
PRYM VARIETIES AND INTEGRABLE SYSTEMS†

YINGCHEN LI AND MOTOHICO MULASE‡

Abstract. A new relation between Prym varieties of arbitrary morphisms of algebraic curves

and integrable systems is discovered. The action of maximal commutative subalgebras of the

formal loop algebra of GLn defined on certain infinite-dimensional Grassmannians is studied. It is
proved that every finite-dimensional orbit of the action of traceless elements of these commutative

Lie algebras is isomorphic to the Prym variety associated with a morphism of algebraic curves.

Conversely, it is shown that every Prym variety can be realized as a finite-dimensional orbit of the
action of traceless diagonal elements of the formal loop algebra, which defines the multicomponent

KP system.
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0. Introduction

0.1 From a geometric point of view, the Kadomtsev-Petviashvili (KP) equations are best understood
as a set of commuting vector fields, or flows, defined on an infinite-dimensional Grassmannian [23].
The Grassmannian Gr1(µ) is the set of vector subspaces W of the field L = C((z)) of formal
Laurent series in z such that the projection W −→ C((z))/C[[z]]z is a Fredholm map of index µ.
The commutative algebra C[z−1] acts on L by multiplication, and hence it induces commuting flows
on the Grassmannian. This very simple picture is nothing but the KP system written in the language
of infinite-dimensional geometry. A striking fact is that every finite-dimensional orbit (or integral
manifold) of these flows is canonically isomorphic to the Jacobian variety of an algebraic curve, and
conversely, every Jacobian variety can be realized as a finite-dimensional orbit of the KP flows [14].
This statement is equivalent to the claim that the KP equations characterize the Riemann theta
functions associated with Jacobian varieties [2].
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If one generalizes the above Grassmannian to the Grassmannian Grn(µ) consisting of vector
subspaces of L⊕n with a Fredholm condition, then the formal loop algebra gl(n,L) acts on it.
In particular, the Borel subalgebra (one of the maximal commutative subalgebras) of Heisenberg
algebras acts on Grn(µ) with the center acting trivially. Let us call the system of vector fields
coming from this action the Heisenberg flows on Grn(µ). Now one can ask a question: what are
the finite-dimensional orbits of these Heisenberg flows, and what kind of geometric objects do they
represent? Actually, this question was asked to one of the authors by Professor H. Morikawa as
early as in 1984. In this paper, we give a complete answer to this question. Indeed, we shall prove
(see Proposition 5.1 and Theorem 5.2 below)

Theorem 0.1. A finite-dimensional orbit of the Heisenberg flows defined on the Grassmannian of
vector valued functions corresponds to a covering morphism of algebraic curves, and the orbit itself
is canonically isomorphic to the Jacobian variety of the curve upstairs. Moreover, the action of the
traceless elements of the Borel subalgebra (the traceless Heisenberg flows) produces the Prym variety
associated with this covering morphism as an orbit.

Remark 0.2. The relation between Heisenberg algebras and covering morphisms of algebraic curves
was first discovered by Adams and Bergvelt [1].

0.2 Right after the publication of works ([2], [14], [24]) on characterization of Jacobian varieties
by means of integrable systems, it has become an important problem to find a similar theory for
Prym varieties. We establish in this paper a simple solution of this problem in terms of the multi-
component KP system defined on a certain quotient space of the Grassmannian of vector valued
functions.

Classically, Prym varieties associated with degree two coverings of algebraic curves were used
by Schottky and Jung in their approach to the Schottky problem. The modern interests in Prym
varieties were revived in [17]. Recently, Prym varieties of higher degree coverings have been used
in the study of the generalized theta divisors on the moduli spaces of stable vector bundles over an
algebraic curve [4], [9]. This direction of research, usually called “Hitchin’s Abelianization Program,”
owes its motivation and methods to finite dimensional integrable systems in the context of symplectic
geometry. In the case of infinite dimensional integrable systems, it has been discovered that Prym
varieties of ramified double sheeted coverings of curves appear as solutions of the BKP system [6].
Independently, a Prym variety of degree two covering with exactly two ramification points has been
observed in the deformation theory of two-dimensional Schrödinger operators [20], [21]. As far as
the authors know, the only Prym varieties so far considered in the context of integrable systems are
associated with ramified, double sheeted coverings of algebraic curves. Consequently, the attempts
([25], [27]) of characterizing Prym varieties in terms of integrable systems are all restricted to these
special Prym varieties.

Let us define the Grassmannian quotient Zn(0) as the quotient space of Grn(0) by the diagonal
action of

(
1 + C[[z]]z

)×n. The traceless n-component KP system is defined by the action of the
traceless diagonal matrices with entries in C[z−1] on Zn(0). Since this system is a special case
of the traceless Heisenberg flows, every finite-dimensional orbit of this system is a Prym variety.
Conversely, an arbitrary Prym variety associated with a degree n covering morphism of algebraic
curves can be realized as a finite-dimensional orbit. Thus we have (see Theorem 5.5 below):

Theorem 0.3. An algebraic variety is isomorphic to the Prym variety associated with a degree n
covering of an algebraic curve if and only if it can be realized as a finite-dimensional orbit of the
traceless n-component KP system defined on the Grassmannian quotient Zn(0).
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0.3 The relation between algebraic geometry and the Grassmannian comes from the cohomology
map of [26], which assigns injectively a point of Gr1(0) to a set of geometric data consisting of an
algebraic curve and a line bundle together with some local information. This correspondence was
enlarged in [16] to include arbitrary vector bundles on curves.

In this paper, we generalize the cohomology functor of [16] so that we can deal with arbitrary
morphisms between algebraic curves. Let n = (n1, · · · , n`) denote an integral vector consisting of
positive integers satisfying that n = n1 + · · ·+ n`.

Theorem 0.4. For each n, the following two categories are equivalent:
(1) The category C(n). An object of this category consists of an arbitrary degree n morphism

f : Cn −→ C0 of algebraic curves and an arbitrary vector bundle F on Cn. The curve
C0 has a smooth marked point p with a local coordinate y around it. The curve Cn has `
(1 ≤ ` ≤ n) smooth marked points {p1, · · · , p`} = f−1(p) with ramification index nj at each
point pj. The curve Cn is further endowed with a local coordinate yj and a local trivialization
of F around pj.

(2) The category S(n). An object of this category is a triple (A0, An,W ) consisting of a point
W ∈

⋃
µ∈Z Grn(µ), a “large” subalgebra A0 ⊂ C((y)) for some y ∈ C[[z]], and another

“large” subalgebra

An ⊂
⊕̀
j=1

C((y1/nj )) ∼=
⊕̀
j=1

C((yj)) .

In a certain matrix representation as subalgebras of the formal loop algebra gl
(
n,C((y))

)
acting on the Grassmannian, they satisfy A0 ⊂ An and An ·W ⊂W .

The precise statement of this theorem is given in Section 3, and its proof is completed in Section 4.
One of the reasons of introducing a category rather than just a set is because we need not only a
set-theoretical bijection of objects but also a canonical correspondence of the morphisms in the proof
of the claim that every Prym variety can be realized as a finite-dimensional orbit of the traceless
multi-component KP system on the Grassmannian quotient.

0.4 The motivation of extending the framework of the original Segal-Wilson construction to include
arbitrary vector bundles on curves of [16] was to establish a complete geometric classification of
all the commutative algebras consisting of ordinary differential operators with coefficients in scalar
valued functions. If we apply the functor of Theorem 0.4 in this direction, then we obtain (see
Proposition 6.4 and Theorem 6.5 below):

Theorem 0.5. Every object of the category C(n) with a smooth curve Cn and a line bundle F on
Cn satisfying the cohomology vanishing condition

H0(Cn,F) = H1(Cn,F) = 0

gives rise to a maximal commutative algebra consisting of ordinary differential operators with coef-
ficients in n× n matrix valued functions.

Some examples of commuting matrix ordinary differential operators have been studied before ([8],
[19]). Grinevich’s work is different from ours. In [8] he considers commuting pairs of matrix dif-
ferential operators. For each commuting pair he constructs a single affine algebraic curve (possibly
reducible) in the affine plane and a vector bundle on each of the irreducible components and con-
versely, given such a collection of algebro-geometric data together with some extra local information
he constructs a commuting pair of matrix differential operators. In our case, the purpose is to
classify commutative algebras of matrix differential operators. This point of view is more intrinsic
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than considering commuting pairs because they are particular choices of generators of the algebras.
On the algebro-geometric side, we obtain morphisms of two abstract curves (no embeddings) and
maps of the corresponding Jacobian varieties. Prym varieties come in very naturally in our picture.
Nakayashiki’s construction (Appendix of [19]) is similar to ours, but that corresponds to locally
cyclic coverings of curves, i.e. a morphism f : C −→ C0 such that there is a point p ∈ C0 where
f−1(p) consists of one point. Since we can use arbitrary coverings of curves, we obtain in this paper
a far larger class of totally new examples systematically. As a key step from algebraic geometry of
curves and vector bundles to the differential operator algebra with matrix coefficients, we prove the
following (see Theorem 6.2 below):

Theorem 0.6. The big-cell of the Grassmannian Grn(0) is canonically identified with the group of
monic invertible pseudodifferential operators with matrix coefficients.

Only the case of n = 1 of this statement was known before. With this identification, we can translate
the flows on the Grassmannian associated with an arbitrary commutative subalgebra of the loop
algebras into an integrable system of nonlinear partial differential equations. The unique solvability
of these systems can be shown by using the generalized Birkhoff decomposition of [15].

0.5 This paper is organized as follows. In Section 1, we review some standard facts about Prym
varieties. The Heisenberg flows are introduced in Section 2. Since we do not deal with any central
extensions in this paper, we shall not use the Heisenberg algebras in the main text. All we need are
the maximal commutative subalgebras of the formal loop algebras. Accordingly, the action of the
Borel subalgebras will be replaced by the action of the full maximal commutative algebras defined
on certain quotient spaces of the Grassmannian. This turns out to be more natural because of the
coordinate-free nature of the flows on the quotient spaces. The two categories we work with are
defined in Section 3, where a generalization of the cohomology functor is given. In Section 4, we give
the construction of the geometric data out of the algebraic data consisting of commutative algebras
and a point of the Grassmannian. The finite-dimensional orbits of the Heisenberg flows are studied
in Section 5, in which the characterization theorem of Prym varieties is proved. Section 6 is devoted
to explaining the relation of the entire theory with the ordinary differential operators with matrix
coefficients.

The results we obtain in Sections 3, 4, and 6 (except for Theorem 6.5, where we need zero
characteristic) hold for an arbitrary field k. In Sections 1 and 5 (except for Proposition 5.1, which
is true for any field), we work with the field C of complex numbers.

Acknowledgement. The authors wish to express their gratitude to the Max-Planck-Institut für
Mathematik for generous financial support and hospitality, without which the entire project would
never have taken place. They also thank M. Bergvelt for sending them the paper [1] prior to its
publication. The earlier version of the current article has been circulated as a Max-Planck-Institut
preprint.

1. Covering morphisms of curves and Prym varieties

We begin with defining Prym varieties in the most general setting, and then introduce locally
cyclic coverings of curves, which play an important role in defining the category of arbitrary covering
morphisms of algebraic curves in Section 3.
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Definition 1.1. Let f : C −→ C0 be a covering morphism of degree n between smooth algebraic
curves C and C0, and let Nf : Jac(C) −→ Jac(C0) be the norm homomorphism between the Jacobian
varieties, which assigns to an element

∑
q nq · q ∈ Jac(C) its image

∑
q nq · f(q) ∈ Jac(C0). This

is a surjective homomorphism, and hence the kernel Ker(Nf ) is an abelian subscheme of Jac(C) of
dimension g(C)− g(C0), where g(C) denotes the genus of the curve C. We call this kernel the Prym
variety associated with the morphism f , and denote it by Prym(f).

Remark 1.2. Usually the Prym variety of a covering morphism f is defined to be the connected com-
ponent of the kernel of the norm homomorphism containing 0. Since any two connected components
of Ker(Nf ) are translations of each other in Jac(C), there is no harm to call the whole kernel the
Prym variety. If the pull-back homomorphism f∗ : Jac(C0) −→ Jac(C) is injective, then the norm
homomorphism can be identified with the transpose of f∗, and hence its kernel is connected. So in
this situation, our definition coincides with the usual one. We will give a class of coverings where
the pull-back homomorphisms are injective (see Proposition 1.7).

Remark 1.3. Let R ⊂ C be the ramification divisor of the morphism f of Definition 1.1 and OC(R)
the locally free sheaf associated with R. Then it can be shown that for any line bundle L on C,
we have Nf (L) = det(f∗L) ⊗ det

(
f∗OC(R)

)
. Thus up to a translation, the norm homomorphism

can be identified with the map assigning the determinant of the direct image to the line bundle
on C. Therefore, one can talk about the Prym varieties in Picd(C) for an arbitrary d, not just in
Jac(C) = Pic0(C).

When the curves C and C0 are singular, we replace the Jacobian variety Jac(C) by the generalized
Jacobian, which is the connected component of H1(C,O∗C) containing the structure sheaf. By taking
the determinant of the direct image sheaf, we can define a map of the generalized Jacobian of C
into H1(C0,O∗C0

). The fiber of this map is called the generalized Prym variety associated with the
morphism f .

Remark 1.4. According to our definition (Definition 1.1), the Jacobian variety of an arbitrary alge-
braic curve C can be viewed as a Prym variety. Indeed, for a nontrivial morphism of C onto P1, the
induced norm homomorphism is the zero-map. Thus the class of Prym varieties contains Jacobians
as a subclass. Of course there are infinitely many ways to realize Jac(C) as a Prym variety in this
manner.

Let us consider the polarizations of Prym varieties. Let ΘC and ΘC0 be the Riemann theta
divisors on Jac(C) and Jac(C0), respectively. Then the restriction of ΘC to Prym(f) gives an
ample divisor H on Prym(f). This is usually not a principal polarization if g(C0) 6= 0. There is
a natural homomorphism ψ : Jac(C0) × Prym(f) −→ Jac(C) which assigns f∗L ⊗M to (L,M) ∈
Jac(C0)×Prym(f). This is an isogeny, and the pull-back of ΘC under this homomorphism is given
by

ψ∗OJac(C)(ΘC) ∼= OJac(C0)(nΘC0)⊗OPrym(f)(H) .
In Section 3, we define a category of covering morphisms of algebraic curves. As a morphism

between the covering morphisms, we use the following special coverings:

Definition 1.5. A degree r morphism α : C −→ C0 of algebraic curves is said to be a locally cyclic
covering if there is a point p ∈ C0 such that α∗(p) = r · q for some q ∈ C.

Proposition 1.6. Every smooth projective curve C has infinitely many smooth locally cyclic cover-
ings of an arbitrary degree.
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Proof. We use the theory of spectral curves to prove this statement. For a detailed account of
spectral curves, we refer to [4] and [9].

Let us take a line bundle L over C of sufficiently large degree. For such L we can choose sections
si ∈ H0(C,Li), i = 1, 2, · · · , r, satisfying the following conditions:

(1) All si’s have a common zero point, say p ∈ C, i.e., si ∈ H0(C,Li(−p)), i = 1, 2, · · · , r;
(2) sr /∈ H0(C,Lr(−2p)).

Now consider the sheaf R of symmetric OC-algebras generated by L−1. As an OC-module this
algebra can be written as

R =
∞⊕
i=0

L−i .

In order to construct a locally cyclic covering of C, we take the ideal Is of the algebra R generated
by the image of the sum of the homomorphisms si : L−r −→ L−r+i. We define Cs = Spec(R/Is),
where s = (s1, s2, · · · , sr). Then Cs is a spectral curve, and the natural projection π : Cs −→ C
gives a degree r covering of C. For sufficiently general sections si with properties (1) and (2), we
may also assume the following (see [4]):

(3) The spectral curve Cs is integral, i.e. reduced and irreducible.

We claim here that Cs is smooth in a neighborhood of the inverse image of p. Indeed, let us take
a local parameter y of C around p and a local coordinate x in the fiber direction of the total space
of the line bundle L. Then the local Jacobian criterion for smoothness in a neighborhood of π−1(p)
states that the following system

xr + s1(y)xr−1 + · · ·+ sr(y) = 0
rxr−1 + s1(y)(r − 1)xr−2 + · · ·+ sr−1(y) = 0
s1(y)′xr−1 + s2(y)′xr−2 + · · ·+ sr(y)′ = 0

of equations in (x, y) has no solutions. But this is clearly the case in our situation because of the
conditions (1), (2) and (3). Thus we have verified the claim. It is also clear that π∗(p) = r · q, where
q is the point of Cs defined by xr = 0 and y = 0. Then by taking the normalization of Cs we obtain
a smooth locally cyclic covering of C. This completes the proof. �

Proposition 1.7. Let α : C −→ C0 be a locally cyclic covering of degree r. Then the induced
homomorphism α∗ : Jac(C0) −→ Jac(C) of Jacobians is injective. In particular, the Prym variety
Prym(α) associated with the morphism α is connected.

Proof. Let us suppose in contrary that L 6∼= OC0 and α∗L ∼= OC for some L ∈ Jac(C0). Then by
the projection formula we have L⊗ α∗OC ∼= α∗OC . Taking determinants on both sides we see that
L is an r-torsion point in Jac(C0), i.e. Lr ∼= OC0 . Let m be the smallest positive integer satisfying
that Lm ∼= OC0 . Let us consider the spectral curve

C ′ = Spec
( ∞⊕
i=0

L−i/Is
)

defined by the line bundle L and its sections

s = (s1, s2, · · · , sm−1, sm) = (0, 0, · · · , 0, 1) ∈
m⊕
i=1

H0(C0,Li) .
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It is easy to verify that C ′ is an unramified covering of C0 of degree m. Now we claim that the
morphism α : C −→ C0 factors through C ′, but this leads to a contradiction to our assumption that
α is a locally cyclic covering.

The construction of such a morphism f : C −→ C ′ over C0 amounts to defining an OC0-algebra
homomorphism

(1.1) f ] :
∞⊕
i=0

L−i/Is −→ α∗OC .

In order to give (1.1), it is sufficient to define an OC0 -module homomorphism φ : L−1 −→ α∗OC
such that φ⊗m : L−m ∼= OC0 −→ α∗OC is the inclusion map induced by α. Since we have

H0(C,OC) ∼= H0(C0, α∗OC) ∼= H0(C0,L ⊗ α∗OC) ∼= H0(C0,Lm ⊗ α∗OC) ,

the existence of the desired φ is obvious. This completes the proof. �

2. The Heisenberg flows on the Grassmannian of vector valued functions

In this section, we define the Grassmannians of vector valued functions and introduce various
vector fields (or flows) on them. Let k be an arbitrary field, k[[z]] the ring of formal power series in
one variable z defined over k, and L = k((z)) the field of fractions of k[[z]]. An element of L is a
formal Laurent series in z with a pole of finite order. We call y = y(z) ∈ L an element of order m if
y ∈ k[[z]]z−m \ k[[z]]z−m+1. Consider the infinite-dimensional vector space V = L⊕n over k. It has
a natural filtration by the (pole) order

· · · ⊂ F (m−1)(V ) ⊂ F (m)(V ) ⊂ F (m+1)(V ) ⊂ · · · ,

where we define

(2.1) F (m)(V ) =


∞∑
j=0

ajz
−m+j

∣∣∣∣∣∣ aj ∈ k⊕n
 .

In particular, we have F (m)(V )
/
F (m−1)(V ) ∼= k⊕n for all m ∈ Z. The filtration satisfies

∞⋃
m=−∞

F (m)(V ) = V and
∞⋂

m=−∞
F (m)(V ) = {0} ,

and hence it determines a topology in V . In Section 4, we will introduce other filtrations of V in
order to define algebraic curves and vector bundles on them. The current filtration (2.1) is used only
for the purpose of defining the Grassmannian as a pro-algebraic variety (see for example [11]).

Definition 2.1. For every integer µ, the following set of vector subspaces W of V is called the index
µ Grassmannian of vector valued functions of size n:

Grn(µ) = {W ⊂ V | γW is Fredholm of index µ} ,

where γW : W −→ V
/
F (−1)(V ) is the natural projection.

Let NW =
{

ordz(v)
∣∣ v ∈ W

}
. Then the Fredholm condition implies that NW is bounded from

below and contains all sufficiently large positive integers. But of course, this condition of NW does
not imply the Fredholm property of γW when n > 1.
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Remark 2.2. We have used F (−1)(V ) in the above definition as a reference open set for the Fredholm
condition. This is because it becomes the natural choice in Section 6 when we deal with the differ-
ential operator action on the Grassmannian. From purely algebro-geometric point of view, F (0)(V )
can also be used (see Remark 4.1).

The big-cell Gr+n (0) of the Grassmannian of vector valued functions of size n is the set of vector
subspaces W ⊂ V such that γW is an isomorphism. For every point W ∈ Grn(µ), the tangent space
at W is naturally identified with the space of continuous homomorphism of W into V/W :

TWGrn(µ) = Homcont(W,V/W ) .

Let us define various vector fields on the Grassmannians. Since the formal loop algebra gl(n,L) acts
on V , every element ξ ∈ gl(n,L) defines a homomorphism

(2.2) W −→ V
ξ−→ V −→ V/W ,

which we shall denote by ΨW (ξ). Thus the association

Grn(µ) 3W 7−→ ΨW (ξ) ∈ Homcont(W,V/W ) = TWGrn(µ)

determines a vector field Ψ(ξ) on the Grassmannian. For a subset Ξ ⊂ gl(n,L), we use the notations
ΨW (Ξ) =

{
ΨW (ξ)

∣∣ ξ ∈ Ξ
}

and Ψ(Ξ) =
{

Ψ(ξ)
∣∣ ξ ∈ Ξ

}
.

Definition 2.3. A smooth subvariety X of Grn(µ) is said to be an orbit (or the integral manifold)
of the flows of Ψ(Ξ) if the tangent space TWX of X at W is equal to ΨW (Ξ) as a subspace of the
whole tangent space TWGrn(µ) for every point W ∈ X.

Remark 2.4. There is a far larger algebra than the loop algebra, the algebra gl(n,E) of pseudo-
differential operators with matrix coefficients, acting on V . We will come back to this point in
Section 6.

Let us choose a monic element

(2.3) y = zr +
∞∑
m=1

cmz
r+m ∈ L

of order −r and consider the following n× n matrix

(2.4) hn(y) =



0 0 y
1 0 0

1
. . .
. . . 0

1 0
1 0


satisfying that hn(y)n = y · In, where In is the identity matrix of size n. We denote by H(n)(y) the
algebra generated by hn(y) over k((y)), which is a maximal commutative subalgebra of the formal
loop algebra gl

(
n, k((y))

)
. Obviously, we have a natural k((y))-algebra isomorphism

H(n)(y) ∼= k((y))[x]/(xn − y) ∼= k((y1/n)) ,

where x is an indeterminate.
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Definition 2.5. For every integral vector n = (n1, n2, · · · , n`) of positive integers nj such that
n = n1 + n2 + · · · + n` and a monic element y ∈ L of order −r, we define a maximal commutative
k((y))-subalgebra of gl

(
n, k((y)

)
by

Hn(y) =
⊕̀
j=1

H(nj)(y) ∼=
⊕̀
j=1

k((y1/nj )) ,

where each H(nj)(y) is embedded by the disjoint principal diagonal blocks:
H(n1)(y)

H(n2)(y)
. . .

H(n`)(y)

 .

The algebra Hn(y) is called the maximal commutative algebra of type n associated with the variable
y.

As a module over the field k((y)), the algebra Hn(y) has dimension n.

Remark 2.6. The lifting of the algebra Hn(y) to the central extension of the formal loop algebra
gl
(
n, k((y))

)
is the Heisenberg algebra associated with the conjugacy class of the Weyl group of

gl(n, k) determined by the integral vector n ([7], [10], [22]). The word Heisenberg in the following
definition has its origin in this context.

Definition 2.7. The set of commutative vector fields Ψ(Hn(y)) defined on Grn(µ) is called the
Heisenberg flows of type n = (n1, n2, · · · , n`) and rank r associated with the algebra Hn(y) and
the coordinate y of (2.3). Let Hn(y)0 denote the subalgebra of Hn(y) consisting of the traceless
elements. The system of vector fields Ψ

(
Hn(y)0

)
is called the traceless Heisenberg flows. The set of

commuting vector fields Ψ
(
k((y))

)
on Grn(µ) is called the r-reduced KP system (or the r-reduction

of the KP system) associated with the coordinate y. The usual KP system is defined to be the
1-reduced KP system with the choice of y = z. The Heisenberg flows associated with H(1,··· ,1)(z) of
type (1, · · · , 1) is called the n-component KP system.

Remark 2.8. As we shall see in Section 4, the Hn(y)-action on V is equivalent to the component-
wise multiplication of (4.1) to (4.4). From this point of view, the Heisenberg flows of type n and
rank r are contained in the `-component KP system. What is important in our presentation as the
Heisenberg flows is the new algebro-geometric interpretation of the orbits of these systems defined
on the (quotient) Grassmannian which can be seen only through the right choice of the coordinates.

Remark 2.9. The traceless Heisenberg flows of type n = (2) and rank one are known to be equivalent
to the BKP system. As we shall see later in this paper, these flows produce the Prym variety
associated with a double sheeted covering of algebraic curves with at least one ramification point.
This explains why the BKP system is related only with these very special Prym varieties.

The flows defined above are too large from the geometric point of view. The action of the negative
order elements of gl(n,L) should be considered trivial in order to give a direct connection between
the orbits of these flows and the Jacobian varieties. Thus it is more convenient to define these flows
on certain quotient spaces. So let

(2.5) Hn(y)− = Hn(y) ∩ gl
(
n, k[[y]]y

)
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and define an abelian group

(2.6) Γn(y) = exp
(
Hn(y)−

)
= In +Hn(y)− .

This group is isomorphic to an affine space, and acts on the Grassmannian without fixed points.
This can be verified as follows. Suppose we have g ·W = W for some g = In + h ∈ Γn(y) and
W ∈ Grn(µ). Then h ·W ⊂ W . Since h is a nonnilpotent element of negative order, by iterating
the action of h on W , we get a contradiction to the Fredholm condition of γW .

Definition 2.10. The Grassmannian quotient of type n, index µ and rank r associated with the
algebra Hn(y) is the quotient space

Zn(µ, y) = Grn(µ)
/

Γn(y) .

We denote by Qn,y : Grn(µ) −→ Zn(µ, y) the canonical projection.

Since Γn(y) is an affine space acting on the Grassmannian without fixed points, the affine principal
fiber bundle Qn,y : Grn(µ) −→ Zn(µ, y) is trivial. If the Grassmannian is modeled on a complex
Hilbert space, then one can introduce a Kähler structure on it, which gives rise to a canonical
connection on the principal bundle Qn,y. In that case, there is a standard way of defining vector
fields on the Grassmannian quotient by using the connection. In our case, however, since the
Grassmannian Grn(µ) is modeled over k((z)), we cannot use these technique of infinite-dimensional
complex geometry. Because of this reason, instead of defining vector fields on the Grassmannian
quotient, we give directly a definition of orbits on Zn(µ, y) in the following manner.

Definition 2.11. A subvariety X of the quotient Grassmannian Zn(µ, y) is said to be an orbit of
the Heisenberg flows associated with Hn(y) if the pull-back Q−1

n,y(X) is an orbit of the Heisenberg
flows on the Grassmannian Grn(µ).

Here, we note that because of the commutativity of the algebra Hn(y) and the group Γn(y), the
Heisenberg flows on the Grassmannian “descend” to the Grassmannian quotient. Thus for the flows
generated by subalgebras of Hn(y), we can safely talk about the induced flows on the Grassmannian
quotient.

Definition 2.12. An orbit X of the vector fields Ψ(Ξ) on the Grassmannian Grn(µ) is said to be of
finite type if X = Qn,y(X) is a finite-dimensional subvariety of the Grassmannian quotient Zn(µ, y).

In Section 5, we study algebraic geometry of finite type orbits of the Heisenberg flows and establish
a characterization of Prym varieties in terms of these flows. The actual system of nonlinear partial
differential equations corresponding to these vector fields are derived in Section 6, where the unique
solvability of the initial value problem of these nonlinear equations is shown by using a theorem of
[15].

3. The cohomology functor for covering morphisms of algebraic curves

Krichever [12] gave a construction of an exact solution of the entire KP system out of a set
of algebro-geometric data consisting of curves and line bundles on them. This construction was
formulated as a map of the set of these geometric data into the Grassmannian by Segal and Wilson
[26]. Its generalization to the geometric data containing arbitrary vector bundles on curves was
discovered in [16]. In order to deal with arbitrary covering morphisms of algebraic curves, we have
to enlarge the framework of the cohomology functor of [16].
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Definition 3.1. A set of geometric data of a covering morphism of algebraic curves of type n, index
µ and rank r is the collection〈

f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
of the following objects:

(1) n = (n1, n2, · · · , n`) is an integral vector of positive integers nj such that n = n1 + n2 +
· · ·+ n`.

(2) Cn is a reduced algebraic curve defined over k, and ∆ = {p1, p2, · · · , p`} is a set of ` smooth
rational points of Cn.

(3) Π = (π1, · · · , π`) consists of a cyclic covering morphism πj : Uoj −→ Uj of degree r which
maps the formal completion Uoj of the affine line A1

k along the origin onto the formal
completion Uj of the curve Cn along pj .

(4) F is a torsion-free sheaf of rank r defined over Cn satisfying that

µ = dimkH
0(Cn,F)− dimkH

1(Cn,F) .

(5) Φ = (φ1, · · · , φ`) consists of an OUj -module isomorphism

φj : FUj

∼−→ πj∗
(
OUoj

(−1)
)
,

where FUj
is the formal completion of F along pj . We identify φj and cj · φj for every

nonzero constant cj ∈ k∗.
(6) C0 is an integral curve with a marked smooth rational point p.
(7) f : Cn −→ C0 is a finite morphism of degree n of Cn onto C0 such that f−1(p) = {p1, · · · , p`}

with ramification index nj at each point pj .
(8) π : Uo −→ Up is a cyclic covering morphism of degree r which maps the formal completion

Uo of the affine line A1
k at the origin onto the formal completion Up of the curve C0 along p.

(9) πj : Uoj −→ Uj and the formal completion fj : Uj −→ Up of the morphism f at pj satisfy
the commutativity of the diagram

Uoj
πj−−−−→ Uj

ψj

y yfj

Uo −−−−→
π

Up,

where ψj : Uoj −→ Uo is a cyclic covering of degree nj .

(10) φ : (f∗F)Up

∼−→ π∗

(⊕`
j=1 ψj∗

(
OUoj (−1)

))
is an

(
f∗OCn

)
Up

-module isomorphism of the

sheaves on the formal scheme Up which is compatible with the datum Φ upstairs.

Here we note that we have an isomorphism ψj∗
(
OUoj (−1)

) ∼= OUo(−1)⊕nj as an OUo-module.
Recall that the original cohomology functor is really a cohomology functor. In order to see

what kind of algebraic data come up from our geometric data, let us apply the cohomology functor
to them. We choose a coordinate z on the formal scheme Uo and fix it once for all. Then we
have Uo = Spec

(
k[[z]]

)
. Since ψj : Uoj −→ Uo is a cyclic covering of degree nj , we can identify

Uoj = Spec
(
k[[z1/nj ]]

)
so that ψj is given by z =

(
z1/nj

)nj = z
nj

j , where zj = z1/nj is a coordinate
of Uoj . The morphism π determines a coordinate

y = zr +
∞∑
m=1

cmz
r+m
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on Up. We also choose a coordinate yj = y1/nj of Uj in which the morphism fj can be written as
y =

(
y1/nj

)nj = y
nj

j . Out of the geometric data, we can assign a vector subspace W of V by

(3.1)

W = φ
(
H0(C0 \ {p}, f∗F)

)
⊂ H0

(
Up \ {p}, π∗

⊕̀
j=1

ψj∗
(
OUoj

(−1)
))

= H0

(
Uo \ {o},

⊕̀
j=1

ψj∗
(
OUoj (−1)

))

∼= H0
(
Uo \ {o},

⊕̀
j=1

OUo
(−1)⊕nj

)
∼= H0

(
Uo \ {o},OUo

(−1)⊕n
)

= k((z))⊕n = V .

Here, we have used the convention of [16] that

H0(C0 \ {p},OC0) = lim−→
m

H0
(
C0,OC0(m · p)

)
H0(Uo \ {o},OUo

) = lim−→
m

H0
(
Uo,OUo

(m)
)

= k((z)) ,

etc. The coordinate ring of the curve C0 determines a scalar diagonal stabilizer algebra

(3.2)

A0 = π∗
(
H0(C0 \ {p},OC0)

)
⊂ π∗

(
H0(Up \ {p},OUp)

)
⊂ H0

(
Uo \ {o},OUo

)
= L ⊂ gl(n,L)

satisfying that A0 ·W ⊂ W , where L is identified with the set of scalar matrices in gl(n,L). The
rank of W over A0 is r · n, which is equal to the rank of f∗F . Note that we have also an inclusion

A0
∼= H0(C0 \ {p},OC0) ⊂ H0(Up \ {p},OUp

) = k((y))

by the coordinate y. As in Section 2 and 3 of [16], we can use the formal patching C0 = (C0\{p})∪Up
to compute the cohomology group

(3.3)
H1(C0,OC0) ∼=

H0(Up \ {p},OUp
)

H0(C0 \ {p},OC0) +H0(Up,OUp)

∼=
k((y))

A0 + k[[y]]
.

Thus the cokernel of the projection γA0 : A0 −→ k((y))/k[[y]] has finite dimension. The function
ring

An = H0(Cn \∆,OCn) ⊂
⊕̀
j=1

H0(Uj \ {pj},OUj
)
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also acts on V and satisfies that An ·W ⊂W , because we have a natural injective isomorphism

(3.4)

An = H0(Cn \∆,OCn) ∼= H0
(
C0 \ {p}, f∗OCn

)
⊂ H0

(
Up \ {p}, (f∗OCn)Up

)
= H0

(
Up \ {p},

⊕̀
j=1

fj∗OUj

)
=
⊕̀
j=1

k((y))
[
hnj (y)

]
= Hn(y) ⊂ gl

(
n, k((y))

)
,

where hnj (y) is the block matrix of (2.4) and Hn(y) is the maximal commutative subalgebra of
gl
(
n, k((y))

)
of type n. In order to see the action of An on W more explicitly, we first note that the

above isomorphism is given by the identification y1/nj = hnj (y). Since the formal completion FUj of
the vector bundle F at the point pj is a free OUj -module of rank r, let us take a basis {e1, e2, · · · , er}
for the free H0(Uj ,OUj

)-module H0(Uj ,FUj
). The direct image sheaf fj∗FUj

is a free OUp
-module

of rank nj · r, so we can take a basis of sections

(3.5)
{
yα/nj ⊗ eβ

}
0≤α<nj ,1≤β≤r

for the freeH0(Up,OUp
)-moduleH0(Up, fj∗FUj

). SinceH0(Uj ,FUj
) =H0(Up, fj∗FUj

), H0(Uj ,OUj
)

= H0(Up, fj∗OUj
) acts on the basis (3.5) by the matrix hnj

(y)⊗ Ir, where Ir is the identity matrix
acting on {e1, e2, · · · , er}. This can be understood by observing that the action of y1/n on the vector

(c0, c1, · · · , cn−1) =
n−1∑
α=0

cαy
α/n

is given by the action of the block matrix hn(y).

Remark 3.2. From the above argument, it is clear that the role which our π and φ play is exactly
the same as that of the parabolic structure of [18]. The advantage of using π and φ rather than the
parabolic structure lies in their functoriality. Indeed, the parabolic structure does not transform
functorially under morphisms of curves, while our data naturally do (see Definition 3.5).

The algebra Hn(y) has two different presentations in terms of geometry. We have used

Hn(y) ∼= H0
(
Up \ {p}, (f∗OCn)Up

)
=
⊕̀
j=1

k((y))
[
hnj

(y)
]
⊂ gl

(
n, k((y))

)
in (3.4). In this presentation, an element of Hn(y) is an n × n matrix acting on V ∼= H0

(
Up \

{p}, (f∗F)Up

)
. The other geometric interpretation is

Hn(y) ∼= H0
(
Up \ {p},

⊕̀
j=1

fj∗OUj

) ∼= ⊕̀
j=1

H0
(
Uj \ {pj},OUj

)
=
⊕̀
j=1

k((yj)) .
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In this presentation, the algebra Hn(y) acts on

V ∼= H0

(
Up \ {p}, π∗

⊕̀
j=1

ψj∗
(
OUoj (−1)

))

∼=
⊕̀
j=1

H0
(
Uoj \ {o},OUoj

(−1)
)

=
⊕̀
j=1

k((zj))

by the component-wise multiplication of yj to zj . We will come back to this point in (4.4).
The pull-back through the morphism f gives an embedding A0 ⊂ An. As an A0-module, An is

torsion-free of rank n, because C0 is integral and the morphism f is of degree n. Using the formal
patching Cn = (Cn \∆) ∪ U1 ∪ · · · ∪ U`, we can compute the cohomology

(3.6)

H1(Cn,OCn) ∼=
⊕`

j=1H
0(Uj \ {pj},OUj

)

H0(Cn \∆,OCn) +
⊕`

j=1H
0(Uj ,OUj )

∼=
⊕`

j=1 k((y1/nj ))

An +
⊕`

j=1 k[[y1/nj ]]

∼=
Hn(y)

An +Hn(y) ∩ gl
(
n, k[[y]]

) .
This shows that the projection

γAn : An −→
Hn(y)

Hn(y) ∩ gl
(
n, k[[y]]

)
has a finite-dimensional cokernel. These discussions motivate the following definition:

Definition 3.3. A triple (A0, An,W ) is said to be a set of algebraic data of type n, index µ, and
rank r if the following conditions are satisfied:

(1) W is a point of the Grassmannian Grn(µ) of index µ of the vector valued functions of size
n.

(2) The type n is an integral vector (n1, · · · , n`) consisting of positive integers such that n =
n1 + · · ·+ n`.

(3) There is a monic element y ∈ L = k((z)) of order −r such that A0 is a subalgebra of k((y))
containing the field k.

(4) The cokernel of the projection γA0 : A0 −→ k((y))/k[[y]] has finite dimension.
(5) An is a subalgebra of the maximal commutative algebra Hn(y) ⊂ gl

(
n, k((y))

)
of type n

such that the projection

γAn : An −→
Hn(y)

Hn(y) ∩ gl
(
n, k[[y]]

)
has a finite-dimensional cokernel.

(6) There is an embedding A0 ⊂ An as the scalar diagonal matrices, and as an A0-module
(which is automatically torsion-free), An has rank n over A0.

(7) The algebra An ⊂ gl
(
n, k((y))

)
stabilizes W ⊂ V , i.e. An ·W ⊂W .
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The homomorphisms γA0 and γAn satisfy the Fredholm condition because (7) implies that they have
finite-dimensional kernels. Now we can state

Proposition 3.4. For every set of geometric data of Definition 3.1, there is a unique set of algebraic
data of Definition 3.3 having the same type, index and rank.

Proof. We have already constructed the triple (A0, An,W ) out of the geometric data in (3.1), (3.2)
and (3.4) which satisfies all the conditions in Definition 3.3 but (1). The only remaining thing
we have to show is that the vector subspace W of (3.1) is indeed a point of the Grassmannian
Grn(µ). To this end, we need to compute the cohomology of f∗F by using the formal patching
C0 = Spec(A0) ∪ Up (for more detail, see [16]). Noting the identification

⊕̀
j=1

ψj∗
(
OUoj

(−1)
) ∼= OUo

(−1)⊕n

as in (3.1), we can show that

(3.7)

H0(C0, f∗F) = H0(C0 \ {p}, f∗F) ∩H0(Up, f∗FUp
)

∼= W ∩H0
(
Up, π∗(OUo(−1)⊕n)

)
∼= W ∩H0

(
Uo,OUo

(−1)⊕n
)

∼= W ∩
(
k[[z]]z

)⊕n
= Ker(γW ) ,

and

(3.8)

H1(C0, f∗F) ∼=
H0(Up \ {p}, f∗F)

H0(C0 \ {p}, f∗F) +H0(Up, f∗FUp
)

∼=
H0
(
Up \ {p}, π∗(OUo(−1)⊕n)

)
W +H0

(
Up, π∗(OUo

(−1)⊕n)
)

∼=
H0
(
Uo \ {o},OUo(−1)⊕n

)
W +H0

(
Uo,OUo

(−1)⊕n
)

∼=
k((z))⊕n

W +
(
k[[z]]z

)⊕n
= Coker(γW ) ,

where γW is the canonical projection of Definition 2.1. Since f is a finite morphism, we have
Hi(C0, f∗F) ∼= Hi(Cn,F). Thus

(3.9) µ = dimkH
0(Cn,F)− dimkH

1(Cn,F) = dimk Ker(γW )− dimk Coker(γW ) ,

which shows that W is indeed a point of Grn(µ). This completes the proof. �

This proposition gives a generalization of the Segal-Wilson map to the case of covering morphisms
of algebraic curves. We can make the above map further into a functor, which we shall call the
cohomology functor for covering morphisms. The categories we use are the following:
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Definition 3.5. The category C(n) of geometric data of a fixed type n consists of the set of geometric
data of type n and arbitrary index µ and rank r as its object. A morphism between two objects〈

f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
of type n, index µ and rank r and〈

f ′ :
(
C ′n,∆

′,Π′,F ′,Φ′
)
−→

(
C ′0, p

′, π′, f ′∗F ′, φ′
)〉

of the same type n, index µ′ and rank r′ is a triple (α, β, λ) of morphisms satisfying the following
conditions:

(1) α : C ′0 −→ C0 is a locally cyclic covering of degree s of the base curves such that α∗(p) = s·p′,
and π and π′ are related by π = α̂ ◦ π′ with the morphism α̂ of formal schemes induced by
α.

(2) β : C ′n −→ Cn is a covering morphism of degree s such that ∆′ = β−1(∆), and the following
diagram

C ′n
β−−−−→ Cn

f ′
y yf
C ′0 −−−−→

α
C0

commutes.
(3) The morphism β̂j : U ′j −→ Uj of formal schemes induced by β at each p′j satisfies πj = β̂j ◦π′j

and the commutativity of

Uoj
π′j−−−−→ U ′j

bβj−−−−→ Uj

ψj

y f ′j

y fj

y
Uo −−−−→

π′
U ′p′ −−−−→bα Up.

(4) λ : β∗F ′ −→ F is an injective OCn -module homomorphism such that its completion λj at
each point pj satisfies commutativity of

(β∗F ′)Uj

λj−−−−→ FUj

bβj(φ
′
j)

yo o
yφj

β̂j∗π
′
j∗OUoj (−1) πj∗OUoj (−1).

In particular, each λj is an isomorphism.

Remark 3.6. From (3) above, we have r = s · r′. The condition (4) above implies that F
/
β∗F ′ is a

torsion sheaf on Cn whose support does not intersect with ∆.

One can show by using Proposition 1.6 that there are many nontrivial morphisms among the sets of
geometric data with different ranks.

Definition 3.7. The category S(n) of algebraic data of type n has the stabilizer triples (A0, An,W )
of Definition 3.3 of type n and arbitrary index µ and rank r as its objects. Note that for every object
(A0, An,W ), we have the commutative algebras k((y)) and Hn(y) associated with it. A morphism
between two objects (A0, An,W ) and (A′0, A

′
n,W

′) is a triple (ι, ε, ω) of injective homomorphisms
satisfying the following conditions:



PRYM VARIETIES AND INTEGRABLE SYSTEMS 17

(1) ι : A0 ↪→ A′0 is an inclusion compatible with the inclusion k((y)) ⊂ k((y′)) defined by a
power series

y = y(y′) = y′
s + a1y

′s+1 + a2y
′s+2 + · · · .

(2) ε : An −→ A′n is an injective homomorphism satisfying the commutativity of the diagram

An
ε−−−−→ A′ny y

Hn(y) −−−−→
E

Hn(y′),

where the vertical arrows are the inclusion maps, and

E : Hn(y) ∼=
⊕̀
j=1

k((y1/nj )) −→
⊕̀
j=1

k((y′1/nj )) ∼= Hn(y′)

is an injective homomorphism defined by the Puiseux expansion

y1/nj = y(y′)1/nj = y′
s/nj + b1y

′(s+1)/nj + b2y
′(s+2)/nj + · · ·

of (1) for every nj . Note that neither ε nor E is an inclusion map of subalgebras of gl(n,L).
(3) ω : W ′ −→ W is an injective An-module homomorphism. We note that W ′ has a natural

An-module structure by the homomorphism ε. As in (2), ω is not an inclusion map of the
vector subspaces of V .

Theorem 3.8. There is a fully-faithful functor

κn : C(n) ∼−→ S(n)

between the category of geometric data and the category of algebraic data. An object of C(n) of index
µ and rank r corresponds to an object of S(n) of the same index and rank.

Proof. The association of (A0, An,W ) to the geometric data has been done in (3.1), (3.2), (3.4) and
Proposition 3.4. Let (α, β, λ) be a morphism between two sets of geometric data as in Definition 3.5.
We use the notations U∗j = Uj \ {pj} and U∗p = Up \ {p}. The homomorphism ι is defined by the
commutative diagram

A0
∼−−−−→ H0(C0 \ {p},OC0) −−−−→ H0(U∗p ,OUp

)

ι

y α∗
y bα∗y

A′0
∼−−−−→ H0(C ′0 \ {p′},OC′0) −−−−→ H0(U ′∗p′ ,OU ′p′ ).

Similarly,

An
∼−−−−→ H0(Cn \∆,OCn) −−−−→

⊕`
j=1H

0(U∗j ,OUj )

ε

y β∗
y ⊕bβ∗jy

A′n
∼−−−−→ H0(C ′n \∆′,OC′n) −−−−→

⊕`
j=1H

0(U ′∗j ,OU ′j )
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defines the homomorphism ε. Finally,

W ′ W ′
ω−−−−→ Wyo yo yo

H0(C ′0 \ {p′}, f ′∗F ′)
α∗−−−−→
∼

H0(C0 \ {p}, f∗β∗F ′)
f∗(λ)−−−−→ H0(C0 \ {p}, f∗F)

f ′∗
yo f∗

yo f∗
yo

H0(C ′n \∆′,F ′) β∗−−−−→
∼

H0(Cn \∆, β∗F ′)
λ−−−−→ H0(Cn \∆,F)y y y⊕

j H
0(U ′∗j ,F ′U ′j )

⊕bβj∗−−−−→
∼

⊕
j H

0(U∗j , β̂j∗F ′U ′j )
⊕λj−−−−→

⊕
j H

0(U∗j ,FUj
)

determines the homomorphism ω.
In order to establish that the two categories are equivalent, we need the inverse construction. The

next section is entirely devoted to the proof of this claim. �

The following proposition and its corollary about the geometric data of rank one are crucial when
we study geometry of orbits of the Heisenberg flows in Section 5.

Proposition 3.9. Suppose we have two sets of geometric data of rank one having exactly the
same constituents except for the sheaf isomorphisms (Φ, φ) for one and (Φ′, φ′) for the other. Let
(A0, An,W ) and (A0, An,W

′) be the corresponding algebraic data, where A0 and An are common in
both of the triples because of the assumption. Then there is an element g ∈ Γn(y) of (2.6) such that
W ′ = g ·W .

Proof. Recall that

φ : (f∗F)Up

∼−→ π∗

(⊕̀
j=1

ψj∗
(
OUoj

(−1)
))

is an
(
f∗OCn

)
Up

-module isomorphism. Thus,

g = φ′ ◦ φ−1 : π∗

(⊕̀
j=1

ψj∗
(
OUoj (−1)

)) ∼−→ π∗

(⊕̀
j=1

ψj∗
(
OUoj (−1)

))
is also an

(
f∗OCn

)
Up

-module isomorphism. Note that we have identified
(
f∗OCn

)
Up

as a subalgebra

of Hn(y) in (3.4). Indeed, this subalgebra is Hn(y) ∩ gl
(
n, k[[y]]

)
. Therefore, the invertible n × n

matrix
g ∈ k∗⊕n + gl

(
n, k[[y]]y

)
= k∗⊕n + gl

(
n, k[[z]]z

)
commutes with Hn(y) ∩ gl

(
n, k[[y]]

)
, where k∗ denotes the set of nonzero constants and k∗⊕n the

set of invertible constant diagonal matrices. We recall that k[[z]] = k[[y]], because y has order −1.
The commutativity of g and Hn(y) ∩ gl

(
n, k[[y]]

)
immediately implies that g commutes with all

of Hn(y). But since Hn(y) is a maximal commutative subalgebra of gl
(
n, k((y))

)
, it implies that

g ∈ Γn(y). Here we note that φ′j ◦ φj
−1 is exactly the j-th block of size nj × nj of the n× n matrix

g, and that we can normalize the leading term of φ′j ◦φj
−1 to be equal to Inj

by the definition (5) of
Definition 3.1. Thus the leading term of g can be normalized to In. From the construction of (3.1),
we have W ′ = g ·W . This completes the proof. �
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Corollary 3.10. The cohomology functor induces a bijective correspondence between the collection
of geometric data 〈

f :
(
Cn,∆,Π,F

)
−→

(
C0, p, π, f∗F

)〉
of type n, index µ, and rank one, and the triple of algebraic data (A0, An,W ) of type n, index
µ, and rank one satisfying the same conditions of Definition 3.3 except that W is a point of the
Grassmannian quotient Zn(µ, y).

Proof. Note that the datum Φ is indeed the block decomposition of the datum of φ. Thus taking the
quotient space of the Grassmannian by the group action of Γn(y) exactly corresponds to eliminating
the data Φ and φ from the set of geometric data of Definition 3.1. �

4. The inverse construction

Let W ∈ Grn(µ) be a point of the Grassmannian and consider a commutative subalgebra A of
gl(n,L) such that A ·W ⊂W . Since the set of vector fields Ψ(A) has W as a fixed point, we call such
an algebra a commutative stabilizer algebra of W . In the previous work [16], the algebro-geometric
structures of arbitrary commutative stabilizers were determined for the case of the Grassmannian
Gr1(µ) of scalar valued functions. In the context of the current paper, the Grassmannian is enlarged,
and consequently there are far larger varieties of commutative stabilizers. However, it is not the
purpose of this paper to give the complete geometric classification of arbitrary stabilizers. We restrict
ourselves to studying large stabilizers in connection with Prym varieties, which will be the central
theme of the next section. A stabilizer is said to be large if it corresponds to a finite-dimensional
orbit of the Heisenberg flows on the Grassmannian quotient. The goal of this section is to recover
the geometric data out of a point of the Grassmannian together with a large stabilizer.

Choose an integral vector n = (n1, n2, · · · , n`) with n = n1 + · · · + n` and a monic element y of
order −r as in (2.3), and consider the formal loop algebra gl

(
n, k((y))

)
acting on the vector space

V = L⊕n. Let us denote yj = hnj (y) = y1/nj . We introduce a filtration

· · · ⊂ Hn(y)(rm−r) ⊂ Hn(y)(rm) ⊂ Hn(y)(rm+r) ⊂ · · ·

in the maximal commutative algebra

(4.1) Hn(y) ∼=
⊕̀
j=1

k((y))
[
y1/nj

] ∼= ⊕̀
j=1

k((y1/nj )) =
⊕̀
j=1

k((yj))

by defining

(4.2) Hn(y)(rm) =
{(
a1(y1), · · · , a`(y`)

) ∣∣∣∣ max
[
ordy1(a1), · · · , ordy`

(a`)
]
≤ m

}
,

where ordyj
(aj) is the order of aj(yj) ∈ k((yj)) with respect to the variable yj . Accordingly, we can

introduce a filtration in V which is compatible with the action of Hn(y) on V . In order to define
the new filtration in V geometrically, let us start with Uo = Spec

(
k[[z]]

)
and Up = Spec

(
k[[y]]

)
.

The inclusion k[[y]] ⊂ k[[z]] given by y = y(z) = zr + c1z
r+1 + c2z

r+2 + · · · defines a morphism
π : Uo −→ Up. Let Uj = Spec

(
k[[yj ]]

)
. The identification yj = y1/nj gives a cyclic covering
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fj : Uj −→ Up of degree nj . Correspondingly, the covering ψj : Uoj −→ Uo of degree nj of (9) of
Definition 3.1 is given by k[[z]] ⊂ k[[z1/nj ]]. Thus we have a commutative diagram

k[[z1/nj ]]
π∗j←−−−− k[[y1/nj ]]

ψ∗j

x xf∗j
k[[z]] ←−−−−

π∗
k[[y]]

of inclusions, where π∗j is defined by the Puiseux expansion

(4.3) yj = y1/nj = y(z)1/nj = zr/nj + a1z
(r+1)/nj + a2z

(r+2)/nj + · · ·
of y(z). Recall that in order to distinguish from Uo = Spec

(
k[[z]]

)
, we have introduced the notation

Uoj = Spec
(
k[[z1/nj ]]

)
for the cyclic covering of Uo. The above diagram corresponds to the geometric

diagram of covering morphisms
Uoj

πj−−−−→ Uj

ψj

y yfj

Uo −−−−→
π

Up.

We denote U∗o = Uo \ {o}, U∗oj = Uoj \ {o}, U∗p = Up \ {p}, and U∗j = Uj \ {pj} as before. The
k((y))-algebra Hn(y) is identified with the H0(U∗p ,OUp

)-algebra

Hn(y) = H0
(
U∗p ,

⊕̀
j=1

fj∗OUj

) ∼= ⊕̀
j=1

H0(U∗j ,OUj
) .

Corresponding to this identification, the vector space V = L⊕n as a module over L = H0(U∗o ,OUo
)

is identified with

(4.4) V = H0

(
U∗o ,

⊕̀
j=1

ψj∗
(
OUoj

(−1)
)) ∼= ⊕̀

j=1

H0
(
U∗oj ,OUoj

(−1)
) ∼= ⊕̀

j=1

k((z1/nj )) .

The Hn(y)-module structure of V is given by the pull-back
⊕`

j=1 π
∗
j , which is nothing but the

component-wise multiplication of k((y1/nj )) to k((z1/nj )) through (4.3) for each j. Define a new
variable by zj = z1/nj . We note from (4.3) that yj = yj(z1/nj ) = yj(zj) is of order −r with respect
to zj . Now we can introduce a new filtration

· · · ⊂ V (m−1) ⊂ V (m) ⊂ V (m+1) ⊂ · · ·
in V by defining

(4.5) V (m) =
{(
v1(z1), · · · , v`(z`)

)
∈
⊕̀
j=1

k((zj))
∣∣∣∣ max

[
ordz1(v1), · · · , ordz`

(v`)
]
≤ m

}
,

where ordzj (vj) denotes the order of vj = vj(zj) with respect to zj .

Remark 4.1. The filtration (4.5) is different from (2.1) in general. However, we always have V (0) =
F (0)(V ) and V (−1) = F (−1)(V ). This is one of the reasons why we have chosen F (−1)(V ) instead of
an arbitrary F (ν)(V ) in the definition of the Grassmannian in Definition 2.1.

It is clear from (4.2) and (4.5) that Hn(y)(rm1) · V (m2) ⊂ V (rm1+m2), and hence V is a filtered
Hn(y)-module. With these preparation, we can state the inverse construction theorem.
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Theorem 4.2. A triple (A0, An,W ) of algebraic data of Definition 3.3 determines a unique set of
geometric data 〈

f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
.

Proof. The proof is divided into four parts. (I) Construction of the curve C0 and the point p: Let

us define A(rm)
0 = A0 ∩ k[[y]]y−m, which consists of elements of A0 of order at most m with respect

to the variable y. This gives a filtration of A0:

· · · ⊂ A(rm−r)
0 ⊂ A(rm)

0 ⊂ A(rm+r)
0 ⊂ · · · .

Using the finite-dimensionality of the cokernel (4) of Definition 3.3, we can show that A0 has an
element of order m (with respect to y) for every large integer m ∈ N, i.e.

(4.6) dimk A
(rm)
0

/
A

(rm−r)
0 = 1 for all m >> 0 .

Since A0 ·W ⊂ W , the Fredholm condition of W implies that A(rm)
0 = 0 for all m < 0. Note that

A0 is a subalgebra of a field, and hence it is an integral domain. Therefore, the complete algebraic
curve C0 = Proj(grA0) defined by the graded algebra

grA0 =
∞⊕
m=0

A
(rm)
0

is integral. We claim that C0 is a one-point completion of the affine curve Spec(A0). In order to
prove the claim, let w denote the homogeneous element of degree one given by the image of the
element 1 ∈ A(0)

0 under the inclusion A(0)
0 ⊂ A(r)

0 . Then the homogeneous localization (grA0)((w)) is
isomorphic to A0. Thus the principal open subset D+(w) defined by the element w is isomorphic to
the affine curve Spec(A0). The complement of Spec(A0) in C0 is the closed subset defined by (w),
which is nothing but the projective scheme

Proj

( ∞⊕
m=0

A
(rm)
0

/
A

(rm−r)
0

)
given by the associated graded algebra of grA0. Take a monic element am ∈ A(rm)

0 \ A(rm−r)
0 for

every m >> 0, whose existence is assured by (4.6). Since ai · aj ≡ ai+j mod A
(ri+rj−r)
0 , the map

ζ :
∞⊕
m=0

A
(rm)
0 /A

(rm−r)
0 −→ k[x] ,

which assigns xm to each am for m >> 0 and 0 otherwise, is a well-defined homomorphism of graded
rings, where x is an indeterminate. In fact, ζ is an isomorphism in large degrees, and hence we have

Proj

( ∞⊕
m=0

A
(rm)
0

/
A

(rm−r)
0

)
∼= Proj

(
k[x]

)
= p .

This proves the claim.
Next we want to show that the added point p is a smooth rational point of C0. To this end, it is

sufficient to show that the formal completion of the structure sheaf of C0 along p is isomorphic to a
formal power series ring. Let us consider (grA0)/(wn). The degree m homogeneous piece of this ring
is given by A(rm)

0 /(wnA(rm−rn)
0 ), which is isomorphic to k · am ⊕ k · am−1w⊕ · · · ⊕ k · am−n+1w

n−1

for all m > n >> 0. From this we conclude that

gr(A0)/(wn) ∼= k[x,w]/(wn)
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in large degrees for n >> 0. Therefore, taking the homogeneous localization at the ideal (w), we
have (

gr(A0)/(wn)
)
((w))

∼= k[w/x]
/(

(w/x)n
)

for n >> 0. Letting n → ∞ and taking the inverse limit of this inverse system, we see that the
formal completion of the structure sheaf of C0 along p is indeed isomorphic to the formal power series
ring k[[w/x]]. We can also present an affine local neighborhood of the point p. Let a = a(y) ∈ A0 be
a monic, nonconstant element with the lowest order. It is unique up to the addition of a constant:
a(y) 7→ a(y) + c. This element defines a principal open subset D+(a) corresponding to the ring

(4.7)

(grA0)(a) = grA0

[
a−1

]
0

= {a−ib | b ∈ A0, i ≥ 0, ordy(b)− i · ordy(a) ≤ 0}
⊂ k[[y]] .

Since the formal completion of C0 along p coincides with that of D+(a) at p, and since the structure
sheaf of the latter is k[[y]] by (4.7), we have obtained that k[[w/x]] = k[[y]]. Thus y is indeed a
formal parameter of the curve C0 at p.

(II) Construction of Cn and ∆: Since An ⊂ Hn(y), it has a filtration A
(rm)
n = An ∩ Hn(y)(rm)

induced by (4.2). The Fredholm condition of W again implies that A(rm)
n = 0 for all m < 0. So let

us define Cn = Proj(grAn), where

grAn =
∞⊕
m=0

A(rm)
n .

This is a complete algebraic curve and has an affine part Spec(An). The complement Cn \Spec(An)
is given by the projective scheme

Proj

( ∞⊕
m=0

A(rm)
n

/
A(rm−r)

n

)
.

The finite-dimensionality (5) of Definition 3.3 implies that for every `-tuple (ν1, · · · , ν`) of positive
integers satisfying that νj >> 0, the stabilizer algebra An has an element of the form

(
a1(y1), · · · , a`(y`)

)
∈ An ⊂

⊕̀
j=1

k((yj))

such that the order of aj(yj) with respect to yj is equal to νj for all j = 1, · · · , `. Thus for all
sufficiently large integer m ∈ N, we have an isomorphism

A(rm)
n

/
A(rm−r)

n
∼= k⊕` .

Actually, by choosing a basis of A(rm)
n

/
A

(rm−r)
n for each m >> 0, we can prove in the similar way

as in the scalar case that the associated graded algebra
⊕∞

m=0A
(rm)
n /A

(rm−r)
n is isomorphic to the

graded algebra
⊕`

j=0 k[xj ] in sufficiently large degrees, where xj ’s are independent variables. The
projective scheme of the latter graded algebra is an `-point scheme. Therefore, the curve Cn is an
`-point completion of the affine curve Spec(An). Let

∆ = {p1, p2, · · · , p`} = Proj

( ∞⊕
m=0

A(rm)
n

/
A(rm−r)

n

)
.

We have to show that these points are smooth and rational. To this end, we investigate the com-
pletion of Cn along the subscheme {p1, p2, · · · , p`}. Let u be the homogeneous element of degree
one in A

(r)
n given by the image of 1 ∈ A(0)

n under the inclusion map A
(0)
n ⊂ A

(r)
n . Then the closed
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subscheme (the added points) is exactly the one defined by the principal homogeneous ideal (u). We
can prove, in a similar way as in (I), that

gr(An)/(un) ∼=
(⊕̀
j=1

k[xj ]
)
[u]
/

(un) ∼=
⊕̀
j=1

(
k[xj , uj ]/(unj )

)
in large degrees for n >> 0, where xj ’s and uj ’s are independent variables. Letting n → ∞ and
taking the inverse limit, we conclude that the formal completion of the structure sheaf of Cn along
the subscheme {p1, p2, · · · , p`} is isomorphic to the direct sum

⊕`
j=1 k[[uj/xj ]]. Thus all of these `

points are smooth and rational. By considering the adic-completion of the ring

(An)p =
{
a−ih | h ∈ An

(rm), i ≥ 0, m− i · ordy(a) ≤ 0
}
,

where a is as in (4.7), we can show that k[[uj/xj ]] = k[[yj ]]. So yj can be viewed as a formal
parameter of Cn around the point pj .
(III) Construction of the morphism f : The inclusion map A0 ↪→ An gives rise to an inclusion

(4.8)
∞⊕
q=0

A
(rq)
0 ⊂

∞⊕
m=0

A(rm)
n ,

because we have A(rq)
0 ⊂ A(rm)

n for all m ≥ q ·max[n1, · · · , n`]. It defines a finite surjective morphism
f : Cn −→ C0. Using the formal parameter yj , we know that the morphism fj : Uj −→ Up of the
formal completion Uj of Cn along pj induced by f : Cn −→ Co is indeed the cyclic covering morphism
defined by y = y

nj

j . Since Hn(y) is a free k((y))-module of dimension n and since the algebras A0 and
An satisfy the Fredholm condition described in (4), (5) and (7) of Definition 3.3, An is a torsion-free
module of rank n over A0. Thus the morphism f has degree n.
(IV) Construction of the sheaf F : We introduce a filtration in W ⊂ V induced by (4.5). The An-
module structure of W is compatible with the Hn(y) =

⊕`
j=1 k((yj))-action on V =

⊕`
j=1 k((zj)).

Note that we have A(rm1)
n ·W (m2) ⊂W (rm1+m2), and hence

⊕∞
m=−∞W (m) is a graded module over

grAn. Let F be the sheaf corresponding to the shifted graded module
(⊕∞

m=−∞W (m)
)
(−1), where

this shifting by −1 comes from our convention of Definition 2.1. This sheaf is an extension of the
sheaf W∼ defined on the affine curve Spec(An). The graded module

(⊕∞
m=−∞W (m)

)
(−1) is also a

graded module over grA0 by (4.8). It gives rise to a torsion-free sheaf on C0, which is nothing but
f∗F . Let us define

Wp =
{
a−iw | w ∈W (m), i ≥ 0, m− i · r · ordy(a) ≤ −1

}
,

where a is as in (4.7). Then Wp is an (A0)p-module of rank r · n = r
∑
nj . The formal completion

(f∗F)Up
of f∗F at the point p is given by the k[[y]]-module Wp ⊗(A0)p

k[[y]], and the isomorphism

(4.9) Wp ⊗(A0)p
k[[y]] ∼=

⊕̀
j=1

k[[zj ]]zj

gives rise to the sheaf isomorphism

φ : (f∗F)Up

∼−→ π∗
⊕̀
j=1

ψj∗
(
OUoj

(−1)
)

and its diagonal blocks Φ = (φ1, · · · , φ`). Since f∗F has rank r · n over OC0 from (4.9) and An has
rank n over A0, the sheaf F on Cn must have rank r. The cohomology calculation of (3.7), (3.8)
and (3.9) shows that the Euler characteristic of F is equal to µ. Thus we have constructed all of
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the ingredients of the geometric data of type n, index µ, and rank r. This completes the proof of
Theorem 4.2. �

In order to complete the proof of the categorical equivalence of Theorem 3.8, we have to construct
a triple (α, β, λ) out of the homomorphisms ι : A0 ↪→ A′0, ε : An −→ A′n, and ω : W ′ −→ W . Let s
be the rank of A′0 as an A0-module. The injection ι is associated with the inclusion k((y)) ⊂ k((y′)),
and the coordinate y has order −s with respect to y′. Therefore, we have r = s · r′. Recall that the
filtration we have introduced in A0 is defined by the order with respect to y. The homomorphism ι
induces an injective homomorphism

grA0 =
∞⊕
m=0

A
(rm)
0 −→

∞⊕
m=0

A′
(s·r′m)
0 ⊂

∞⊕
m=0

A′
(r′m)
0 = grA′0 ,

which then defines a morphism α : C ′0 −→ C0.
Note that the homomorphism ε comes from the inclusion k((yj)) ⊂ k((y′j)) for every j. By the

Puiseux expansion, we see that every yj = y1/nj has order −s as an element of k((y′j)) = k((y′1/nj )).
Thus we have

grAn =
∞⊕
m=0

A(rm)
n −→

∞⊕
m=0

A′
(s·r′m)
n ⊂

∞⊕
m=0

A′
(r′m)
n = grA′n ,

and this homomorphism defines β : C ′n −→ Cn.
Finally, the homomorphism λ can be constructed as follows. Note that ω gives an inclusion

W ′
(m) ⊂W (m) as subspaces of

⊕`
j=1 k((zj)) for every m ∈ Z. Thus we have an inclusion map

∞⊕
m=−∞

W ′
(m) ⊂

∞⊕
m=−∞

W (m) ,

which is clearly a grAn-module homomorphism. Thus it induces an injective homomorphism λ :
β∗F ′ −→ F .

One can check that the construction we have given in Section 4 is indeed the inverse of the map
we defined in Section 3. Thus we have completed the entire proof of the categorical equivalence
Theorem 3.8.

5. A characterization of arbitrary Prym varieties

In this section, we study the geometry of finite type orbits of the Heisenberg flows, and estab-
lish a simple characterization theorem of arbitrary Prym varieties. Consider the Heisenberg flows
associated with Hn(y) on the Grassmannian quotient Zn(µ, y) and assume that the flows produce a
finite-dimensional orbit at a point W ∈ Zn(µ, y). Then this situation corresponds to the geometric
data of Definition 3.1:

Proposition 5.1. Let W ∈ Grn(µ) be a point of the Grassmannian at which the Heisenberg flows
of type n and rank r associated with Hn(y) generate an orbit of finite type. Then W gives rise to a
set of geometric data 〈

f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
of type n, index µ, and rank r.
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Proof. Let Xn be the orbit of the Heisenberg flows starting at W , and consider the r-reduced
KP flows associated with k((y)). The finite-dimensionality of Xn = Qn,y(Xn) implies that the
r-reduced KP flows also produce a finite type orbit X0 at W . Let A0 = {a ∈ k((y)) | a ·W ⊂ W}
and An = {h ∈ Hn(y) | h ·W ⊂W} be the stabilizer subalgebras, which satisfy A0 ⊂ An. From the
definition of the vector fields Definition 2.3, an element of k((y)) gives the zero tangent vector at
W if and only if it is in A0. Similarly, for an element b ∈ Hn(y), ΨW (b) = 0 if and only if b ∈ An.
Thus the tangent spaces of these orbits are given by

TWX0
∼= k((y))

/
A0 and TWXn

∼= Hn(y)
/
An .

Therefore, going down to the Grassmannian quotient, the tangent spaces of Xn and X0 = Qn,y(X0)
are now given by

TWX0
∼=

k((y))
A0 + k((y)) ∩ gl

(
n, k[[y]]y

) =
k((y))

A0 ⊕ k[[y]]y

and

TWXn
∼=

Hn(y)
An +Hn(y) ∩ gl

(
n, k[[y]]y

) =
Hn(y)

An ⊕Hn(y)−
,

where W = Qn,y(W ), and Hn(y)− is defined in (2.5). Since both of the above sets are finite-
dimensional, the triple (A0, An,W ) satisfies the cokernel conditions (4) and (5) of Definition 3.3.
The rank condition (6) of Definition 3.3 is a consequence of the fact that Hn(y) has dimension n
over k((y)). Therefore, applying the inverse construction of the cohomology functor to the triple,
we obtain a set of geometric data. This completes the proof. �

Since k ⊂ A0 ⊂ An, from (3.3) and (3.6) we obtain

(5.1) TWX0
∼=

k((y))
A0 ⊕ k[[y]]y

∼= H1(C0,OC0)

and

(5.2) TWXn
∼=

Hn(y)
An ⊕Hn(y)−

∼= H1(Cn,OCn) .

Thus we know that the genera of C0 and Cn are equal to the dimension of the orbits X0 and Xn on
the Grassmannian quotient, respectively. However, we cannot conclude that these orbits are actually
Jacobian varieties. The difference of the orbits and the Jacobians lies in the deformation of the data
(Φ, φ). In order to give a surjective map from the Jacobians to these orbits, we have to eliminate
these unwanted information by using Corollary 3.10. Therefore, in the rest of this section, we have
to assume that the point W ∈ Grn(µ) gives rise to a rank one triple (A0, An,W ) of algebraic data
from the application of the Heisenberg flows associated with Hn(y) and an element y ∈ L of order
−1.

In order to deal with Jacobian varieties, we further assume that the field k is the field C of
complex numbers in what follows in this section. The computation (5.2) shows that every element
of H1(Cn,OCn) is represented by

(5.3)
∑̀
j=1

∞∑
i=−∞

tijy
−i
j ∈

⊕̀
j=1

C((yj)) = Hn(y) .

The Heisenberg flows at W are given by the equations

(5.4)
∂W

∂tij
= y−ij ·W =

(
hnj (y)

)−i ·W ,
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where hnj
(y) acts on W through the block matrix

0
. . .

hnj
(y)

. . .
0

 ,

and the index i runs over all of Z. The formal integration

(5.5) W (t) = exp

∑̀
j=1

∞∑
i=−∞

tijy
−i
j

 ·W
of the system (5.4) shows that the stabilizers A0 and An of W (t) do not deform as t varies, because
the exponential factor

(5.6) e(t) = exp

∑̀
j=1

∞∑
i=−∞

tijy
−i
j


commutes with the algebra Hn(y). Note that half of the exponential factor

exp

∑̀
j=1

−1∑
i=−∞

tijy
−i
j


is an element of Γn(y).

Theorem 5.2. Let y ∈ L be a monic element of order −1 and Xn a finite type orbit of the Heisenberg
flows on Grn(µ) associated with Hn(y) starting at W . As we have seen in Proposition 5.1, the orbit
Xn gives rise to a set of geometric data〈

f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
.

Then the projection image Xn of this orbit by Qn,y : Grn(µ) −→ Zn(µ, y) is canonically isomorphic
to the Jacobian variety Jac(Cn) of the curve Cn with W = Qn,y(W ) as its origin. Moreover, the
orbit X0 of the KP system (written in terms of the variable y) defined on the Grassmannian quotient
Zn(µ, y) is isomorphic to the deformation space{

N ⊗ f∗F
∣∣ N ∈ Jac(C0)

}
.

Thus we have a finite covering Jac(C0) −→ X0 of the orbit, which is indeed isomorphic if f∗F is a
general vector bundle on C0.

Proof. Even though the formal integration (5.5) is not well-defined as a point of the Grassmannian,
we can still apply the same construction of Section 4 to the algebraic data

(
A0, An,W (t)

)
under-

standing that the exponential matrix e(t) of (5.6) is an extra factor of degree 0. Of course the curves,
points, and the covering morphism f : Cn −→ C0 are the same as before. Therefore, we obtain〈

f :
(
Cn,∆,Π,F(t),Φ(t)

)
−→

(
C0, p, π, f∗F(t), φ(t)

)〉
,
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where the line bundle F(t) comes from the An-module W (t). We do not need to specify the data
Φ(t) and φ(t) here, because they will disappear anyway by the trick of Corollary 3.10. On the curve
Cn, the formal expression e(t) makes sense because of the homomorphism

exp : H1(Cn,OCn) 3
∑̀
j=1

∞∑
i=−∞

tijy
−i
j 7−→

[
e(t)

]
= L(t) ∈ Jac(Cn) ⊂ H1(Cn,O∗Cn

) ,

where L(t) is the line bundle of degree 0 corresponding to the cohomology class
[
e(t)

]
∈ H1(Cn,O∗Cn

).
Thus the sheaf we obtain from W (t) = e(t) ·W is F(t) = L(t) ⊗ F . Now consider the projection
image

(
A0, An,W (t)

)
of the algebraic data by Qn,y. Then it corresponds to the data

(5.7)
〈
f :
(
Cn,∆,Π,L(t)⊗F

)
−→

(
C0, p, π, f∗

(
L(t)⊗F

))〉
by Corollary 3.10. Since exp : H1(Cn,OCn) −→ Jac(Cn) is surjective, we can define a map assigning
(5.7) to every point L(t) ∈ Jac(Cn) of the Jacobian. Through the cohomology functor, it gives indeed
the desired identification of Jac(Cn) and the orbit Xn:

Jac(Cn) 3 L(t) 7−→ (5.7) 7−→W (t) ∈ Xn .

The KP system in the y-variable at W ∈ Zn(µ, y) is given by the equation

∂W

∂sm
= y−m ·W .

The formal integration

W (s) = exp

( ∞∑
m=1

smy
−m

)
·W

corresponds to 〈
f :
(
Cn,∆,Π,

(
f∗N (s)

)
⊗F

)
−→

(
C0, p, π,N (s)⊗ f∗F

)〉
,

where N (s)⊗ f∗F is the vector bundle corresponding to the A0-module W (s). From (5.1), we have
a surjective map of H1(C0,OC0) onto the Jacobian variety Jac(C0) ⊂ H1(C0,O∗C0

) defined by

exp : H1(C0,OC0) 3
∞∑
m=1

smy
−m 7−→

[
exp
( ∞∑
m=1

smy
−m
)]

= N (s) ∈ Jac(C0) .

Thus the orbit X0 coincides with the deformation space N (s)⊗ f∗F , which is covered by Jac(C0).
The last statement of the theorem follows from a result of [13]. This completes the proof. �

Let (η1, · · · , η`) be the transition function of F defined on Uj \ {pj}, where ηj ∈ C((yj)). Then the
family F(t) of line bundles on Cn is given by the transition function(

exp
( ∞∑
i=1

ti1y
−i
j

)
· η1, · · · , exp

( ∞∑
i=1

ti`y
−i
`

)
· η`

)
,

and similarly, the line bundle L(t) is given by(
exp
( ∞∑
i=1

ti1y
−i
j

)
, · · · , exp

( ∞∑
i=1

ti`y
−i
`

))
.

Here, we note that the nonnegative powers of yj = hnj
(y) do not contribute to these transition

functions.
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Recall that Hn(y)0 denotes the subalgebra of Hn(y) consisting of the traceless elements.

Theorem 5.3. In the same situation as above, the projection image X ⊂ Zn(µ, y) of the orbit X
of the traceless Heisenberg flows Ψ

(
Hn(y)0

)
starting at W is canonically isomorphic to the Prym

variety associated with the covering morphism f : Cn −→ C0.

Proof. Because of Remark 1.3, the locus of L(t) ∈ Jac(Cn) such that

det
(
f∗
(
L(t)⊗F

))
= det(f∗F)

is the Prym variety Prym(f) associated with the covering morphism f . So let us compute the factor

(5.8) D(t) = det
(
f∗(L(t)⊗F)

)
⊗ det(f∗F)−1 ,

which is a line bundle of degree 0 defined on C0. We use the transition function η of f∗F defined
on Up \ {p} written in terms of the basis (3.5). Since f∗F(t) is defined by the A0-module structure
of W (t) = e(t) ·W , its transition function is given by

exp


∑∞
i=1 ti1

(
hn1(y)

)−i ∑∞
i=1 ti2

(
hn2(y)

)−i
. . . ∑∞

i=1 ti`
(
hn`

(y)
)−i

 · η ,
where the n×n matrix acts on the yα/nj -part of the basis of (3.5) in an obvious way. Let us denote
the above matrix by

T (t) =


∑∞
i=1 ti1

(
hn1(y)

)−i ∑∞
i=1 ti2

(
hn2(y)

)−i
. . . ∑∞

i=1 ti`
(
hn`

(y)
)−i

 .

Then, it is clear that D(t) ∼=
[
exp traceT (t)

]
∈ H1(C0,O∗C0

). From this expression, we see that if
L(t) stays on the orbit X of the traceless Heisenberg flows, then D(t) ∼= OC0 . Namely, X ⊂ Prym(f).

Conversely, take a point W (t) ∈ Xn of the orbit of the Heisenberg flows defined on the quotient
Grassmannian Zn(µ, y). It corresponds to a unique element L(t) ∈ Jac(Cn) by Theorem 5.2. Now
suppose that the factor D(t) of (5.8) is the trivial bundle on C0. Then it implies that

[
traceT (t)

]
= 0

as an element of H1(C0,OC0). In particular, traceT (t) acts on W trivially from (5.1). Therefore,
W (t) is on the orbit of the flows defined by

T (t)− In ·
1
n

traceT (t) ,

which are clearly traceless. In other words, W (t) ∈ X. Thus Prym(f) ⊂ X. This completes the
proof. �

Remark 5.4. Let us observe the case when the curve C0 downstairs happens to be a P1. First
of all, we note that the r-reduced KP system associated with y is nothing but the trace part of
the Heisenberg flows defined by Hn(y). Because of the second half statement of Theorem 5.2, the
trace part of the Heisenberg flows acts on the point W ∈ Zn(µ, y) trivially. Therefore, the orbit
Xn of the entire Heisenberg flows coincides with the orbit X of the traceless part of the flows. Of
course, this reflects the fact that every Jacobian variety is a Prym variety associated with a covering
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over P1. Thus the characterization theorem of Prym varieties we are presenting below contains the
characterization of Jacobians of [14] as a special case.

Now consider the most trivial maximal commutative algebra H = H(1,··· ,1)(z) = C((z))⊕n. We
define the group Γ(1,··· ,1)(z) following (2.6), and denote by

(5.9) Zn(µ) = Z(1,··· ,1)(µ, z) = Grn(µ)
/

Γ(1,··· ,1)(z)

the corresponding Grassmannian quotient. On this space the algebra H acts, and gives the n-
component KP system. Let H0 be the traceless subalgebra of H, and consider the traceless n-
component KP system on the Grassmannian quotient Zn(µ).

Theorem 5.5. Every finite-dimensional orbit of the traceless n-component KP system defined on
the Grassmannian quotient Zn(µ) of (5.9) is canonically isomorphic to a (generalized) Prym variety.
Conversely, every Prym variety associated with a degree n covering morphism of smooth curves can
be realized in this way.

Proof. The first half part has been already proved. So start with the Prym variety Prym(f) associ-
ated with a degree n covering morphism f : C −→ C0 of smooth curves. Without loss of generality,
we can assume that C0 is connected. Choose a point p of C0 outside of the branching locus so that
its preimage f−1(p) consists of n distinct points of C, and supply the necessary geometric objects
to make the situation into the geometric data〈

f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
of Definition 3.1 of rank one and type n = (1, · · · , 1) with C = Cn. The data give rise to a
unique triple (A0, An,W ) of algebraic data by the cohomology functor. We can choose π = id
so that the maximal commutative subalgebra we have here is indeed H = H(1,··· ,1)(z). Define
A′0 = {a ∈ C((z)) | a ·W ⊂ W} and A′ = {h ∈ H | h ·W ⊂ W}, which satisfy A0 ⊂ A′0 and
An ⊂ A′, and both have finite codimensions in the larger algebras. From the triple of the algebraic
data (A′0, A

′,W ), we obtain a set of geometric data〈
f ′ :

(
C ′n,∆

′,Π′,F ′,Φ′
)
−→

(
C ′0, p

′, π′, f ′∗F ′, φ′
)〉

.

The morphism (α, β, id) between the two sets of data consists of a morphism α : C ′0 −→ C0 of the
base curves and β : C ′ −→ Cn. Obviously, these morphisms are birational, and hence, they have
to be an isomorphism, because C0 and Cn are smooth. Going back to the algebraic data by the
cohomology functor, we obtain A0 = A′0 and An = A′. Thus the orbit of the traceless n-component
KP system starting at W defined on the Grassmannian quotient Zn(µ) is indeed the Prym variety
of the covering morphism f . This completes the proof of the characterization theorem. �

Remark 5.6. In the above proof, we need the full information of the functor, not just the set-
theoretical bijection of the objects. We use a similar argument once again in Theorem 6.5.

Remark 5.7. The determinant line bundle DET over Grn(0) is defined by

DETW =

(
max∧

Ker
(
γW
))∗⊗max∧

Coker
(
γW
)
.

The canonical section of the DET bundle defines the determinant divisor Y of Grn(0), whose
support is the complement of the big-cell Gr+n (0). Note that the action of Γn(y) preserves the big-
cell. So we can define the big-cell of the Grassmannian quotient by Z+

n (0, y) = Gr+n (0)
/

Γn(y). The
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determinant divisor also descends to a divisor Y/Γn(y), which we also call the determinant divisor
of the Grassmannian quotient. Consider a point W ∈ Grn(0) at which the Heisenberg flows of rank
one produce a finite type orbit Xn. The geometric data corresponding to this situation consists of a
curve Cn of genus g = dimC Xn and a line bundle F of degree g − 1 because of the Riemann-Roch
formula

dimC H
0(Cn,F)− dimC H

1(Cn,F) = deg(F)− r(g − 1) .
Thus we have an equality Xn = Picg−1(Cn) from the proof of Theorem 5.2. The intersection of Xn

with the determinant divisor of Zn(0, y) coincides with the theta divisor Θ which gives the principal
polarization of Picg−1(Cn). However, the restriction of this divisor to the Prym variety does not
give a principal polarization as we have noted in Section 1.

Remark 5.8. From the expression of (5.7), we can see that a finite-dimensional orbit of the Heisenberg
flows of rank one defined on the Grassmannian quotient gives a family of deformations f∗

(
L(t)⊗F

)
of the vector bundle f∗F on C0. It is an interesting question to ask what kind of deformations does
this family produce. More generally, we can ask the following question: For a given curve and a
family of vector bundles on it, can one find a point W of the Grassmannian Grn(µ) and a suitable
Heisenberg flows such that the orbit starting from W contains the original family?

It is known that for every vector bundle V of rank n on a smooth curve C0, there is a degree n
covering f : C −→ C0 and a line bundle F on C such that V is isomorphic to the direct image sheaf
f∗F . We can supply suitable local data so that we have a set of geometric data〈

f :
(
Cn,∆,Π,F

)
−→

(
C0, p, π, f∗F

)〉
with Cn = C. Let (A0, An,W ) be the triple of algebraic data corresponding to the above geometric
situation with a point W ∈ Zn(µ, z), where µ is the Euler characteristic of the original bundle V.
Now the problem is to compare the family of deformations given by (5.7) and the original family.

The only thing we can say about this question at the present moment is the following. If the
original vector bundle is a general stable bundle, then one can find a set of geometric data and a
corresponding point W of a Grassmannian quotient such that there is a dominant and generically
finite map of a Zariski open subset of the orbit of the Heisenberg flows starting from W into the
moduli space of stable vector bundles of rank n and degree µ+n

(
g(C0)−1

)
over the curve C0. Note

that this statement is just an interpretation of a theorem of [4] into our language using Theorem 5.2.
As in the proof of Theorem 5.5, the Heisenberg flows can be replaced by the n-component KP

flows if we choose the point p ∈ C0 away from the branching locus of f . Thus one may say that
the n-component KP system can produce general vector bundles of rank n defined on an arbitrary
smooth curve in its orbit.

6. Commuting ordinary differential operators with matrix coefficients

In this section, we work with an arbitrary field k again. Let us denote by

E =
(
k[[x]]

)
((∂−1))

the set of all pseudodifferential operators with coefficients in k[[x]], where ∂ = d/dx. This is an
associative algebra and has a natural filtration

E(m) =
(
k[[x]]

)
[[∂−1]] · ∂m

defined by the order of the operators. We can identify k((z)) with the set of pseudodifferential
operators with constant coefficients by the Fourier transform z = ∂−1:

L = k((z)) = k((∂−1)) ⊂ E .
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There is also a canonical projection

(6.1) ρ : E −→ E/Ex ∼= k((∂−1)) = L ,

where Ex is the left-maximal ideal of E generated by x. In an explicit form, this projection is given
by

(6.2) ρ : E 3 P =
∑
m∈Z

∂m · am(x) 7−→
∑
m∈Z

am(0)z−m ∈ L .

It is obvious from (6.1) that L is a left E-module. The action is given by P · v = P · ρ(Q) = ρ(PQ),
where v ∈ L = E/Ex and Q ∈ E is a representative of the equivalence class such that ρ(Q) = v.
The well-definedness of this action is easily checked. We also use the notations{

D =
(
k[[x]]

)
[∂]

E(−1) =
(
k[[x]]

)
[[∂−1]] · ∂−1 ,

which are the set of linear ordinary differential operators and the set of pseudodifferential opera-
tors of negative order, respectively. Note that there is a natural left

(
k[[x]]

)
-module direct sum

decomposition

(6.3) E = D ⊕ E(−1) .

According to this decomposition, we write P = P+ ⊕ P−, P ∈ E, P+ ∈ D, and P− ∈ E(−1).
Now consider the matrix algebra gl(n,E) defined over the noncommutative algebra E, which is

the algebra of pseudodifferential operators with coefficients in matrix valued functions. This algebra
acts on our vector space V = L⊕n ∼=

(
E/Ex

)⊕n from the left. In particular, every element of
gl(n,E) gives rise to a vector field on the Grassmannian Grn(µ) via (2.2). The decomposition (6.3)
induces

V = k[z−1]⊕n ⊕
(
k[[z]] · z

)⊕n
after the identification z = ∂−1, and the base point k[z−1]⊕n of the Grassmannian Grn(0) of index
0 is the residue class of D⊕n in E⊕n via the projection E⊕n −→ E⊕n

/(
E(−1))⊕n. Therefore, the

gl(n,D)-action on V preserves k[z−1]⊕n. The following proposition shows that the converse is also
true:

Proposition 6.1. A pseudodifferential operator P ∈ gl(n,E) with matrix coefficients is a differential
operator, i.e. P ∈ gl(n,D), if and only if

P · k[z−1]⊕n ⊂ k[z−1]⊕n .

Proof. The case of n = 1 of this proposition was established in Lemma 7.2 of [16]. So let us assume
that P =

(
Pµν

)
∈ gl(n,E) preserves the base point k[z−1]⊕n. If we apply the matrix P to the vector

subspace
0⊕ · · · ⊕ 0⊕ k[z−1]⊕ 0⊕ · · · ⊕ 0 ⊂ k[z−1]⊕n

with only nonzero entries in the ν-th position, then we know that Pµν ∈ E stabilizes k[z−1] in L.
Thus Pµν is a differential operator, i.e. P ∈ gl(n,D). This completes the proof. �

Since differential operators preserve the base point of the Grassmannian Grn(0), the negative
order pseudodifferential operators should give the most part of Grn(0). In fact, we have
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Theorem 6.2. Let S ∈ gl(n,E) be a monic zero-th order pseudodifferential operator of the form

(6.4) S = In +
∞∑
m=1

sm(x)∂−m ,

where sm(x) ∈ gl
(
n, k[[x]]

)
. Then the map

σ : Σ 3 S 7−→W = S−1 · k[z−1]⊕n ∈ Gr+n (0)

gives a bijective correspondence between the set Σ of pseudodifferential operators of the form of (6.4)
and the big-cell Gr+n (0) of the index 0 Grassmannian.

Proof. Since S is invertible of order 0, we have S−1 · V = V and S−1 · V (−1) = V (−1), where
V (−1) = F (−1)(V ) =

(
k[[z]]z

)⊕n. Thus V = S−1 · k[z−1]⊕n ⊕ V (−1), which shows that σ maps into
the big-cell.

The injectivity of σ is easy: if S−1
1 ·k[z−1]⊕n = S−1

2 ·k[z−1]⊕n, then S1S
−1
2 ·k[z−1]⊕n = k[z−1]⊕n.

It means, by Proposition 6.1, that S1S
−1
2 is a differential operator. Since S1S

−1
2 has the same form

of (6.4), the only possibility is that S1S
−1
2 = In, which implies the injectivity of σ.

In order to establish surjectivity, take an arbitrary point W of the big-cell Gr+(0). We can choose
a basis

〈
wµ
j

〉
1≤j≤n,0≤µ for the vector space W in the form

wµ
j = ejz−µ +

∞∑
ν=1

n∑
i=1

eiw
iµ
jνz

ν ,

where ej is the elementary column vector of size n and wiµjν ∈ k. Our goal is to construct an operator
S ∈ Σ such that S−1 · k[z−1]⊕n = W . Let us put S−1 =

(
Sij
)
1≤i,j≤n with

Sij = δij +
∞∑
ν=1

∂−ν · sijν(x) .

Since every coefficient sijν(x) of S−1 is a formal power series in x, we can construct the operator by
induction on the power of x. So let us assume that we have constructed sijν(x) modulo k[[x]]xµ. We
have to introduce one more equation of order µ in order to determine the coefficient of xµ in sijν(x),
which comes from the equation

S−1 · ejz−µ = a linear combination of wν
i .

For the purpose of finding a consistent equation, let us compute the left-hand side by using the
projection ρ of (6.2):
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S−1 · ejz−µ =
n∑
i=1

ei · Sij · z−µ

= ejz−µ + ρ

( ∞∑
ν=1

n∑
i=1

∂−ν · sijν(x)ei · ∂µ
)

= ejz−µ + ρ

( ∞∑
ν=1

n∑
i=1

µ∑
m=0

(−1)m
(
µ

m

)
ei · ∂µ−ν−m · sijν

(m)
(x)

)

= ejz−µ +
∞∑
ν=1

n∑
i=1

µ∑
m=0

(−1)m
(
µ

m

)
sijν

(m)
(0) · eiz−µ+ν+m

= ejz−µ +
µ−1∑
α=1

α∑
m=0

n∑
i=1

(−1)m
(
µ

m

)
sijα−m

(m)
(0) · eiz−µ+α

+
µ−1∑
m=0

n∑
i=1

(−1)m
(
µ

m

)
sijµ−m

(m)
(0) · ei

+
∞∑
β=1

µ∑
m=0

n∑
i=1

(−1)m
(
µ

m

)
sijβ+µ−m

(m)
(0) · eizβ .

Thus we see that the equation

(6.5)

S−1 · ejz−µ = wµ
j +

µ−1∑
α=1

α∑
m=0

n∑
i=1

(−1)m
(
µ

m

)
sijα−m

(m)
(0) ·wµ−α

i

+
µ−1∑
m=0

n∑
i=1

(−1)m
(
µ

m

)
sijµ−m

(m)
(0) ·w0

i

is the identity for the coefficients of eiz−ν for all i and ν ≥ 0, and determines sijβ(0)(µ) uniquely,
because the coefficient of sijβ(0)(µ) in the equation is (−1)µ. Thus by solving (6.5) for all j and
µ ≥ 0 inductively, we can determine the operator S uniquely, which satisfies the desired property
by the construction. This completes the proof. �

Using this identification of Gr+(0) and Σ, we can translate the Heisenberg flows defined on the
big-cell into a system of nonlinear partial differential equations. Since we are not introducing any
analytic structures in Σ, we cannot talk about a Lie group structure in it. However, the exponential
map

exp : gl
(
n,E(−1)

)
−→ In + gl

(
n,E(−1)

)
= Σ

is well-defined and surjective, and hence we can regard gl
(
n,E(−1)

)
as the Lie algebra of the infinite-

dimensional group Σ. Symbolically, we have an identification

(6.6) Tk[z−1]⊕nGr+(0) ∼= gl
(
n,E(−1)

)
= Lie(Σ) = TIn

Σ = S−1 · TSΣ

for every S ∈ Σ. The equation
∂W (t)
∂tij

=
(
hnj (y)

)−i ·W (t)
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is an equation of tangent vectors at the point W (t). We now identify the variable y of (2.3) with a
pseudodifferential operator

(6.7) y = ∂−r +
∞∑
m=1

cm∂
−r−m

with coefficients in k. Then the block matrix hnj
(y) of (5.4) is identified with an element of gl(n,E).

Let W (t) be a solution of (5.4) which lies in Gr+n (0), where t = (tij). Writing W (t) = S(t)−1 ·
k[z−1]⊕n, the tangent vector of the left-hand side of (5.4) is given by

∂W (t)
∂tij

=
∂S(t)−1

∂tij
,

which then gives an element

S(t) · ∂S(t)−1

∂tij
= − ∂S(t)

∂tij
· S(t)−1 ∈ E(−1)

by (6.6). The tangent vector of the right-hand side of (5.4) is
(
hnj

(y)
)−i ∈ Homcont(W,V/W ), which

gives rise to a tangent vector S(t) ·
(
hnj

(y)
)−i · S(t)−1 at the base point k[z−1]⊕n of the big-cell by

the diagram

k[z−1]⊕n −−−−→ V
S·h·S−1

−−−−−→ V −−−−→ V
/
k[z−1]⊕n

S−1

y S−1

y yS−1

yS−1

W −−−−→ V −−−−→
h

V −−−−→ V/W,

where we denote W = W (t), S = S(t) and h =
(
hnj (y)

)−i. Since the base point is preserved by the
differential operators, the equation of the tangent vectors reduces to an equation

(6.8)
∂S(t)
∂tij

· S(t)−1 = −
(
S(t) ·

(
hnj (y)

)−i · S(t)−1

)−
in the Lie algebra gl

(
n,E(−1)

)
level, where (•)− denotes the negative order part of the operator by

(6.3). We call this equation the Heisenberg KP system. Note that the above equation is trivial for
negative i because of (6.7). In terms of the operator

P (t) = S(t) · y−1 · In · S(t)−1 ∈ gl(n,E)

whose leading term is In · ∂r, the equation (6.8) becomes a more familiar Lax equation

∂P (t)
∂tij

=

[(
S(t) ·

(
hnj (y)

)−i · S(t)−1

)+

, P (t)

]
.

In particular, the Heisenberg KP system describes infinitesimal isospectral deformations of the op-
erator P = P (0). Note that if one chooses y = z = ∂−1 in (6.7), then the above Lax equation for
the case of n = 1 becomes the original KP system. We can solve the initial value problem of the
Heisenberg KP system (6.8) by the generalized Birkhoff decomposition of [15]:

(6.9) exp

∑̀
j=1

∞∑
i=1

tij
(
hnj (y)

)−i · S(0)−1 = S(t)−1 · Y (t) ,
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where Y (t) is an invertible differential operator of infinite order defined in [15]. In order to see that
the S(t) of (6.9) gives a solution of (6.8), we differentiate the equation (6.9) with respect to tij .
Then we have

S(t) ·
(
hnj

(y)
)−i · S(t)−1 = − ∂S(t)

∂tij
· S(t)−1 +

∂Y (t)
∂tij

· Y (t)−1 ,

whose negative order terms are nothing but the Heisenberg KP system (6.8). It shows that the
Heisenberg KP system is a completely integrable system of nonlinear partial differential equations.

Now, consider a set of geometric data〈
f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
such that H0(Cn,F) = H1(Cn,F) = 0. Then by the cohomology functor of Theorem 3.8, it gives
rise to a triple (A0, An,W ) satisfying that W ∈ Gr+(0). By Theorem 6.2, there is a monic zero-th
order pseudodifferential operator S such that W = S−1 · k[z−1]⊕n. Using the identification (6.7)
of the variable y as the pseudodifferential operator with constant coefficients, we can define two
commutative subalgebras of gl(n,E) by

(6.10)

{
B0 = S ·A0 · S−1

Bn = S ·An · S−1 .

The inclusion relation A0 ⊂ k((y)) gives us B0 ⊂ k((P−1)), where P = S · y−1 · In · S−1 ∈ gl(n,E).
Since A0 and An stabilize W , we know that B0 and Bn stabilize k[z−1]⊕n. Therefore, these algebras
are commutative algebras of ordinary differential operators with matrix coefficients!

Definition 6.3. We denote by C+(n, 0, r) the set of objects〈
f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, π, f∗F , φ

)〉
of the category C(n) of index 0 and rank r such that

H0(Cn,F) = H1(Cn,F) = 0 .

The set of pairs (B0, B) of commutative algebras satisfying the following conditions is denoted by
D(n, r):

(1) k ⊂ B0 ⊂ B ⊂ gl(n,D).
(2) B0 and B are commutative k-algebras.
(3) There is an operator P ∈ gl(n,E) whose leading term is In · ∂r such that B0 ⊂ k((P−1)).
(4) The projection map B0 −→ k((P−1))

/
k[[P−1]] is Fredholm.

(5) B has rank n as a torsion-free module over B0.

Using this definition, we can summarize

Proposition 6.4. The construction (6.10) gives a canonical map

χn,r : C+(n, 0, r) −→ D(n, r)

for every r and a positive integral vector n = (n1, · · · , n`) with n = n1 + · · ·+ n`.

If the field k is of characteristic zero, then we can construct maximal commutative algebras of
ordinary differential operators with coefficients in matrix valued functions as an application of the
above proposition.
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Theorem 6.5. Every set 〈
f :
(
Cn,∆,Π,F ,Φ

)
−→

(
C0, p, id, f∗F , φ

)〉
of geometric data with a smooth curve Cn, π = id and a line bundle F satisfying that H0(Cn,F) =
H1(Cn,F) = 0 gives rise to a maximal commutative subalgebra Bn ⊂ gl(n,D) by χn,1.

Proof. Let (B0, Bn) be the image of χn,1 applied to the above object, and (A0, An,W ) the stabilizer
data corresponding to the geometric data. Recall that B0 = S · A0 · S−1, where S is the operator
corresponding to W . Since r = 1 in our case, (4.6) implies the existence of an element a ∈ A0 of the
form

a = a(z−1) = z−m + c2z
−m+2 + c3z

−m+3 + · · · ∈ A0 ⊂ k((z)) .
We call a pseudodifferential operator a(∂) · In ∈ gl(n,E) a normalized scalar diagonal operator of
order m with constant coefficients. Here, we need �

Lemma 6.6. Let K ∈ gl(n,E) be a normalized scalar diagonal operator of order m > 0 with
constant coefficients and Q = (Qij) an arbitrary element of gl(n,E). If Q and K commute, then
every coefficient of Q is a constant matrix.

Proof. Let K = a(∂) · In for some a(∂) ∈ k((∂−1)). It is well known that there is a monic zero-th
order pseudodifferential operator S0 ∈ E such that

S−1
0 · a(∂) · S0 = ∂m .

Since a(∂) is a constant coefficient operator, we can show that (see [16])

S−1
0 · k((∂−1)) · S0 = k((∂−1)) .

Going back to the matrix case, we have

0 = (S0 · In)−1 · [Q,K] · (S0 · In) =
[
(S0 · In)−1 ·Q · (S0 · In), ∂m · In

]
.

In characteristic zero, commutativity with ∂m implies commutativity with ∂. Thus each matrix
component S−1

0 ·Qij · S0 commutes with ∂, and hence S−1
0 ·Qij · S0 ∈ k((∂−1)). Therefore, Qij ∈

k((∂−1)). This completes the proof of lemma. �

Now, let B ⊃ Bn be a commutative subalgebra of gl(n,D) containing Bn. Since B0 = S · A0 · S−1

and B0 ⊂ B, every element of B commutes with S · a(∂) · In · S−1. Then by the lemma, we have

A = S−1 ·B · S ⊂ gl
(
n, k((∂−1))

)
.

Note that the algebra A stabilizes W = S−1 · k[z−1]⊕n. Since Hn(z) can be generated by An over
k((z)) = k((∂−1)), every element of A commutes with Hn(z). Therefore, we have A ⊂ Hn(z) because
of the maximality of Hn(z). Thus we obtain another triple (A0, A,W ) of stabilizer data of the same
type n. The inclusion An −→ A gives rise to a birational morphism β : C −→ Cn. Since we are
assuming that the curve Cn is nonsingular, β has to be an isomorphism, which then implies that
A = An. Therefore, we have B = Bn. This completes the proof of maximality of Bn.

Remark 6.7. There are other maximal commutative subalgebras in gl(n,D) than what we have
constructed in Theorem 6.5. It corresponds to the fact that the algebras Hn(z) are not the only
maximal commutative subalgebras of the formal loop algebra gl

(
n, k((z))

)
.
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