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Abstract. We show that the Poincaré polynomial associated with the orbifold cell decomposition

of the moduli space of smooth algebraic curves with distinct marked points satisfies a topological

recursion formula of the Eynard-Orantin type. The recursion uniquely determines the Poincaré
polynomials from the initial data. Our key discovery is that the Poincaré polynomial is the Laplace

transform of the number of Grothendieck’s dessins d’enfants.
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1. Introduction

The Euler characteristic of the moduli spaceMg,n of smooth algebraic curves of genus g
and n distinct marked points has a closed formula

(1.1)
χ (Mg,n) = (−1)n−1 (2g − 3 + n)!

(2g − 2)!
· ζ(1− 2g)

= (−1)n
(2g − 3 + n)!

(2g)!
(2g − 1)b2g

due to Harer and Zagier [14], where ζ(s) is the Riemann zeta function and br the Bernoulli
number defined by

x

ex − 1
=
∑
r=0

br
r!
xr.

A relation of this formula to quantum field theory, in particular matrix models, was discov-
ered by Penner [28], and a proof of (1.1) in terms of an asymptotic analysis of the Feynman
diagram expansion of the Penner matrix model was established in [21].

A Feynman diagram for the Penner model is a double-edge graph of ’t Hooft [32], which
we call a ribbon graph following Kontsevich [16]. The reason that ribbon graphs appear in
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2 M. MULASE AND M. PENKAVA

the calculation of the Euler characteristic of the moduli space lies in the isomorphism of
topological orbifolds

(1.2) Mg,n × Rn
+
∼= RGg,n

due to Harer [13], Mumford [25], and Strebel [31]. Here

(1.3) RGg,n =
∐

Γ ribbon graph
of type (g,n)

Re(Γ)
+

Aut(Γ)

is the smooth orbifold [30] consisting of metric ribbon graphs of a given topological type
(g, n) with valence 3 or more, e(Γ) is the number of edges of the ribbon graph Γ, and Aut(Γ)
is the group of ribbon graph automorphisms of Γ that fix every face. The Penner model is
the generating function of the Euler characteristic of RGg,n. As an element of the formal
power series in two variables z and M , we have the equality

(1.4) log
∫
HM

exp

− ∞∑
j=2

(
√
z)j−2

j
trace(Xj)

 dX

=
∑

g≥0, n>0
2g−2+n>0

(−1)n χ (RGg,n)
Mn

n!
z2g−2+n,

where the parameter M appears as the size of the Hermitian matrix X in the left-hand
side, HM is the linear space of M×M Hermitian matrices, and dX is a suitably normalized
Lebesgue measure on HM . We refer to [21] for the precise meaning of the equality.

Although the matrix integral (1.4) gives an effective tool to calculate the Euler charac-
teristic

χ (RGg,n) =
∑

Γ ribbon graph
of type (g,n)

(−1)e(Γ)

|Aut(Γ)|
,

it does not tell us anything about more refined information of the orbifold cell structure of
RGg,n. One can ask: Isn’t there any effective tool to find more numerical information about
the orbifold RGg,n?

The purpose of this paper is to answer this question. Our answer is again based on an
idea from physics, this time utilizing the Eynard-Orantin topological recursion theory [8].

For a fixed (g, n) in the stable range, i.e., 2g−2+n > 0, we choose n variables t1, t2, . . . , tn,
and define the function

z(ti, tj) =
(ti + 1)(tj + 1)

2(ti + tj)
.

An edge η of a ribbon graph Γ bounds two faces, say iη and jη. These two faces may be
actually the same. Now we define the Poincaré polynomial of RGg,n in the z-variables by

(1.5) Fg,n(t1, . . . , tn) =
∑

Γ ribbon graph
of type (g,n)

(−1)e(Γ)

|Aut(Γ)|
∏
η edge
of Γ

z
(
tiη , tjη

)
,

which is a polynomial in z(ti, tj) but actually a symmetric rational function in t1, . . . , tn.
Our main theorem of this paper is a topological recursion formula that uniquely determines
the Poincaré polynomials. To state the formula in a compact fashion, we use the following
notation. Let N = {1, 2, . . . , n} be the index set labeling the marked points of a smooth
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algebraic curve. The faces of a ribbon graph of type (g, n) are also labeled by the same set.
For every subset I ⊂ N , we denote

tI = (ti)i∈I .

Theorem 1.1. The Poincaré polynomial Fg,n(tN ) with (g, n) in the stable range

2g − 2 + n > 0

is uniquely determined by the following topological recursion formula from the initial values
F0,3(t1, t2, t3) and F1,1(t1).

(1.6) Fg,n(tN )

= − 1
16

∫ t1

−1

[
n∑
j=2

tj
t2 − t2j

(
(t2 − 1)3

t2
∂

∂t
Fg,n−1(t, tN\{1,j})−

(t2j − 1)3

t2j

∂

∂tj
Fg,n−1(tN\{1})

)

+
n∑
j=2

(t2 − 1)2

t2
∂

∂t
Fg,n−1(t, tN\{1,j})

+
1
2

(t2 − 1)3

t2
∂2

∂u1∂u2

(
Fg−1,n+1(u1, u2, tN\{1})

+
stable∑

g1+g2=g
ItJ=N\{1}

Fg1,|I|+1(u1, tI)Fg2,|J |+1(u2, tJ)

)∣∣∣∣∣
u1=u2=t

]
dt.

Here the last sum is taken over all partitions g1 + g2 = g and set partitions I t J = N \ {1}
subject to the stability conditions 2g1 − 1 + |I| > 0 and 2g2 − 1 + |J | > 0.

Remark 1.2. (1) It was shown in [5] that the symmetric differential d1⊗· · ·⊗dnFg,n(tN )
satisfies an Eynard-Orantin type topological recursion. The relation between the
Euler characteristic of Mg,n and the Eynard-Orantin theory was first pointed out
in [27].

(2) The word topological recursion refers to the inductive structure on the quantity
2g − 2 + n, which is the absolute value of the Euler characteristic of an oriented
n-punctured surface of genus g. Reduction of the quantity 2g − 2 + n by one has
appeared in many recent works on moduli theory of curves, Gromov-Witten theory
and related topics. This includes the operation of cutting off a pair of pants from
a bordered surface as in [19, 20], the Hurwitz move or the cut-and-join equation of
Hurwitz numbers [11, 15, 33], the edge removal operation on RGg,n of [5, 26], and
many generalizations including [3, 4, 7, 17, 18, 23, 24, 35, 36].

By the definition of Fg,n(tN ) and the fact that z(1, 1) = 1, the Poincaré polynomial
recovers the Euler characteristic of the moduli space Mg,n as the special value

Fg,n(1, 1, . . . , 1) = χ (RGg,n) = (−1)nχ (Mg,n) .

The Poincaré polynomial becomes particularly simple when n = 1. We have

(1.7) Fg,1(t) =
∑

Γ ribbon graph
of type (g,1)

(−1)e(Γ)

|Aut(Γ)|
ze(Γ),



4 M. MULASE AND M. PENKAVA

where

(1.8) z = z(t, t) =
(t+ 1)2

4t
.

An immediate generalization of the above formula is the diagonal value

(1.9) Fg,n(t, t, . . . , t) =
∑

Γ ribbon graph
of type (g,n)

(−1)e(Γ)

|Aut(Γ)|
ze(Γ).

Because of this formula our terminology of calling Fg,n(tN ) the “Poincaré polynomial” is
justified.

Although it is not obvious from the definition or even from Theorem 1.1, the symmetric
rational function Fg,n(t1, . . . , tn) is actually a Laurent polynomial. Therefore, it makes sense
to extract the highest degree terms. If we naively extract the top degree term from z(ti, tj),
then we obtain

ztop(ti, tj) =
titj

2(ti + tj)
.

Since the number of edges of a ribbon graph is maximum for a trivalent graph, we obtain
the following.

Theorem 1.3. The Poincaré polynomial Fg,n(tN ) is a Laurent polynomial in t1, t2, . . . , tn
of degree 3(2g − 2 + n) such that every monomial term contains only an odd power of each
tj. The leading homogeneous polynomial F top

g,n (tN ) of Fg,n(tN ) is given by

(1.10)

F top
g,n (tN ) =

∑
Γ trivalent ribbon
graph of type (g,n)

(−1)e(Γ)

|Aut(Γ)|
∏
η edge
of Γ

tiη tjη
2
(
tiη + tjη

)
=

(−1)n

25g−5+2n

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏
j=1

(2dj)!
dj !

(
tj
2

)2dj+1

,

where

〈τd1 · · · τdn〉g,n =
∫
Mg,n

c1(L1)d1 · · · c1(Ln)dn

are the ψ-class intersection numbers of the tautological cotangent line bundles L1, . . . ,Ln
on Mg,n. The above formula is identical to the boxed formula of Kontsevich [16, page
10]. The topological recursion (1.6) restricts to the leading terms F top

g,n (tN ) and recovers the
Virasoro constraint condition, or the DVV-formula, of the ψ-class intersection numbers due
to Dijkgraaf-Verlinde-Verlinde [6] and Witten [34].

It requires the deep theory of Mirzakhani [19, 20] to relate the leading terms F top
g,n (tN )

and the intersection numbers because of the difference between Mg,n and Mg,n. The
contribution of Theorem 1.3 is to identify the origin of the Virasoro constraint condition as
the edge-removal operation of ribbon graphs of [5, 26], and to clarify the relation between
the combinatorics of counting problems and the geometry of intersection numbers. For the
moduli space of vector bundles on curves, Harder and Narasimhan used Deligne’s solution
of the Weil conjecture to obtain the Poincaré polynomial. Although what we are dealing
with in this article is much simpler than the situation of [12], we find that again a counting
problem plays a key role in calculating the Poincaré polynomial. Here the critical differences
are that we use lattice point counting rather than moduli theory over the finite field Fq,
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and that through (1.10) the counting problem also leads to the intersection numbers of the
compactified moduli space Mg,n.

We note that the polynomial situation of Theorem 1.3 is similar to the case of simple
Hurwitz numbers studied in [7, 24]. Indeed, the result of [24] is that the Laplace transform
of simple Hurwitz numbers as a function of a partition is a polynomial that satisfies a topo-
logical recursion. This recursion proves the DVV formula of [6, 16, 34] when restricted to
the leading terms, and also proves the λg-conjecture (the theorem of [9, 10]) when restricted
to the lowest degree homogeneous terms. In a surprising similarity, we show that the Lau-
rent polynomial Fg,n(t1, . . . , tn) is the Laplace transform of the number of Grothendieck’s
dessins d’enfants [1, 22, 29].

One can ask: Why does the Laplace transform appear in this context? A short answer
is that the Laplace transform here is in fact the mirror map that transforms the A-model
side of topological string theory to the B-model side. We do not investigate this idea any
further in this paper, and refer to the introduction of [5, 7, 24] for more discussion.

This paper is organized as follows. We review the necessary information on the ribbon
graph complex in Section 2. In Section 3, we recall the topological recursion for the number
of lattice points of RGg,n that was established in [5]. We then show in Section 4 that the
Laplace transform of this number is exactly the Poincaré polynomial of (1.5). A differential
equation for the Poincaré polynomials is derived in Section 5. The initial values of the
recursion formula are calculated in Section 6. In the final section we prove Theorem 1.1
and Theorem 1.3.

2. The combinatorial model of the moduli space

We begin by listing basic facts about ribbon graphs and the combinatorial model for the
moduli spaceMg,n due to Harer [13], Mumford [25] and Strebel [31], following [22]. Ribbon
graphs are often referred to as Grothendieck’s dessins d’enphants. The standard literature
on this subject is [29], which contains Grothendieck’s esquisse. We do not consider any
number theoretic aspects of the dessins in this paper.

A ribbon graph of topological type (g, n) is the 1-skeleton of a cell-decomposition of a
closed oriented topological surface Σ of genus g that decomposes the surface into a disjoint
union of v 0-cells, e 1-cells, and n 2-cells. The Euler characteristic of the surface is given
by 2 − 2g = v − e + n. The 1-skeleton of a cell-decomposition is a graph Γ drawn on Σ,
which consists of v vertices and e edges. An edge can form a loop. We denote by ΣΓ the
cell-decomposed surface with Γ its 1-skeleton. Alternatively, a ribbon graph can be defined
as a graph with a cyclic order given to the incident half-edges at each vertex. By abuse of
terminology, we call the boundary of a 2-cell of ΣΓ a boundary of Γ, and the 2-cell itself as
a face of Γ.

A metric ribbon graph is a ribbon graph with a positive real number (the length) assigned
to each edge. For a given ribbon graph Γ with e = e(Γ) edges, the space of metric ribbon
graphs is Re(Γ)

+ /Aut(Γ), where the automorphism group acts by permutations of edges (see
[22, Section 1]). We restrict ourselves to the case that Aut(Γ) fixes each 2-cell of the cell-
decomposition. We also require that every vertex of a ribbon graph has degree (i.e., valence)
3 or more. Using the canonical holomorphic coordinate systems on a topological surface
of [22, Section 4] and the Strebel differentials [31], we have an isomorphism of topological
orbifolds [13, 25]

(2.1) Mg,n × Rn
+
∼= RGg,n.
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Here

RGg,n =
∐

Γ ribbon graph
of type (g,n)

Re(Γ)
+

Aut(Γ)

is the orbifold consisting of metric ribbon graphs of a given topological type (g, n). The
gluing of orbi-cells is done by making the length of a non-loop edge tend to 0. The space
RGg,n is a smooth orbifold (see [22, Section 3] and [30]). We denote by π : RGg,n −→ Rn

+

the natural projection via (2.1), which is the assignment of the collection of perimeter length
of each boundary to a given metric ribbon graph.

Take a ribbon graph Γ. Since Aut(Γ) fixes every boundary component of Γ, they are
labeled by N = {1, 2 . . . , n}. For the moment let us give a label to each edge of Γ by an
index set E = {1, 2, . . . , e}. The edge-face incidence matrix is defined by

(2.2)
AΓ =

[
aiη
]
i∈N, η∈E ;

aiη = the number of times edge η appears in face i.

Thus aiη = 0, 1, or 2, and the sum of the entries in each column is always 2. The Γ contri-
bution of the space π−1(p1, . . . , pn) = RGg,n(p) of metric ribbon graphs with a prescribed
perimeter p = (p1, . . . , pn) is the orbifold polytope

PΓ(p)/Aut(Γ), PΓ(p) = {x ∈ Re
+ | AΓx = p},

where x = (`1, . . . , `e) is the collection of edge lengths of the metric ribbon graph Γ. We
have

(2.3)
∑
i∈N

pi =
∑
i∈N

∑
η∈E

aiη`η = 2
∑
η∈E

`η.

3. Topological recursion for the number of integral ribbon graphs

In this section we recall the topological recursion for the number of metric ribbon graphs
RG

Z+
g,n whose edges have integer lengths, following [5]. We call such a ribbon graph an

integral ribbon graph. We can interpret an integral ribbon graph as Grothendieck’s dessin
d’enfant by considering an edge of integer length as a chain of edges of length one connected
by bivalent vertices, and reinterpreting the notion of Aut(Γ) suitably. Since we do not go
into the number theoretic aspects of dessins, we stick to the more geometric notion of
integral ribbon graphs.

Definition 3.1. The weighted number
∣∣RGZ+

g,n(p)
∣∣ of integral ribbon graphs with prescribed

perimeter lengths p ∈ Zn+ is defined by

(3.1) Ng,n(p) =
∣∣RGZ+

g,n(p)
∣∣ =

∑
Γ ribbon graph
of type (g,n)

∣∣{x ∈ Ze(Γ)
+ | AΓx = p}

∣∣
|Aut(Γ)|

.

Since the finite set {x ∈ Ze(Γ)
+ | AΓx = p} is a collection of lattice points in the polytope

PΓ(p) with respect to the canonical integral structure Z ⊂ R of the real numbers, Ng,n(p)
can be thought of counting the number of lattice points in RGg,n(p) with a weight factor
1/|Aut(Γ)| for each ribbon graph. The function Ng,n(p) is a symmetric function in p =
(p1, . . . , pn) because the summation runs over all ribbon graphs of topological type (g, n).
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Remark 3.2. Since the integral vector x is restricted to take strictly positive values, we
would have Ng,n(p) = 0 if we were to substitute p = 0. This normalization is natural from
the point of view of lattice point counting and Grothendieck’s dessins d’enphants. However,
we do not make such a substitution in this paper because we consider p as a strictly positive
integer vector. This situation is similar to Hurwitz theory [7, 24], where a partition µ is
a strictly positive integer vector that plays the role of our p. We note that a different
assignment of values was suggested in [26, 27].

For brevity of notation, we denote by pI = (pi)i∈I for a subset I ∈ N = {1, 2 . . . , n}. The
cardinality of I is denoted by |I|. The following topological recursion formula was proved
in [5] using the idea of ciliation of a ribbon graph.

Theorem 3.3 ([5]). The number of integral ribbon graphs with prescribed boundary lengthes
satisfies the topological recursion formula

(3.2) p1Ng,n(pN ) =
1
2

n∑
j=2

[ p1+pj∑
q=0

q(p1 + pj − q)Ng,n−1(q, pN\{1,j})

+H(p1 − pj)
p1−pj∑
q=0

q(p1 − pj − q)Ng,n−1(q, pN\{1,j})

−H(pj − p1)
pj−p1∑
q=0

q(pj − p1 − q)Ng,n−1(q, pN\{1,j})

]

+
1
2

∑
0≤q1+q2≤p1

q1q2(p1 − q1 − q2)

[
Ng−1,n+1(q1, q2, pN\{1})

+
stable∑

g1+g2=g
ItJ=N\{1}

Ng1,|I|+1(q1, pI)Ng2,|J |+1(q2, pJ)

]
.

Here

H(x) =

{
1 x > 0
0 x ≤ 0

is the Heaviside function, and the last sum is taken for all partitions g = g1 + g2 and
I t J = N \ {1} subject to the stability conditions 2g1 − 1 + I > 0 and 2g2 − 1 + |J | > 0.

4. The Laplace transform of the number of integral ribbon graphs

Let us consider the Laplace transform

(4.1) Lg,n(w1, . . . , wn) def=
∑

p∈Zn+

Ng,n(p)e−〈p,w〉

of the number of integral ribbon graphs Ng,n(p), where 〈p, w〉 = p1w1 + · · ·+pnwn, and the
summation is taken over all integer vectors p ∈ Zn+ of strictly positive entries. In this section
we prove that after the coordinate change of [5] from the w-coordinates to the t-coordinates
defined by

(4.2) e−wj =
tj + 1
tj − 1

, j = 1, 2, . . . , n,
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the Laplace transform Lg,n(wN ) becomes the Poincaré polynomial

(4.3) Fg,n(t1, . . . , tn) = Lg,n
(
w1(t), . . . , wn(t)

)
.

The Laplace transform Lg,n(wN ) can be evaluated using the definition of the number of
integral ribbon graphs (3.1). Let aη be the η-th column of the incidence matrix AΓ so that

(4.4) AΓ =
[
a1

∣∣a2

∣∣ · · · ∣∣ae(Γ)

]
.

Then

(4.5) Lg,n(wN ) =
∑

p∈Zn+

Ng,n(p)e−〈p,w〉

=
∑

Γ ribbon graph
of type (g,n)

∑
p∈Zn+

1
|Aut(Γ)|

∣∣{x ∈ Ze(Γ)
+ | AΓx = p}

∣∣e−〈p,w〉
=

∑
Γ ribbon graph
of type (g,n)

1
|Aut(Γ)|

∑
x∈Ze(Γ)

+

e−〈AΓx,w〉

=
∑

Γ ribbon graph
of type (g,n)

1
|Aut(Γ)|

∏
η edge
of Γ

∞∑
`η=1

e−〈aη ,w〉`η

=
∑

Γ ribbon graph
of type (g,n)

1
|Aut(Γ)|

∏
η edge
of Γ

e−〈aη ,w〉

1− e−〈aη ,w〉
.

Every edge η bounds two faces, which we call face i+η and face i−η . When aiη = 2, these
faces are the same. We then calculate

(4.6)
e−〈aη ,w〉

1− e−〈aη ,w〉
= −z

(
ti+η , ti−η

)
,

where

(4.7) z(ti, tj)
def=

(ti + 1)(tj + 1)
2(ti + tj)

.

This follows from (4.2) and

e−(wi+wj)

1− e−(wi+wj)
=

(ti+1)(tj+1)
(ti−1)(tj−1)

1− (ti+1)(tj+1)
(ti−1)(tj−1)

= −(ti + 1)(tj + 1)
2(ti + tj)

= −z(ti, tj),

e−2wi

1− e−2wi
= −(ti + 1)2

4ti
= −z(ti, ti).

Note that since z(ti, tj) is a symmetric function, which face is named i+η or i−η does not
matter. From (4.5) and (4.6), we have established

Theorem 4.1. The Laplace transform Lg,n(wN ) in terms of the t-coordinates (4.2) is the
Poincaré polynomial

(4.8) Fg,n(tN ) =
∑

Γ ribbon graph
of type (g,n)

(−1)e(Γ)

|Aut(Γ)|
∏
η edge
of Γ

z
(
ti+η , ti−η

)
.
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Corollary 4.2. The evaluation of Fg,n(tN ) at t1 = · · · = tn = 1 gives the Euler character-
istic of RGg,n

(4.9) Fg,n(1, 1 . . . , 1) = χ (RGg,n) = (−1)nχ (Mg,n) .

Furthermore, if we evaluate at tj = −1 for any j, then we have

(4.10) Fg,n(t1, t2 . . . , tn)
∣∣
tj=−1

= 0

as a function in the rest of the variables tN\{j}.

Proof. The Euler characteristic calculation immediately follows from z(1, 1) = 1.
Consider a ribbon graph Γ of type (g, n). Its j-th face has at least one edge on its

boundary. Therefore, ∏
η edge of Γ

z
(
ti+η , ti−η

)
has a factor (tj + 1) by (4.7). It holds for every ribbon graph Γ in the summation of (4.8).
Therefore, (4.10) follows. �

5. Topological recursion for the Poincaré polynomials

In this section we prove that the Poincaré polynomials satisfy a differential equation.

Theorem 5.1. The Poincaré polynomial Fg,n(tN ) satisfies the following differential recur-
sion equation.

(5.1)
∂

∂t1
Fg,n(tN )

= − 1
16

n∑
j=2

[
tj

t21 − t2j

(
(t21 − 1)3

t21

∂

∂t1
Fg,n−1(tN\{j})−

(t2j − 1)3

t2j

∂

∂tj
Fg,n−1(tN\{1})

)]

− 1
16

n∑
j=2

(t21 − 1)2

t21

∂

∂t1
Fg,n−1(tN\{j})

− 1
32

(t21 − 1)3

t21

∂2

∂u1∂u2

[
Fg−1,n+1(u1, u2, tN\{1})

+
stable∑

g1+g2=g
ItJ=N\{1}

Fg1,|I|+1(u1, tI)Fg2,|J |+1(u2, tJ)

]∣∣∣∣∣
u1=u2=t1

.

Proof. We first calculate the Laplace transform of (3.2) and establish a differential equation
for Lg,n(wN ). We then change the variables from wN to tN using (4.2). The operation we
need to do is to multiply both sides of (3.2) by e−〈p,w〉 and take the sum with respect to all
integers p1 ≥ 0 and pN\{1} ∈ Zn−1

+ . Since the left-hand side of (3.2) is p1Ng,n(pN ), we can
allow p1 = 0 in the summation.

The result of this operation to the left-hand side of (3.2) is − ∂
∂w1

Lg,n(wN ). The operation
applied to the first line of the right-hand side gives

(5.2)
n∑
j=2

∞∑
p1=0

∑
pN\{1}∈Zn−1

+

p1+pj∑
q=0

q
p1 + pj − q

2
Ng,n−1(q, pN\{1,j})e

−〈p,w〉
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=
n∑
j=2

∞∑
q=0

∑
pN\{1,j}∈Zn−2

+

q Ng,n−1(q, pN\{1,j})e
−〈pN\{1,j},wN\{1,j}〉e−qw1

×
∞∑
`=0

`e−2`w1

q+2`∑
pj=1

epj(w1−wj),

where we set p1 + pj − q = 2`. Note that Ng,n(pN ) = 0 unless p1 + · · ·+ pn is even, because
of (2.3). Therefore, in the Laplace transform we are summing over all pN ∈ Zn+ such that
p1 + · · ·+pn ≡ 0 mod 2. Since Ng,n−1(q, pN\{1,j}) = 0 unless q+p2 + · · ·+ p̂j + · · ·+pn ≡ 0
mod 2, only those p1, pj and q satisfying p1+pj−q ≡ 0 mod 2 contribute in the summation.
Thus we can replace p1 + pj − q by 2`. The pj-summation of (5.2) gives

q+2`∑
pj=1

e−qw1`e−2`w1epj(w1−wj) = `e−(q+2`)w1
ew1−wj − e(1+q+2`)(w1−wj)

1− ew1−wj

=
ew1−wj

1− ew1−wj

(
e−qw1`e−2`w1 − e−qwj`e−2`wj

)
.

Since the `-summation and the q-summation are separated now, (5.2) becomes

n∑
j=2

ew1−wj

1− ew1−wj

[
1

(ew1 − e−w1)2

(
− ∂

∂w1

)
Lg,n−1(wN\{j})

− 1
(ewj − e−wj )2

(
− ∂

∂wj

)
Lg,n−1(wN\{1})

]
.

The second line of (3.2) gives

n∑
j=2

∞∑
p1=0

∑
pN\{1}∈Zn−1

+

H(p1 − pj)
p1−pj∑
q=0

q
p1 − pj − q

2
Ng,n−1(q, pN\{1,j})e

−〈p,w〉

=
n∑
j=2

∞∑
`=0

`e−2`w1

∞∑
pj=1

e−pj(w1+wj)

×
∞∑
q=0

e−qw1
∑

pN\{1,j}∈Zn−2
+

q Ng,n−1(q, pN\{1,j})e
−〈pN\{1,j},wN\{1,j}〉

=
n∑
j=2

e−(w1+wj)

1− e−(w1+wj)

1
(ew1 − e−w1)2

(
− ∂

∂w1

)
Lg,n−1(wN\{j})

=
n∑
j=2

(
1

1− e−(w1+wj)
− 1
)

1
(ew1 − e−w1)2

(
− ∂

∂w1

)
Lg,n−1(wN\{j}),

where we set p1 − pj − q = 2`. Similarly, after putting pj − p1 − q = 2`, the third line of
(3.2) yields

−
n∑
j=2

∞∑
p1=0

∑
pN\{1}∈Zn−1

+

H(pj − p1)
pj−p1∑
q=0

q
pj − p1 − q

2
Ng,n−1(q, pN\{1,j})e

−〈p,w〉
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= −
n∑
j=2

∞∑
p1=0

e−p1(w1+wj)
∞∑
`=0

`e−2`wj

×
∞∑
q=0

e−qwj
∑

pN\{1,j}∈Zn−2
+

q Ng,n−1(q, pN\{1,j})e
−〈pN\{1,j},wN\{1,j}〉

= −
n∑
j=2

1
1− e−(w1+wj)

1
(ewj − e−wj )2

(
− ∂

∂wj

)
Lg,n−1(wN\{1}).

Summing all contributions, we obtain

n∑
j=2

(
ew1−wj

1− ew1−wj +
1

1− e−(w1+wj)

)[
1

(ew1 − e−w1)2

(
− ∂

∂w1

)
Lg,n−1(wN\{j})

− 1
(ewj − e−wj )2

(
− ∂

∂wj

)
Lg,n−1(wN\{1})

]

− 1
(ew1 − e−w1)2

(
− ∂

∂w1

) n∑
j=2

Lg,n−1(wN\{j}).

To compute the result of our operation to the fourth and the fifth lines of (3.2), we note
that for any function f(q1, q2) we have

1
2

∞∑
p1=0

∑
0≤q1+q2≤p1

q1q2(p1 − q1 − q2)e−p1w1f(q1, q2)

=
1
2

∞∑
q1=0

∞∑
q2=0

∞∑
`=0

2`e−2`w1e−(q1+q2)w1q1q2f(q1, q2)

=
1

(ew1 − e−w1)2

∂2

∂u1∂u2
f̂(u1, u2)

∣∣∣∣
u1=u2=w1

,

where we set p1 − q1 − q2 = 2`, and

f̂(u1, u2) =
∞∑
q1=1

∞∑
q2=1

f(q1, q2)e−(q1u1+q2u2).

The reason that p1−q1−q2 is even comes from the fact that we are summing over pN ∈ Zn+
subject to p1 + · · · + pn ≡ 0 mod 2, while in the fourth line of (3.2) contributions vanish
unless q1 + q2 + p2 + · · · + pn ≡ 0 mod 2. Therefore, we can restrict the summation over
those p1, q1 and q2 subject to p1 ≡ q1 + q2 mod 2. The same condition can be imposed on
the summation for the fifth line of (3.2).

Adding all the above, we establish

(5.3)
∂

∂w1
Lg,n(wN )

=
n∑
j=2

(
ew1−wj

1− ew1−wj +
1

1− e−(w1+wj)

)[
1

(ew1 − e−w1)2

∂

∂w1
Lg,n−1(wN\{j})
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− 1
(ewj − e−wj )2

∂

∂wj
Lg,n−1(wN\{1})

]

−
n∑
j=2

1
(ew1 − e−w1)2

∂

∂w1
Lg,n−1(wN\{j})

− 1
(ew1 − e−w1)2

∂2

∂u1∂u2

[
Lg−1,n+1(u1, u2, wN\{1})

+
stable∑

g1+g2=g
ItJ=N\{1}

Lg1,|I|+1(u1, wI)Lg2,|J |+1(u2, wJ)

]∣∣∣∣∣
u1=u2=w1

.

From (4.2) we find

∂

∂wj
=
t2j − 1

2
∂

∂tj

1
(ewj − e−wj )2

=
1
16

(t2j − 1)2

t2j

ew1−wj

1− ew1−wj +
1

1− e−(w1+wj)
= − tj(t

2
1 − 1)

t21 − t2j
.

It is now a straightforward calculation to convert (5.3) to (5.1). �

6. Initial values

In this section we calculate the initial values F0,3(t1, t2, t3) and F1,1(t).

Figure 6.1. Three kinds of ribbon graphs of type (0, 3).

There are three kinds of ribbon graphs of type (g, n) = (0, 3) as listes in Figure 6.1. Each
graph has no nontrivial automorphisms since every face is fixed. Therefore, we have

(6.1) F0,3(t1, t2, t3)

= (−1)3

(
z(t1, t1)z(t1, t2)z(t1, t3) + z(t2, t2)z(t2, t1)z(t2, t3) + z(t3, t3)z(t3, t1)z(t3, t2)

)
+ (−1)2

(
z(t1, t2)z(t1, t3) + z(t2, t1)z(t2, t3) + z(t3, t1)z(t3, t2)

)
+ (−1)3z(t1, t2)z(t1, t3)z(t2, t3)

= − 1
16

(t1 + 1)(t2 + 1)(t3 + 1)
(

1 +
1

t1 t2 t3

)
.

The first line of the right-hand side of (6.1) corresponds to the dumbbell shape (the left
graph of Figure 6.1), the second line to the infinity sign (the center graph of Figure 6.1),
and the third line to the right graph of Figure 6.1.
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Figure 6.2. Two kinds of ribbon graphs of type (1, 1).

There are two graphs of type (g, n) = (1, 1), as shown in Figure 6.2. The graph on the
left has automorphism group Z/6Z, and the graph on the right has automorphism group
Z/4Z. Thus we have

(6.2) F1,1(t) =
(−1)3

6
z(t, t)3 +

(−1)2

4
z(t, t)2 = − 1

384
(t+ 1)4

t2

(
t− 4 +

1
t

)
.

7. Consequences of the differential equation

Since (5.1) is a differential equation, we need to determine the initial condition with
respect to the variable t1 in order to uniquely solve it for Fg,n(tN ). In this section, we prove
Theorem 1.1 by determining the initial value for the differential equation (5.1).

Theorem 7.1. The Poincaré polynomial Fg,n(tN ) is uniquely determined by the differential
equation (5.1) and the vanishing property (4.10).

Proof. Suppose we have determined Fg,n(tN ) for all values of (g, n) subject to

0 < 2g − 2 + n < m− 1

for a given m ≥ 2. Take any (g, n) such that 2g − 2 + n = m. Then (5.1) determines
∂
∂t1
Fg,n(tN ). We denote by r(tN ) the right-hand side of (5.1), and define

(7.1) Fg,n(tN ) =
∫ t1

−1
r(tN )dt1.

The lower bound is chosen so that (4.10) holds. Since Fg,n(−1, t2, . . . , tn) = 0 as a function
in tN\{1}, there is no room to add any function in tN\{1} to the right-hand side of (7.1). We
have thus uniquely determined Fg,n(tN ). This completes the proof. �

Since formula (7.1) is (1.6), we have thus proved Theorem 1.1.
The definition of the Poincaré polynomial (1.5) contains a factor like 1

ti+tj
. Surprisingly,

Fg,n(tN ) is indeed a Laurent polynomial.

Theorem 7.2. The Poincaré polynomial Fg,n(tN ) is a Laurent polynomial in t1, t2, . . . , tn
of degree 3(2g − 2 + n). Moreover, every monomial appearing in Fg,n(tN ) contains only an
odd power of each tj.

Proof. Here again suppose the statement is true for all values of (g, n) subject to

0 < 2g − 2 + n < m− 1

for a given m ≥ 2. Take an arbitrary (g, n) such that 2g− 2 +n = m. Let r(tN ) denote the
right-hand side of (5.1). There are two issues we need to address. The first one is division
by (t21 − t2j ) in the first line of r(tN ), since 1

t21−t2j
is not a Laurent polynomial. The second

issue is the integration (7.1), which could produce logarithmic terms.
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Lemma 7.3. Consider a Laurent polynomial in one variable f(x) that contains only odd
powers of x. Then

(7.2)
y

x2 − y2

(
(x2 − 1)3

x2

∂

∂x
f(x)− (y2 − 1)3

y2

∂

∂y
f(y)

)
is a Laurent polynomial in x and y such that each monomial contains only an even power
of x and an odd power of y.

If h(x) is a Laurent polynomial in x2, then h(x)−h(y)
x2−y2 is a Laurent polynomial in x2 and y2.

Therefore,
1

x2 − y2

(
(x2 − 1)3

x2

∂

∂x
f(x)− (y2 − 1)3

y2

∂

∂y
f(y)

)
is a Laurent polynomial in x2 and y2. This proves the lemma.

Thus we know that r(tN ) is a Laurent polynomial in t1, . . . , tn such that each monomial
contains an even power of t1 and an odd powers of tj for every j > 1. Therefore,

Fg,n(tN ) =
∫ t1

−1
r(tN )dt1

is a Laurent polynomial in t1, . . . , tn such that every monomial term contains only an odd
power of each tj . This completes the proof of the theorem. �

Based on the work [2], it is noted in [5] that the symmetric homogeneous polynomial in
t1, . . . , tn consisting of the leading terms of

25g−5+2n ∂n

∂t1 · · · ∂tn
Fg,n(tN )

is the generating function of the ψ-class intersection numbers on the Deligne-Mumford stack
Mg,n considered in [6, 16, 34], and that the restriction of the recursion (5.1) to the leading
terms, after taking the differentiation with respect to t2, . . . , tn, is equivalent to the Virasoro
constraint condition of the ψ-class intersection numbers. This proves Theorem 1.3.

Although we do not utilize the following fact in this paper, we note that the Laurent
polynomial Fg,n(tN ) is invariant under the coordinate change tj 7−→ 1

tj
. This is because

z(ti, tj) = z

(
1
ti
,

1
tj

)
.

Proposition 7.4. The Poincaré polynomial is invariant under the transformation tj 7−→ 1
tj

Fg,n(t1, t2, . . . , tn) = Fg,n

(
1
t1
,

1
t2
, . . . ,

1
tn

)
.

Appendix A. Examples

We record a few examples of the Poincaré polynomials here.

(A.1) F0,4(t1, t2, t3, t4) =
1
28

(t1 + 1)(t2 + 1)(t3 + 1)(t4 + 1)

×

 4∑
j=1

t2j −
4∑
j=1

tj − 5−
∑
i<j

1
titj

+
1

t1t2t3t4

−5−
4∑
j=1

1
tj

+
4∑
j=1

1
t2j

 .
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(A.2) F1,2(t1, t2) =
1

211

[
t51t2 + t1t

5
2 +

t31 t
3
2

3
+ t51 + t52 − 6(t31t2 + t1t

3
2)− 17

3
(t31 + t32)

+ 27 t1t2 + 26(t1 + t2) +
128
3

+ 4
(
t1
t2

+
t2
t1

)
+ 26

(
1
t1

+
1
t2

)
+

27
t1t2

− 17
3

(
1
t31

+
1
t32

)
− 6

(
1
t1t32

+
1
t31t2

)
+
(

1
t51

+
1
t52

)
+

1
3

1
t31 t

3
2

+
(

1
t1t52

+
1
t51t2

)]
.

(A.3) F2,1(t) = − 1
219

(t+ 1)8

t4

(
35
3
t5 − 280

3
t4 + 333 t3 − 704 t2 +

5018
5

t

− 5424
5

+
5018

5
t−1 − 704 t−2 + 333 t−3 − 280

3
t−4 +

35
3
t−5

)

= −35
6
z9 +

105
4

z8 − 93
2
z7 +

161
4

z6 − 84
5
z5 +

21
8
z4,

where z is defined by (1.8).

(A.4) F3,1(t) = − 1
230

(t+ 1)12

t6

(
5005

3
t9 − 20020 t8 + 112343 t7 − 1181488

3
t6

+ 975692 t5 − 1842448 t4 +
25312028

9
t3 − 10959056

3
t2 +

88361050
21

t

− 277329032
63

+
88361050

21
t−1 − 10959056

3
t−2 +

25312028
9

t−3 − 1842448 t−4

+ 975692 t−5 − 1181488
3

t−6 + 112343 t−7 − 20020 t−8 +
5005

3
t−9

)

= −5005
3

z15 +
25025

2
z14 − 41118 z13 +

929929
12

z12 − 183955
2

z11

+
283767

4
z10 − 317735

9
z9 + 10813 z8 − 25443

14
z7 +

495
4
z6.
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