J (z, N, γ ) are closely related: Obviously

J (z, N, 1) = K(z, N, 1) . (7.8)
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The identity

J (2z, 2N, 2) = 1

2
J (z, 2N, 1)−

(
K(z, N, 2)− 1

2
K(z, 2N, 1)

)

= 1

2
J (z, 2N, 1)

+ 1

2

∑
q≥0,n>0

1−2q−n<0

(2q + n− 2)!(22q−1 − 1)

(2q)! n!
b2q(2N)n(−z)2q+n−1 , (7.9)

expresses the γ = 2 GOE case in terms of the γ = 1 oriented hermitian result and a
sum over non-orientable contributions with odd Euler characteristic. Notice, as claimed
above, in the graphical expansions of the orthogonal Penner model J (2z, 2N, 2) and the
symplectic Penner model K(z, N, 2), non-orientable surfaces of odd genera do not con-
tribute. This corresponds to the fact that the orbifold Euler characteristic of the moduli
space of smooth real algebraic curves of odd genus 2q+ 1 with n marked points is 0 for
any value of q ≥ 0 and n > 0.

More importantly, observe that the GSE and GOE formulæ (7.5) and (7.9) almost
coincide except that the GOE formula is for matrix size 2N and the non-orientable
odd Euler characteristic terms differ by an overall sign. (The appearance of 2z rather
than z will be cured by the appropriate normalization given below and in the master
formula (5.2).) This is precisely the duality (5.3).

Finally, we show that the duality between GOE and GSE extends to arbitrary positive
integers for the two types of Penner integrals introduced in this section. Let r ∈ N∪1/N

and set

I (z, N, r)

= lim
m→∞ log



∫
RN |�(k)|2r

∏N
i=1 exp

(
−∑2m

j=2
k
j
i

j

(
z

rN

)j/2−1
)
dki

∫
RN |�(k)|2r

∏N
i=1 exp

(
− k2

i

2

)
dki




∈ (Q[N, N−1, r, r−1])[[z]]. (7.10)

Then we have

I (z, N, r) =
{

K
(

z
αN

, N, α
)

, r = α ∈ N ,

J
( γ z

N
, N, γ

)
, r = γ−1 ∈ 1/N .

(7.11)

From inspection of the explicit asymptotic expansion formulæ of (B.1) and (B.9) pre-
sented in Appendix B, we obtain an extended duality

I (z, N, r) = I (z,−rN, r−1) (7.12)

for an arbitrary positive integer r . This is in agreement with the duality (5.3) for r = 1, 2.

8. The Central Limit Theorem

To prove a central limit theorem for large matrix size N , we need to show that the leading
dependence is Gaussian in the coupling constants tj . More precisely, define the Gaussian
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expectation value of f (X) for GOE (α = 1/2), GUE (α = 1), and GSE (α = 2) as

〈f (X)〉(N,α) =
∫

[dX]
(2α)

exp
(
− Nα

2 tr X2
)

f (X)

∫
[dX]

(2α)
exp

(
− Nα

2 tr X2
) , (8.1)

and consider

V (t, N, α) =

〈
exp

(∑
j

αtj
j

tr Xj
)〉

(N,α)

exp

(∑
j

αtj
j

〈
tr Xj

〉
(N,α)

) . (8.2)

The expansion formula (5.2) shows that the contribution of a connected Möbius graph

� ∈ G to log
〈
exp

(∑
j

αtj
j

tr Xj
)〉

(N,α)
is

2α
1
2 χ(S�)Nχ(S�)−v�

(3− α−1 − α)
1− 1

2 	�− 1
2 χ(S�)

(α−1/2 − α1/2)
	�

|Aut(�)|
∏
j

t
v

(j)
�

j . (8.3)

Since ∑
j

αtj

j

〈
tr Xj

〉
(N,α)

is the sum of all contributions from 1-vertex Möbius graphs, we see that log V (t, N, α)

has no terms coming from 1-vertex graphs. In particular, it has no terms with a positive
power of N . Indeed, the power of N in (8.3) is strictly positive only when χ(S�) = 2 and
v� = 1, i.e. � is an orientable planar graph with one vertex. Therefore, limN→∞ log V

(t, N, α) consists of contributions from graphs that have two or more vertices and
χ(S�) − v� = 0. But this is possible only when χ(S�) = v� = 2. In other words,
� is an orientable planar graph with exactly two vertices contributing (see (8.3))

2α

|Aut(�)| tj1 tj2 ,

where j1 and j2 are the valences of the two vertices of �. Altogether, we have established
the following

Theorem 8.1. The Central Limit Theorem for GOE (α = 1/2), GUE (α = 1) and GSE
(α = 2) ensembles is

lim
N→∞

log




〈
exp

(∑
j

αtj
j

tr Xj
)〉

(N,α)

exp

(∑
j

αtj
j

〈
tr Xj

〉
(N,α)

)




=
∑

� connected, oriented, planar
2-vertex ribbon graph

α

|AutR(�)| tj1 tj2 , (8.4)

where j1 and j2 are the valences of the two vertices of the ribbon graph �.

We notice that the formula is the same for all three ensembles except for the over-
all factor of α. In particular, only oriented planar ribbon graphs contribute in the large
N limit. This mechanism was observed long ago by ’t Hooft in the hope that large N

quantum chromodynamics could be solved exactly [24].
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9. Conclusions

Let us tabulate the patina of results gathered here:

• The asymptotic expansion of the three Gaussian random matrix ensembles is
expressed as a sum over Möbius graphs.

• These expansions are related by a duality

α −→ α−1 and N −→ −αN. (9.1)

The α = 1 GUE model is self-dual and sums over only ribbon graphs. The duality
between α = 1/2 GOE and α = 2 GSE models amounts to an equality of graphical
expansions up to a factor

(−1)χ(S�)

for any graph �.
• When specialized to Penner model couplings, the Selberg integral representation

yields an asymptotic expansion for all α ∈ N ∪ 1/N and the duality (9.1) holds for
this extended set of α’s.

Therefore, the first and probably most interesting question one might pose is whether our
graphical expansion formulæ can also generalized to the extended set of α ∈ N ∪ 1/N,
i.e.

�

�

�

�

Matrix Integrals
α = 1/2, 1, 2

�

�

�

�

Penner Model
α ∈ N ∪ 1/N

�

�

�

�

Graphical Expansion
α = 1/2, 1, 2, ??

�
�

���

�
�

���

Let us briefly postpone a discussion of this issue while enumerating several other ques-
tions for which we have no immediate answers:

(1) Do there exist matrix models where the duality holds exactly, without a factor
(−1)χ(S�)?

(2) What is the significance of the minus sign in the transformation

N →−αN ?

Is there an interpretation where traces over N × N matrices are replaced by a
supertrace and in turn bosonic matrix integrals by fermionic ones (cf. [9])?
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(3) Why the factor α in the transformation

N →−αN ?

Is there a generalization of the GSE dual to the GOE at odd values of N?

After this disquisitive interlude, we return to the postponed question. Let us examine
the generality of Lemma 3.3 which claimed that a topological invariant of a punctured
surface S� was obtained by counting signed configurations of units {1, e1 . . . , e2α−1}
on the associated graph �. Its proof relied on the following: (i) The units all square to
±1 and {±1,±ei} is a group. (ii) At any vertex, their product was±1 and therefore real.
(iii) Units whose square was (−)1 were joined by Wick contractions of (anti)symmetric
matrices.

Therefore generalized matrix models whose graphical expansion is completely deter-
mined via our methods can be written down based on a larger group of “imaginary”
units {±1,±fa;±ei : f 2

a = 1, e2
i = −1}. Simple examples are generated by consid-

ering elements drawn from Clifford algebras. i.e., the Pauli matrix representation of
the quaternions can be generalized to larger sets of higher dimensional Dirac matrices.
Although these Clifford type models seem not to generate theories with the new values
of α exhibited in the Penner model, it would be interesting to investigate whether new
matrix models of this type can indeed be constructed.

Acknowledgement. The authors thank G. Kuperberg, M. Penkava, A. Schilling, A. Schwarz, A. Soshni-
kov, W. Thurston and J. Yu for both stimulating and useful discussions.

Appendix

A. Quaternionic Feynman Calculus

Since the quaternions are the last real associative division algebra, it is natural to develop
a manifestly quaternionic Feynman calculus. Again, let us consider GOE, GUE and GSE
models all at once via the unified notation

X = S +
β−1∑
i=1

eiAi , (A.1)

where the N ×N matrices X are real, complex or quaternionic self-adjoint

X† ≡ X
� = X , ei ≡ −ei , (A.2)

depending on the value of β = 1, 2 or 4, respectively.
To begin, we need a shift identity

exp

(
1

2
tr
(
B�X +XB�

))
f (B) = f (X + B) , (A.3)

where the “background variable”

B ≡ Ŝ +
∑

i

eiÂi = B† (A.4)
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and the N ×N matrix of derivatives ∂ is given by

∂ab =




1
2

(
∂

∂Ŝab −
∑

i ei
∂

∂Âab
i

)
, a �= b ,

∂

∂Ŝaa , a = b .

(A.5)

The identity (A.3) holds thanks to the commutation relations

[1

2
tr
(
∂�X +X∂�

)
, B
]
= X . (A.6)

Note also that
[
∂,

1

2
tr
(
B�X +XB�

)]
= X , (A.7)

although [∂, B] = I only for the real and complex cases β = 1, 2.
We may now rewrite matrix integration as differentiation5

∫
[dX]

(4)
exp

(
− 1

2
tr X2 +

∞∑
j=1

tj

j
tr Xj

)

=
∫

[dX]
(4)

exp
(
− 1

2
tr X2 +

∞∑
j=1

tj

j
tr (X + B)j

)
∣∣∣∣∣∣
B=O

=
∫

[dX]
(4)

exp
(
− 1

2
tr
(
X − ∂�

)2+ 1

2
tr ∂�2

)
exp
( ∞∑

j=1

tj

j
tr Bj

)
∣∣∣∣∣∣
B=O

=
(∫

[dX]
(4)

exp
(
− 1

2
tr X2

))
exp
(1

2
tr ∂2

)
exp
( ∞∑

j=1

tj

j
tr Bj

)
∣∣∣∣∣∣
B=O

. (A.8)

The first factor on the last line is just an overall normalization while the two exponentials
can be expanded in terms of Feynman diagrams: the nth order term in the expansion of
each exponential is interpreted as either n edges or n vertices, respectively.

Let us give some details: The operator 1
2 tr ∂2 acting on a quantum variable, yields

[
1

2
tr ∂2, B] = ∂� , (A.9)

which is represented graphically as attaching a ribbon edge to a vertex since the operator
1
2 tr ∂2 is to be viewed as an edge. Note that by this rule, a vertex emitting a Bab is
replaced with one emitting ∂ba which amounts to a twist. Attaching the other end to an
adjacent vertex yields

(
∂abBcd

)
= 1

2
β δacδbd + 1

2
(2− β) δadδbc . (A.10)

5 The result is equivalent to the one obtained using a Schwinger source term. The reformulation pre-
sented here is often called the background field formalism; a simple account may be found in the on-line
textbook [22].
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Note that the brackets on the left hand sides above indicate that we are computing the
derivative rather than allowing it to continue acting to the right as an operator. In partic-
ular, observe that for the GUE case, β = 2, so no twisted ribbon graphs can appear.

For the GOE and GUE models we are done, one simply attaches all possible edges
to vertices using the above rules and finds the usual known results. The symplectic case
is more subtle however, thanks to the quaternionic non-commutativity of ∂ and B. In
particular

(
∂abf (B) Bcd

)
�=
(
∂abf (B)

)
Bcd + f (B)

(
∂abBcd

)
(A.11)

for some function f of the quaternionic matrix B. i.e., the quaternion valued operator ∂

does not satisfy the Leibniz rule. However, a generalized Leibniz rule does apply: First
note that for any

Q = S +
∑
α

eαAα , (A.12)

where the real matrices S and Aα need not have any definite symmetry properties (so
that Q is not necessarily self adjoint) we have6

∑
α

eαQ eα = − Q+ (2− β) Q . (A.13)

Therefore we have the generalized Leibniz rule

∂ab

(
Q Bcd

)
−
(
∂abQ

)
Bcd = δacδbd Q− 1

2
(2− β)(δacδbd − δadδbc)Q . (A.14)

Note that for β = 1, 2 the right hand side is equal to Q
(
∂abBcd

)
, expressing the com-

mutativity of real and complex numbers. This relation is the central graphical rule for
our quaternionic Feynman calculus and is depicted in Fig. A.1. Note that it reverts to the
rule (A.10) when Q = 1.

It is now possible to compute any term in the expansion of (A.8) in terms of graphs.
However, for quaternionic matrices, when connecting vertices with ribbon edges, inter-
mediate vertices and unconnected edges may be twisted and/or flipped according to (A.1).
It is easy, but tedious to verify that the results for simple graphs coincide with our general
formula (5.2).

6 When β = 1, the sum on the left hand side is empty and equal to zero, while the right-hand side
vanishes for real Q.
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∂�
(

Q B
) (

∂� Q
)

B
︷ ︸︸ ︷ ︷ ︸︸ ︷

−

= − +

Q 2−β
2 Q 2−β

2 Q
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

Fig. A.1. Quaternionic Feynman rule. Observe how connecting vertices with edges change vertices yet
to be connected

B. Generalized Penner Model

In this Appendix, we derive the asymptotic expansion formula

K(z, N, α)

= lim
m→∞ log



∫
RN �2α(k)

∏N
i=1 exp

(
−∑2m

j=2
zj/2−1

j
k
j
i

)
dki

∫
RN �2α(k)

∏N
i=1 exp

(
− k2

i

2

)
dki




=
∞∑

m=1

b2m

2m (2m− 1)
Nz2m−1 +

∞∑
m=1

1

4m
(−1)mαmNmzm

+ 1

2

∞∑
m=1

[ m
2 ]∑

q=0

(−1)m(m− 1)!b2q

(2q)!(m+ 1− 2q)!
αm(α1−2q − 1)Nm+1−2qzm

−
∞∑

m=1

[ m
2 ]∑

q=0

[ m+1
2 ]−q∑
s=0

(−1)m(m− 1)!b2qb2s

(2q)!(2s)!(m+ 2− 2q − 2s)!
αm+1−2qNm+2−2q−2szm ,

(B.1)

which is valid for every positive integer α. Here the bn’s are the Bernoulli numbers
defined by

∞∑
n=0

bn

tn

n!
= t

et − 1
.

The key techniques are the Selberg integration formula, Stirling’s formula for �(1/z)

and the asymptotic analysis of [19]. First we note that as an asymptotic series in z when
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z→ 0 while keeping z > 0, we have

lim
m→∞ log



∫

RN

�2α(k)

N∏
i=1

exp
(
−

2m∑
j=2

zj/2−1

j
k
j
i

)
dki




= log

((
z

1
2 e

1
z z

1
z

)n

z
αN(N−1)

2

∫
[0,∞)N

�2α(k)

N∏
i=1

eki k
1
z

i dki

)
. (B.2)

(For the mechanism changing the integration from R
N to [0,∞)N , we refer to [19].)

This integral can be calculated by the Selberg integration formula:

∫
[0,∞)N

�2α(k)

N∏
i=1

eki k
1
z

i dki =
N−1∏
j=0

�(1+ α + jα)�(1+ 1
z
+ jα)

�(1+ α)
.

Therefore, we have

lim
m→∞ log



∫

RN

�2α(k)

N∏
i=1

exp
(
−

2m∑
j=2

zj/2−1

j
k
j
i

)
dki




= c + N

2
log z+ N

z
+ N

z
log z+ αN(N − 1)

2
log z+ log

N−1∏
j=0

�

(
1+ 1

z
+ jα

)
,

(B.3)

where c is the constant term independent of z. Since (B.1) does not have any constant
term relative to z, here and below we ignore all constant terms independent of z (but
possibly N dependent). The product of �-functions can be calculated by the recursion
formula, noticing that α is an integer:

N−1∏
j=0

�

(
1+ 1

z
+ jα

)
= �(1/z)N

N−1∏
i=0

iα∏
j=0

(
1

z
+ iα − j

)

= �(1/z)N
(

1

z

)N N−1∏
i=0

α∏
j=1

(
1

z
+ iα + j

)N−i−1

= �(1/z)N
(

1

z

)N N−1∏
i=1

α−1∏
j=0

(
1+ z(1+ (i − 1)α + j)

z

)N−i

.

(B.4)
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We now apply Stirling’s formula for log �(1/z) to obtain, up to a constant term:

log
N−1∏
j=0

�

(
1+ 1

z
+ jα

)
= −N

z
log z− N

z
+ N

2
log z+

∞∑
m=1

b2m

2m(2m− 1)
Nz2m−1

−N log z− αN(N − 1)

2
log z

+
∞∑

m=1

N−1∑
i=1

α−1∑
j=0

1

m
(−1)m−1(N − i)(1+ (i − 1)α + j)mzm.

(B.5)

We note that all negative powers of z and log z related terms in (B.3) cancel out
using (B.5). Finally, we obtain

K(z, N, α) =
∞∑

m=1

b2m

2m(2m− 1)
Nz2m−1

+
∞∑

m=1

N−1∑
i=0

α∑
j=1

1

m
(−1)m−1(N − 1− i)(iα + j)mzm. (B.6)

This last sum of powers can be calculated using Bernoulli polynomials, from which (B.1)
follows.

Using a formula for Bernoulli numbers,

(1− 2n)b2n =
n∑

q=0

(
2n

2q

)
b2qb2n−2q =

n∑
q=0

(
2n

2q

)
b2qb2n−2q22q, n �= 1,

and noting that b2 = 1/6, we recover the original formula of Penner for α = 1 [21]:

K(z, N, 1) = −
∞∑

m=1

b2m

2m
Nz2m−1 +

∞∑
m=1

[ m
2 ]∑

q=0

(m− 1)!(2q − 1)

(2q)!(m+ 2− 2q)!
b2qNm+2−2q(−z)m

=
∑

g≥0,n>0
2−2g−n<0

(2g + n− 3)!(2g − 1)

(2g)!n!
b2gN

n(−z)2g+n−2

=
∑
�∈R

(−1)e�

|AutR(�)|N
f�(−z)e�−v� . (B.7)

For α = 2, (B.1) simplifies again:

K(z, N, 2) = −
∞∑

m=1

b2m

2m
Nz2m−1

+ 1

2

∞∑
m=1

[ m
2 ]∑

q=0

(m− 1)!(2q − 1)

(2q)!(m+ 2− 2q)!
b2q2m+2−2qNm+2−2q(−z)m
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− 1

2

∞∑
m=1

[ m
2 ]∑

q=0

(m− 1)!(22q−1 − 1)

(2q)!(m+ 1− 2q)!
b2q2m+1−2qNm+1−2q(−z)m. (B.8)

Note that the first two lines of (B.8) are identical to the Penner model 1
2K(z, 2N, 1).

The following integral formula, again valid for every positive integer γ ∈ N, has
been established in [10]:

J (z, N, γ )

= lim
m→∞ log



∫
RN |�(k)|2/γ

∏N
i=1 exp

(
−∑2m

j=2
zj/2−1

j
k
j
i

)
dki

∫
RN |�(k)|2/γ

∏N
i=1 exp

(
− k2

i

2

)
dki




=
∞∑

m=1

b2m

2m (2m− 1)

N

γ

(
z

γ

)2m−1

+
∞∑

m=1

1

4m
(−1)mNm

(
z

γ

)m

− 1

2

∞∑
m=1

[ m
2 ]∑

q=0

(−1)m(m− 1)!b2q

(2q)!(m+ 1− 2q)!

(
1− 1

γ 1−2q

)
Nm+1−2q

(
z

γ

)m

−
∞∑

m=1

[ m
2 ]∑

q=0

[ m+1
2 ]−q∑
s=0

(−1)m(m− 1)!b2qb2s

(2q)!(2s)!(m+ 2− 2q − 2s)!
· 1

γ 1−2s
Nm+2−2q−2s

(
z

γ

)m

.

(B.9)

Our duality (7.12) for the generalized Penner model follows from comparing (B.1)
with (B.9).
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