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Solvability of the super KP equation and
a generalization of the Birkhoff decomposition *
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Summary. The unique solvability of the initial value problem for the total
hierarchy of the super Kadomtsev-Petviashvili system is established. To
prove the existence we use a generalization of the Birkhoff decomposition
which is obtained by replacing the loop variable and loop groups in the
original setting by a super derivation operator and groups of infinite order
super micro- (i.e. pseudo-) differential operators. To show the uniqueness
we generalize the fact that every flat connection admits horizontal sections
to the case of an infinite dimensional super algebra bundle defined over
an infinite dimensional super space. The usual KP system with non-commu-
tative coefficients is also studied. The KP system is obtained from the super
KP system by reduction modulo odd variables. On the other hand, the
first modified KP equation can be obtained from the super KP system by
elimination of odd variables. Thus the super KP system is a natural unifica-
tion of the KP system and the modified KP systems.
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Introduction

In this paper I will establish the complete integrability of the following new
nonlinear partial differential equation

Sai= G/ 3+ B/ fax = U/ fraxxxt BDS2 et 326: fx=0, (1)

——————
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where f=f(x, y, t), A is an arbitrary constant introduced in the process of inte-
gration and the subscripts denote partial derivatives. We introduce the following
degrees of the variables: deg /=0, degi=1, degx=—2, degy=—4 and
degt= —6. Then Eq. (1) is a homogeneous equation of degree 8. This equation
is a kind of generalization of the Kadomtsev-Petviashvili equation

uxt—(3/4)uyy"(1/4)uxxxx—'-3u32c'—3uuxx=0' (2)

Note that the linear terms of (1) and (2) are identical, but the nonlinear terms
are quite different. (After the manuscript has been completed, Professor Ryogo
Hirota kindly informed me that if one sets A=0, then Eq. (1) reduces to a well-
known integrable equation called the First Modified KP equation, which admits
bilinear expression.) Eq. (1) is a simplified version of the following system of
two equations:

Sar= G/ £+ G/ fex [y~ (UB) frxas + 3/ f2 frx+3£28=0, 3
.f;cxx 8x _fxx 8xx +.f;txgy _f:vy gx=0. (4)

If one substitutes g of Eq. (3) by a solution g=4%f, of Eq.(4), then Eq.(3)
reduces to Eq. (1).

What we shall do is to establish complete integrability of a certain system
of infinitely many nonlinear partial differential equations and to show that Eq. (1)
is nothing but the first closed differential equation among the system. The system
we use is so-called the super KP system.

Let x be an even variable and ¢ be an odd variable with £2=0. We set
(R, 0)=(C[x, &], 0/0 &+ /0 x), which is an example of super-commuting super
differential algebras. The Lax formalism for the super KP system is defined
as follows:

OL/0ty,=[L%, L]= —[L, L], )

@
) LBty =[LFH L] =212+ 3ty  [L* 2472, L]

k=1

=—[L* L]+ Z t2k—1(0L/0t5 4 25 2) (6)

k=1

forn=1,2,3, ..., where [, ] denotes the super commutator (defined in Sect. 2),
L=0+u;+u, 0 ' +us072+4 ... )

is a super micro-differential operator of order 1, and I, (resp. I") denotes
the terms of non-negative (resp. negative) powers of 6. The even parameters
t3, ta, tg , ... are usual commuting variables and the odd parameters ¢,, t5, ts, ...
are Grassmann variables satisfying t5,.y tym- 1= —tam—182,—1 and (t5,_1)*>=0.
The first set (5) is identical with the Lax equation of the usual KP system,
while (6) is quite different. The difference is due to the consistency of equations.
If we set 0L/dt,,_=[L?""*, L], then it is meaningless because it implies §=0.
On the other hand, if we set dL/0t,,_,= —[12""!, L], then we get a meaningful
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equation for an individual ¢,,_ |, but as a system it is not integrable. The expres-
sion (6) is the simplest equation which is completely integrable and involves
the term [L3"!, L] in it.

The importance of the usual KP system lies in the fact that it describes
a universal family of isospectral deformations for an arbitrary ordinary differen-
tial operator. The form of Eq. (2) looks very special, but this equation and
its total hierarchy of the KP system have a universality mentioned above. More-
over, it was this universality that led me to the discovery of the fact that every
solution of the KP system naturally gives rise to a jacobian variety of an algebraic
curve [7,8]. This fact was the essential part of my solution of the Schottky
problem.

Because of its importance, various generalizations of the KP system have
been proposed [3, 6, 13]. Among them, Manin and Radul [6] introduced the
super KP system in the form of (5) and (6). In their paper, they assumed the
solvability of a system of linear super differential equations (which is equivalent
to our Eq. (9)) and the decomposability of its solution.

What we are going to do in this paper is to prove their assumptions. More-
over, we will show the following: If the operator L of (7) satisfies the consistency
condition

Gu)+2u,=0 (8)

which follows also from (5) and (6), then the initial value problem for the super
KP system is uniquely solvable.
We will show that every solution L of (5) and (6) gives rise to a solution
U of the universal equation
dU=QU, 9)

where Q is the following formal 1-form defined on an infinite dimensional super
space;

K

Q=) dt,0"+ Y Y dty,_ -ty 02" (10)

n=1 n=1k=1

Conversely, every solution of (9) determines a solution L of the super KP system
uniquely. Therefore, the system of Eqgs. (5) and (6) is equivalent to the linear
total differential equation (9). Note that Q satisfies the integrability condition
dQ =0 A Q. Therefore, the algebraic situation is the same as the usual KP system
studied in [9]. From this point of view, we call the super KP system completely
integrable in the sense of Frobenius.

Then how can we solve Eq. (9)? It is quite easy. Simply put

U=exp( Yt 9">-U(0),
n=1
where U(0) is the initial value of U. Then it gives the unique solution of (9)

with the initial value U(0). Thus the operator H =exp( Y t, 9") describes the

n=1
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time evolution of the super KP system. Note that Q=dH-H !, Since the time

evolution of the usual KP system is given by the operator exp( Y t,,(d/dx)"),
n=1

the operator H is a natural supersymmetric extension of the usual one. This

is the very point of our motivation of introducing the super KP system.

Thus we have obtained a solution U of Eq.(9). Then how can we find a
solution L of Egs. (5) and (6)? This question is answered by a generalization
of the Birkhoff decomposition. The original Birkhoff decomposition gives a factor-
ization of a loop group into a product of subgroups consisting of loops which
are boundary values of holomorphic functions defined on the upper hemisphere
of CIP! containing oo and the lower hemisphere of CIP* containing 0, together
with a diagonal factor in between them, where we have identified the loop
with the equator of CIP! (Pressley-Segal [101). It also gives the famous theorem
of Grothendieck: Every holomorphic vector bundle over CPP! is isomorphic
to a direct sum of line bundles. The way we want to generalize this theorem
is to replace the loop variable by a super derivation operator 6. Thus the loop
groups in the original setting will be replaced by groups of infinite order super
micro-differential operators. Then the generalized Birkhoff decomposition gives
us a way to construct a solution L of the super KP system from a solution
U of (9). Actually, L is given by L=S6S"!, where § is the “upper hemisphere
part” of U.

A completely integrable system is always related with some kinds of group
factorization. For example, the Toda lattice equations can be solved by the
Bruhat decomposition, various two dimensional equations of classical and quan-
tum models are solved by the original Birkhoff decomposition or the Riemann-
Hilbert factorization, and the soliton equations by the generalized Birkhoff
decomposition of infinite order micro-differential operators. What I am going
to present in this paper is that if we go further in this direction toward a
supersymmetric generalization of the group factorization, then we will encounter
the super KP system in a very natural way. From this factorization point of
view, the solution space of integrable systems always look like

some “general” linear group/maximal “parabolic” subgroup.

The appearance of the Grassmann varieties in the studies of integrable systems
can be understood also from this point of view.

I would like to emphasize that the super KP system is not a trivial formalism
generalization of the KP system. Indeed, Eq. (1) cannot be obtained from the
framework of KP equations. Of course, all the usual KP equations can be recov-
ered from the super KP system by reduction modulo odd variables. On the
other hand, we can eliminate the odd evolution parameters from Egs. (5) and
(6) so that we obtain nonlinear partial differential equations in usual even vari-
ables alone. Eq. (1) is an example of such equations. The interesting fact is
that the result of elimination does not agree with that of reduction. Actually,
if we reduce Eq. (1) to the KP framework, then we get a trivial equation 0=0!
Therefore, a supersymmetric extension produces new equations.

This paper is organized as follows. In Sect. 1, we generalize the usual KP
framework to the case of non-commutative coefficients. Recently, importance
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of non-commutative geometry has been emphasised by various people
[1, 2, 5, 15]. Our attempt was motivated by these trends. We will give a thorough
treatment of the subject in this section because most of the techniques we need
in the supersymmetric extension already appear in the theory with non-commu-
tative coefficients. The main theorem in this section is the unique solvability
of the Cauchy problem for the KP system with non-commuting coefficients
{Theorem 1.4). Since our method of solving the equation is explicit, we can
give a good convergence condition of the solution if the differential algebra
has a norm (Remark 1.5). Also it will be shown that there is a unique solution
even for an initial datum with arbitrary poles and logarithmic singularities.
Therefore, in the framework of KP system of commutative coefficients, our solu-
tion space, which is an affine space, is larger than any proposed solution spaces.
For example, it contains Sato’s universal Grassmann manifold [11] and the
loop space Grassmannian of Segal-Wilson [12]. Thus all the compact complex
Grassmann varieties are embedded in our affine space (Remark 1.6).

In Sect. 2, we will introduce the super KP system motivated by the supersym-

metric extension of exp( Y. ¢, 0") to exp( Y e, 0"). An almost perfect parallelism
=1

holds between the usual KP system and the super KP system. However, there
is a big difference between them. In the super case, the 1-form Q of (10) satisfies
the zero-curvature condition dQ=0Q A Q, but dQ2+0. On the other hand, in the
usual KP case, the corresponding 1-form Q satisfies dQ=Q A Q=0. Therefore,
from this fact, we can again realize that the super KP system is an essentially
non-trivial generalization. The unique solvability of the initial value problem
for the super KP system (Theorems 2.1 and 2.3) are the main theorems of this
section.

In Section 3 we will first establish the generalized Birkhoff decomposition
of a group of infinite order micro-differential operators. For a commutative
case, the theorem was announced in [9]. Our Theorem 3.2 is the widest extension
of the statement therein. Even though the groups are purely formal objects,
we can establish actual convergence of the solution of the KP system because
the group factorization gives an explicit formula of a solution depending on
its initial data, as mentioned above. A supersymmetric analogue of the decompo-
sition will also be proved, which was one of the assumptions of Manin-Rudul
[6].

Section 4 is devoted to give the technical proofs of the statement we need
in Sections 1 and 2 to establish the uniqueness for the (super) KP system. The
theorem we need is the following. Let @ be a Lie algebra valued 1-form satisfying
the zero-curvature condition dw=(1/2)[w, w]. Then there is a Lie group valued
solution Y of the linear total differential equation dY=w Y. The statement is
trivial if the Lie algebra and the manifold we are talking about are both of
finite dimension. In our case, however, the algebra we use is the set of (super)
differential operators and the base manifold is an infinite dimensional (super)
space. Theerefore we need a careful treatment. We will use some interesting
formulas in this section.

In the final section, we will compute actual shape of differential equations
involved in the (super) KP system. We will derive Eq. (1) as the first non-trivial

n=1
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equation among the super KP system which is a single closed equation, namely,
it has only finitely many terms and has a single unknown function. Some of
the exact solutions of (1) will also be given. They correspond to rational, soliton
and quasi-periodic solutions of usual soliton equations. These solutions are
given by a quotient of two Jacobi elliptic functions and their degenerate func-
tions. This gives another contrast between Egs. (1) and (2), since the simplest
solutions of the original KP equation are given naturally by the Weierstrass
g-functions.

Once we establish the unique solvability of the initial value problem for
the super KP system, we can define the super KP dynamical system (X, T)
as in [8], where X is the set of all operators L of the form (7) satisfying the
consistency condition (8) and T={(t, t,, t3, t4, ...)} is the group of super evolu-
tion variables. As the KP dynamical system has significant importance in alge-
braic geometry and many related areas, it can be expected that the super KP
dynamical system will play an even more important role in the non-commutative
geometry. These subjects will be treated in a separate article.

There are other approaches to supersymmetric extensions of the KP system
(see literature cited in [6]). Recently, Ueno and Yamada [13] found a supersym-
metric extension of Sato’s work [11] on the KP system and gave a formula
for the solutions in terms of infinite size super matrices. Their solutions coincide
with ours if the super differential algebra is C[x, £]. They also obtained a super
analogue of Hirota-Sato’s t-functions. However, the t-function method does
not fit for the purpose of establishing the solvability of the Cauchy problem.

During the manuscript of this paper was being typed, Professor Robert M.
Miura kindly informed me of some of the explicit formulas of conservation
laws for Eq. (1). The first two of them are the following:

(L =T/3) frex—BA* 2= (1/2) 2 = B/D £ L1+ G/DLL+ 1,1,

(fxz)t= [(1/2).f;:fxxx*(1/4)fx2x'— 2’12.1;:3 "(3/4)fx4 _(3/2)fx2 y_-(3/4)f,‘v2]x
+(/LL2 +3f: 4],

I do not know whether Eq. (1) or the system of Eqgs. (3) and (4) is related
to any model of 2-spatial 1-time dimensional classical fluid dynamics. However,
since there are soliton-like solutions (see Sect. 5) and conservation laws for
Eq. (1), it is natural to believe that there is such a model. On the other hand,
the study of total hierarchy of the super KP equations and its solution space
may have an importance in super string theories and moduli theories of super
algebraic curves.

I would like to express my gratitude to Professor R.M. Miura and Professor
R. Hirota for valuable comments.

1. The KP system with non-commutative coefficients
In this section we study a generalized KP system with non-commutative coeffi-

cients and show how the group decomposition theorem of Sect. 3 establishes
its unique solvability for an arbitrary initial datum.
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Let (R, 0) be a differential algebra defined over a field k of characteristic
zero with the unity 1. Namely, R is an associative k-algebra with unity and
d: R—R is a k-linear map satisfying the Leibnitz rule 8(fg)=0a(f)-g+fd(g)
for all f and g in R. We do not assume commutativity of R.

One of the mathematical motivations of the KP system is to find a universal
family of isospectral deformations of an arbitrary ordinary differential operator.
The differential operators we will consider are elements of

D={P= Y a,0"a,eR, a,=0 for large n}. (1.1)

n=0

Following Gelfand’s idea, we use the set of formal ordinary micro-differential
operators
E={P=3} a,8"|a,eR, a,=0 for v>0}. 1.2)

veZ

The set E becomes an associative algebra by virtue of the general Leibnitz
rule

av'f=i‘i (‘:) fogr=i (1.3)

for veZ and feR, where f?=¢!(f) and the binary coefficients (v) are defined
i

by using I'-functions. An operator PeE is said to be normalized if its leading
coefficient is one (i.e. monic) and the second top term is zero;

P=0"+0.0""! 4+ lower order terms.

Twenty years ago Lax [4] established the following. A parameter depending
family {P(t)} of ordinary differential operators is an isospectral family if and
only if P(t) satisfies the Lax equation

PO _row, puy (149
t
with another parameter depending differential operator Q(t), where [A, B]
= AB— BA. The reason why we have to use a differential operator Q(t) is because
we want an isospectral family of differential operators. If we use a micro-differen-
tial operator Q(t)e E, then {P(z)} will no longer be a family of differential opera-
tors, while the spectral structure is still preserved.

An operator P=) p,0"€E is said to be of order N if py+0 and p,=0

vel

for all v> N. A normalized operator PeE of order n>0 has a unique normalized
n-th root in E. Assume that P(t)e D is normalized of order N and

CL@O)=P@)'"=0+u; 0" +us 0" 2+...cE (1.5)
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be its N'th root. It is easy to show that the Lax equation (1.4) is equivalent
to
dL(z
L0 _row, e (19)
t
Let E¢™1) be the set of all micro-differential operators of order at most — 1.
Then we have a natural left R-module direct sum decomposition

E=EC-Y@D. 1.7

According to (1.7), every PeE decomposes into P=P_@®P,, where P_eEY
and P, eD.

Since L(t) has the form of (1.5), its t-derivative dL(¢)/dt is in E*~ V. Therefore
Q(t) in (1.6) must satisfy

[Q(), LO)]eETD (1.8)
to make sense of (1.6). Therefore, to find out all possible isospectral deformations

of P=INeD, we have to determine all differential operators QeD such that
(1.8) holds. Note that (L"), e D satisfies (1.8) because

[(L)+, L]=[L"—(L)-, L= — [(L")-, L]eET V.

Its converse is true if (R, 0) satisfies a special condition:

Lemma 1.1. Let LeE be a normalized first order operator. If ker(R —a»R) is con-
tained in the center of R, then the following conditions for Q€D are equivalent ;

(@ [Q, L]eETY.

(b) Q is a linear combination of (L"), s over ker 0.

The proof can be easily performed by an induction on the order of Q. The
above lemma tells us that essentially (L") .’s give all possible isospectral deforma-

tions of P=IN. It is natural to introduce distinct deformation parameters for
different deformations. Thus we obtain the KP system

oL
a1,

=[(L"Y,, L]. (1.9)

If k=ker(R 5 R), then Eq. (1.9) gives a universal family of isospectral deforma-
tions of P=L". The advantage of using L= PV instead of P itself is that (1.9)
does not refer to the order of P. Therefore (1.9) is a master equation of all
universal families for any normalized differential operator. If we want to find
a universal family of a differential operator P of order m, then we solve (1.9)
for L=0+u,0 ' +u30~%+... with an extra condition I"=PeD. For more
detail, see [8].

To establish solvability of (1.9), we have to specify t-dependence of operators.
So we define

@=Rﬂ:tl,t2,t3,...:ﬂ (1.10)
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as a projective limit algebra with a valuation
val,: #\{0} > N={0,1,2,3,...}

defined by val,(t,)=n,n=1,2,3, ... . The # —valued operators are defined by

@={P= Y a,0"a,eR, a,=0 for n>0} (1.11)
n=0
and
E={P=Y a,0|a,eR, a,=0for v>0}. (1.12)
veZ

For a given normalized first order operator Le&, we define formal 1-forms
by

Zh=+ Y di, (L), . (1.13)
n=1

Then the Lax equation for the KP system is given by
dL=[Z%,L]=[Z",L], (1.14)

where d= ) dt,d/0t, denotes the exterior derivative in t.
n=1
To obtain an actual family of isospectral deformations, Eq. (1.14) must satisfy
the integrability condition

dZL =ZL A ZL. (1.15)

Equation (1.15) is equivalent to the compatibility condition of deformations.
Namely, (1.15) implies that the t,-deformation followed by the t,-deformation
always coincides with the otherway around for all m and n. One of the interesting
facts of the KP system is that (1.15) follows automatically from (1.14). Therefore,
a solution L(H)ed& of (1.14) always gives a family. However this does not itself
imply that (1.14) is actually solvable. Indeed, the Cauchy problem of (1.14) for
a general non-commutative differential algebra is not known.

To simplify Eq. (1.14) we introduce a group of inner automorphisms of E.

We define

G:{ S 5,07 "|so=1, s,,eR} (1.16)

=0
and

g:{z 5,0 "so=1, sne@}. (1.17)

=0

Lemma 1.2. If R SRis surjective (i.e. if indefinite integration is always possible
in R), then for every normalized first order operator L of D (resp. D), there
is an invertible operator SeG (resp. %) such that S~ LS=20.
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The reason why we want to bring L into 0 is because L=20 satisfies the
KP system (1.14) trivially. Our idea is to produce a solution of (1.14) by applying
an inner automorphism § to the simplest solution &.

Lemma 1.3. If 0: R — R is surjective, then the Lax equation (1.14) is equivalent
to the following system for Se%,;

L=§0S"!
(1.18)

dS=27".S.

We call the following equation
dS=—Y dt,(So"S™")_-S (1.19)
n=1
the generalized KP system. If the differential algebra (R, 0) satisfies

0-»k—>R5>R-0 exact, (1.20)

then Eq. (1.19) is equivalent with the Lax equation of usual KP system and
describes a universal family of isospectral deformations of normalized differential
operators. For typical examples of such an algebra, we have R=k[x] and
C((x))[logx], the latter is the set of all polynomials in logx with coefficients
in arbitrary Laurent series in x.

For more general (R, 0), Eq. (1.19) does not give a universal family of isospec-
tral deformations. However, the reason why we introduced (1.19) is that the
Cauchy problem of (1.19) is always solvable for any (R, §). For example, an
analogue of KP theory with matrix coefficients is very difficult. But if we start
with (1.19) instead of (1.14), then we can solve it always for an arbitrary initial
value of S.

The technique we are going to use is a generalization of the Birkhoff decom-
position which will be proved in Sect. 3. It is a factorization theorem of an
infinite dimensional group. To define the groups, we need micro-differential
operators of infinite order. So we define

E={P= Y a,0"|a,eZ and there is a positive real number Cp and positive

veZ

integers Mp and N, such that val,a,> Cpv— N, for all v> M} (1.21)
and
9={P=Y a,|Peé and a,=0 for v<0}. (1.22)
veZ

Note that & has a natural associative algebra structure. Let ¢ be the ideal
of # generated by {¢,, t,, t3, ...}. We denote P|,_,=P mod £ cE for every Peé.
Lemma 3.1 of Sect. 3 says that if P|,_,€G, then P is invertible in &. Therefore

& ={Ped|P|,_,eG} (1.23)
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forms a group. It is a connected component of the identity operator in the
group of all invertible elements of &. Similarly,

D* ={PeD|Pl-o=1} (1.24)

is a subgroup of &*. The generalized Birkhoff decomposition (Theorem 3.2)
says that there is a unique factorization

E*=9.9*
U=S"'.Y. (1.25)

Let us illustrate how we use this factorization to solve the generalized KP system
(1.19). Suppose we have a solution Se€%. Then we also have Z,=

+ Y dt,(S0"S™1Y), satisfying dZ, =Z, AZ .. Now by Theorem 4.1 of Sect. 4,

n=1

we have a unique element YeZ* such that
dY=Z.,Y. (1.26)
So define U=S"'-Yeé ™ and let
Q= i dt,d" (1.27)

n=1
Since d2=0 and Q A 2=0, Q satisfies the integrability condition
dQ=QAQ (1.28)
trivially. Moreover, we have
dU=-S8"'dS-S"'Y+S§'dy

=S71dY- Y '—-dS-S"1)S§S" 'Y

=S Y(Z,-Z_)SU

=S"'Y dt,S"ST'SU

n=1

=QU,

namely, U=S"1Y satisfies the system of linear partial differential equations
of constant coefficients;

dU=QU. (1.29)

Thus a solution S of (1.19) gives rise to a solution U of the universal equation
(1.29). Now the factorization theorem (Theorem 3.2) gives a way to go back.
So let us start with a solution Ue&* of the universal equation (1.29). By Theo-
rem 3.2, we have a unique Se% and a unique Ye &~ such that U=S"'Y. Let

Z:t= i Z dt,,(Sa"S_l)i.

n=1
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Then
SRS~ 1= Z at,(So"S W=2Z,—-Z._.

n=1
On the other hand, since dU =QU, we have
SRS '=8S4dU-U 'S l=dY. Y " 1—4S.8S~ L

Comparing & part and £V part of the above two expressions of SQS™!,
we obtain Z, =dY-Y ! and Z_=dS-S~'. Namely we have a solution S of
Eq. (1.19). If we define L=S8S !, then it is a solution of the Lax equation
(1.14).

Here comes a natural question. How can we solve the universal equation
(1.29)? It is easy. We can solve it for any initial value U|,_,=U{0) by simply
letting

U(t)=exp( >t 6")- U(0). (1.30)

n=1
We have chosen our definition (1.21) of & so that (1.30) gives a well-defined

element of & for every U(0)e E. Therefore the operator exp( 3 t, 6") is the heart
n=1
of the KP theory. In the next section we generalize it to the case of super
derivation.
Now we can show the main theorem of Sect. 1.

Theorem 1.4 (Unique solvability of the generalized KP system). For every initial
value S(0)e G, there is a unique solution S=S(t)e¥ of the generalized KP system

dS=—Y dt,(So"S™Y)_-S
n=1

such that S|,.,=S(0).

Proof. To establish the existence, we simply define

U=exp<§ t,,ﬁ")-S(O)'legx. (1.31)

=1

Let U=S8"'-Y be its unique factorization of (1.25). Then, as we have seen,
S gives a solution of (1.19). Since Y|,_ =1,

S0) ' =Uli=0=(""=0) (Y l=0)=(Sl=0) "
namely, S|,-o=S(0).

To see the uniqueness, suppose we have another solution § of (1.19) with
the same initial value S|,—,=S(0). This solution also gives rise to a solution
U=8""'.Y of (1.29) with the same initial value U},-,=S(0)"!. By Lemma 4.3
of Sect. 4, we know the uniqueness for (1.29). Therefore U=U. But since the
decomposition (1.25) is also unique, we conclude S =S. This completes the proof.
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Remark 1.5. Assume that R is a normed algebra such as a ring of convergent
power series in x. Then we can establish convergence of the above solution
for small t. Actually, our construction of the solution S from S(0) and the
group factorization (1.25) is explicit (see (3.9)), it is not hard to show the following.

e8]

Let S(0)= ) 5,0 " and the i-th derivative of s, satisfy

n=0 .
. Ciilor
sl <———
n!

for a positive constant C and a small 6>0 for all n and i. Then the above
solution Se¥ converges absolutely for all t=(t, t,, t5, ...) satisfying

8'1
It,|<A-—
n!

for an arbitrary positive number 4 and a sufficiently small ¢>0. (For more
detail, please see my forthcoming book on KP equations.)

Remark 1.6. Let us consider the case of R=C((x))[log x]. Since it satisfies the
exactness of (1.20), the Lax equation (1.14) or (1.9) is uniquely solvable for
any initial value

LO)=04+u,0 ' 4+u;0 %2+...€E

with coefficients in €((x))[logx]. Namely, every ordinary differential operator
with arbitrary poles and logarithmic singularities at the origin x=0 has also
a unique universal family of isospectral deformations. In the case of the KdV
equation, it means that there exists a unique solution u(x, t)e(C((x)) [log x])[¢]
of the KdV equation

u=2%u,...+3uu, (1.32)

with an initial condition wu(x,0)=f(x) for every given function
f(x)e@((x))[log x]. Our expression for u(x, t) obtained by the above theorem
gives an asymptotic expansion of the solution around the singularity at x=0.

Now an interesting thing happens. The space of all solutions of (1.19) for
R=C((x))[log x] actually contains Sato’s universal Grassmann manifold (UGM)
[11] and Segal-Wilson’s Grassmannian of the loop space [12] as proper sub-
spaces. Let G denote the group of (1.16) defined over an algebra R. By the
unique solvability of the Cauchy problem, G is the solution space for the
generalized KP system (1.9). It is easy to see that G¢p,q is an affine open subset
{actually the “big-cell”) of Sato’s UGM. On the other hand, UGM is a subset
of an affine space G ) pog 15

GexpcUGM < Gey ttog -

Since all the compact complex Grassmann varieties are embedded in UGM,
they are also embedded in our affine space!

Sato’s UGM can be regarded as a subspace of the solution space Gy pog x]
consisting of operators S such that the corresponding L=S0S~! has a regular
singularity at x=0.
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Remark 1.7. Since the basic differential algebra (R, 0) is arbitrary in Theorem 1.4,

we can take
R={z a,(x y)(%)

veZ

a,=0 for v>0}

and ¢ =d/d x. In other words, we can consider something line a KPQKP system.
This example gives us a way to construct a higher dimensional analogue of
the KP theory.

2. The super KP system

We introduce the super KP system in a rather different manner from Manin
and Radul [6]. We will follow the argument of Sect. 1 in the reverse direction.
So we start with the universal equation of the form dU=QU and then define
the super KP system by using a group decomposition. After this, we will also
give the Lax formalism for the super KP system.

To make our presentation precise, let us introduce algebras and groups
of operators we need. Let (R, §) be a super-differential algebra defined over
a field k of characteristic zero. Namely, R=R,®R, is a Z,-graded associative
k-algebra with unity (called a superalgebra) and 0: R— R is a k-linear map
satisfying the super Leibnitz rule

B(ab)=0(a)-b+(—1)ab(b), 2.1)

where beR and a is a homogeneous element of R with Z,-degree deZ,. Such
a map 0 is called an odd super-derivation. We also define fii=1/2(1 - (—1)")eZ,
for neZ. The super algebra R is said to be super-commuting if

ab=(—1ba (2.2)

for all homogeneous elements a and b of R. We do not assume super-commuta-
tivity of R.
We define the set of all super micro-differential operators

E={P=) a,0"|a,eR and a,=0 for v>0}, 2.3)

vel
and the set of super differential operators

D={P=Y a,0"|PeE and a,=0 for v<0}. 24

vel
To introduce associative algebra structures in E and D, we need the super
. . . v . .
binomial coefficients [] If v and i are both in N={0, 1, 2, ...}, then we define

HE @rbr=3 [t]ar =

i=0
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where a and b are super-commuting homogeneous elements of Z,-degree 1€Z,.
For veZ and ieN, we define

H:o if 0<v<i or (v,i)=(0,1)mod2,

: (2.6)
vl _([v/2] . .

H_(Wz]) if v<0 and (v,1)%(0, ))mod?2,

. v
where [v] denotes the largest integer not greater than v. We can extend []
for negative i by using '

L e (e LD

however, we need only [v] with veZ and ieN. Let us give actual values for
small i:

v -1
0]
v ] 1
el oy
] 5 1=(=1))
'v__"z]
2] |2
"v'__ 0 if viseven
B3E [v]l_v=1 i visodd
2| 2
_v v
a1 G
[4]“ 2

We can introduce an associative algebra structure in E by using the general
super Leibnitz rule

0 f= Z H 1 o-d il gy=i 2.7

for veZ and feR, where f1=0'(f). We also have an algebra decomposition
E=E-Y@®D
in an obvious way, where ECV={P=13 a,0"|a,=0for v>0}. Every PeE

veZ

decomposes into P=P_@P, with P_eE"" and P,eD. The algebra E has
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also a super algebra structure defined by

E=E0®E1,
Eo={P=Y a,0’|PcE and d,=7VeZ,}, (2.8)
veZ

E,={P=Y a,0°|PeE and d,=(v+1)eZ,}.

veZ

Similarly, we define Do=DnE, and D,=DnE, to make D a super algebra.
The above E, is the set of homogeneous even operators and E; is the set
of homogeneous odd operators. The group G of inner automorphisms is defined
by

G={S= 3 5,0 "so=1, s,,eR}. 2.9)
n=0
Its even part is given by
Go={S= Y 5,07"|SeG and §,,=ﬁeZ2}, (2.10)
n=0

but the odd part is not a group since §,=0in G.
As in Sect. 1 we use infinitely many deformation parameters ¢, ¢,, t3, t, ... .
We define

R=R[t(,t;,t5,...]

and val,: #\{0} >N as before, namely we set val,(t,)=ncN. However, the
Z,-degree of t, is defined to be
t,=hnel,.

Namely, all even variables t,, t4, tg, ... are usual commutative variables, while
odd variables ¢, ¢, ts, ... are Grassmann variables satisfying
{tln-—l Lom-1=~lzm—1lz24-1

(t2n - 1)2 =0.
The t-depending operators we consider are the elements of

é={P=) a,0"|a,eR and a,=0for v>0}. (2.11)

vel

Similarly, we introduce 2, &Y, 9, 2,, &, &1, % and %, in an obvious way
as before. The completion of & is also defined similarly;

&= {P= Z a,0")a,e % and there is a positive real number Cp and positive
veZ

integers Mp and Np such that val,a,> Cpv— N forall v> M, }. 2.12)
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The completion 9 of @ is also given by the same way. Note that & has a
natural associative algebra structure as well as a super algebra structure
E=6,d&,.
As in Sect. 1, let ¢ be the ideal of # generated by {t,,¢,,t3,t,, ...} and
we write
Pl,-o=Pmod #eE forall Peé.

Lemma 3.3 of Sect. 3 says that Pe& is invertible if P|,_,eG. So we set

(6*={Pef|P|,_oeG}
9% ={PeP|P|-o=1}. @13
These are infinite dimensional groups. We also introduce

&y =8,né* and G =9ynD*.

The generalized super Birkhoff decomposition (Theorem 3.4) gives the unique
factorizations

& =9.9"
U=S"1Y (2.14)

and
é?(;( :?O.QZ(;‘

Up=S5'-Y,. (2.15)

With these preparations, we can now introduce the universal equation for
the super KP system. Consider the following element of & ;

H =exp("z t, 6"). (2.16)

=1

This is the super extension of the important operator exp( Yt 6”) of (1.30)
n=1

and gives us the basic motivation how to generalize the KP system into the
super category. If we set

© [«o]
A= Z t2n02" al‘ld B: Z t2n—1 02"_1, (2.17)
n=1 n=1
then B?=0 and
H=e""B=e¢teP=cPe’=(1+ B)e.
From this we can see that H is a well-defined operator in &;. Now define

Q=dH-H™!, (2.18)
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K
where d= ) dt,0d/dt, is the super t-exterior differentiation. (Therefore dt,, and
n=1

dt,,, anti-commute while dt,, ., and dt,,,_; commute.) Using (2.17) we get

Q=d({(1+B)eYe 4(1-B)=(1+B)dA(1 —B)+dB(1—B)
=dA+dB(1—B).
Therefore
dQ=dB A dB

and
QAQ=dANdA+dAAdB(1—-B)+dB(1—B)AdA+dB(1—B)

AdB(1—B)=dB A dB.
Namely, € satisfies the integrability condition
Q=0 Q. (2.19)

Note that here is an important difference between the super KP system and

the usual KP system. In the latter, remember that we have € which satisfies

(1.28) trivially. But in the super case, (2.18) does not satisfy dQ2=0 nor Q A 2=0.
The explicit form of Q is given by

Q=) dt,, 0"+ dt2n_192"“1<1— Y tar-s 92"“‘). (2.20)
n=1 n=1 k=1
Consider the universal equation
dU=QU (2.21)

for Ueé,. It is obvious from the definition of Q that U=H-U(0) is a solution
for every U(0)=U|,-¢€E,. The uniqueness of the Cauchy problem for (2.21)
is proved in Sect. 4 (see Lemma 4.4).

Take an arbitrary element S(0)eG,. Then U=H-S§(0)" ! is a well-defined
operator in &y and solves (2.21). Let U=S"'-Y be the decomposition of U
according to (2.15). Then

SQS '=SdUU 'S !=—dS-S"14+dY- YL
Comparing &5~V part and &, part of the above, we obtain
S-S '=Z_ 222
Y- Y~ '=2z,, (2.23)

where we define

Z,= i(z dt;,(SO*"S™H, + Y dt,,-(SO*" 1857,
n=1

= n=1

+ Z Z dtzn_l't2k_1(S02n_1+2k—1S_1)i> (224)

n=1k=1
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Motivated by the above expressions, we call the following equation the super
KP system;

aS= —( S di,(S6"S™Y)_
1

n=

+Y ¥ dtz,,_,-tZk_,(se2"+2k—Zs—1)_)-s (2.25)

n=1k=1
To obtain the Lax equation, we define
L=S6S"1,
which is no longer a normalized operator. It is a monic operator of the form
L=0+4+u,+u, 8 ' +u87 2+ ...

with ii,=7€Z,. The first two coefficients satisfy u{™+2u, = —u?.
Then Eq. (2.25) gives the Lax equation in terms of L;

dL=[Z_,L] (2.26)

where [, ] denotes the super Lie bracket defined by [a, b]=ab—(— 1)*®ba for
homogeneous elements. Since SQS"!'=Z_, —Z _, we have

dL=[Z,—SQS ' L].

Therefore
oL
= [, , L
S0, 1]
oL 2n—1 2n—1 o 2n+2k—2
==L - 14| 3 @01 @20
n—- k=1
=[P, 1= 2024 3 by [0 27, L]

k=1

This system of equations is called the Lax equation for the super KP system.
Actually it is equivalent to the system of Manin and Radul [6]. To obtain
their equations, simply change ¢, to —t,. Remember that our motivation of

introducing the super KP system was to replace exp(z t,,a") of (1.30) by
hd n=1
exp( Y 1, 9") of (2.16). If we define 6,,=08/0t,, and 8,,_ ,=0/0t3,_,

=1

— Y t3k—10/0ts442,-5, then they satisfy [0,,, 0,,]1=0 and [0,,- 1, Om-1]=
k=1

—260,,+2m-2. On the other hand, Manin and Radul want to have

[0, (,03m-11=203,+2m— and use this as their motivation.
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Our main theorem of this section is the folowing;

Theorem 2.1 (unique solvability of the super KP system). For every given element
S(0)e Gy, there exists a solution Se%, of the super KP system

S = —(f dt,(S8"S™1)_

n=1

+ Z Z dt2n_1’t2k_1(S92n+2k_2S_1)_)'S (225)

n=1k=1

with the initial value S|,~o=S(0). Moreover, if (R, 0) satisfies the Condition 4.5
of Sect. 4, then the above solution is unique.

Proof. We start with U=H-S(0)" 'e&y and decompose it as U=8"!-Y accord-
ing to (2.15). Then S solves (2.25) and satisfies S|,~o,=S5(0). The uniqueness
follows from the facts that every solution of (2.25) gives rise to a solution of
the universal equation (2.21) (see Theorem 4.6), its uniqueness (Lemma 4.4) and
the uniqueness of the factorization (Theorem 3.4). This completes the proof.

For a general super differential algebra (R, §), we cannot say much about
solvability of the Lax equation (2.27). However, if we assume an appropriate
condition on (R, §) and restrict a class of L, then we can also establish the
unique solvability for (2.27).

Since (2.25) is solvable, it is natural to try to find an SeG, for a given
L. So let us characterize a first order monic operator Le E, such that L=S6S"*
for some SeG,. Let

S=1+Sl 0_1+326—2+...,
S_1=1+W10_1+W20-2+..., and
L=0+u,+u,0 ' +....

From S-S !'=1 we obtain 5, +w;=0 and s,—s, w, +w,=0. The equation L
=808~ implies that u, =25, and u,= —1/2(u} +ul'}). Therefore u, and u,
satisfy

2 +3u 4 u,=0. (2.28)

What is remarkable here is that the converse is essentially true.

Proposition 2.2. Let (R, 0) be a super differential algebra such that
6*: R—R is surjective.
Then for a monic first order odd operator

L=0+u;+u, 0" ' +u;0"%+...€E,,
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there exists an Se G, such that
L=80S! (2.29)
if and only if u, and u, satisfy

uf+3ul+u,=0.

Q
Proof. Our idea is to solve the equation LS—S6=0 for S. Let L= ) u 6'"7

n=0
fi,=feZ, and up=1, and S= Z 5,0, §,=meZ, and s,=1. Then
m=0
0=LS—s50=( u,,()l"‘)( 5 sm()"”)— 3 5.017"
=0 m=0 m=0
R i [ nei 0 ol nmei e -
=z Z Z l)m n ')u,,sf,‘,B nm:_zsao -3
n=0 m=0i=0 i a=0
_ Z (z Z [ a+m+l:|( l)maua — !S[l]—s)el—a.
a=0\m=0 i=0 !

Let a=2n. Then

[i]
Usp—m—iSm —S2n

0= X

m=0 i=0

ot s "‘[1—2n+m+l]

2n 2Zn- "‘[1 2n+m+l]

st

X L

2n—m—i

*SZn 1+u152n 1+ z z u2n—m—isErl|]'

m=0 i=0

2oz 2 me 2[1—2n+m-&-l]

Ifa=2n+1, then

2n+1 2n+1—-m —2n+m+t . -
. (=)™ Ugps1-m—iSm —S2n+1

"L &

m=0

=—285,11+ S50+ Uy S5, + Z Z (=)™ Uzps1—m—i S

2n—1 2n—m—1[_2n+m+i]
m=0 i=0 l

Thus we have

1
San+1 =450 +3u; 8,5,

2n—1 2n—m—1 s
L [ 2"me+’}(~I)Muz,,+1-m-,-s£:l. (2.30)
4

33 %
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Using this expression with the even case above, we get

32 +1ul sy, +1ull syt uy sy,
2n—1 2n—m—i
m—1—2n-+i
vy oy A
m=0 i=0 1
1
2

{1
Uznt2-m~iSm

2n+
[m ln l]( D™ ((Uznt1-m- ;S['])[1]+u1“2n+1 m— .Sm)} 0.

Because of the assumption (2.28), we have an recursion formula

2n~1 2n—m-1
F=—y Y {z[
m=0 i=0

m—1-2n+i [
; Usnt2—m—iSm

2
AT 0 sy D] 23D

Since 82: R - R is surjective, (2.30) and (2.31) determine all s,’s up to constants
of integration. Therefore Se G, exists.

Theorem 2.3. Let (R, 0) be a super-commutative super-differential algebra satisfying
Condition 4.5 and that 6%: R > R is surjective. Then for every monic first order
odd operator L(0)eE, with the condition (2.28), there exists a unique solution
Leé&, of the Lax equation (2.27) such that L},_ o= L(0).

Proof. The existence is obvious from Theorem 2.1 and Proposition 2.2. To estab-
lish uniqueness, we want to show that every solution L of (2.27) starting with
L|,-o=L(0) satisfies the condition (2.28) for all r. Assume that it is acrually
true. Let S(0)e G, be such that L(0)=S(0) #S(0)~ ! and Se%, the unique solution
of (2.25) starting at S(0). Then L=S6S~! is a solution of (2.27) with initial
value L|,-,=L(0). Now suppose that Le&, is another solution of (2.27) with
the same initial value L}, ,=L(0). Since we are assuming that L satisfies (2.28),
there exists an operator Se%, such that L=803"! Unfortunately, such an
S is not unique. However, if we impose S to be a solution of (2.25), then it
is uniquely determined by its initial value $(0)eG,. Note that

L(0)=S(0)85(0)"'=5(0)6S(0)~*

Therefore C=S5(0)""'5(0)eG, satisfies C0=0C. Let U=H-5(0)"! and U
=H-S(0)" ! Then

U=H-50)"'=H-(50)C)~'=HC~'§(0)"!
=(1+B)e C 150)"'=C ' HSO) '=C'U

IfU=S"'-Yand U=8""-Y be the decomposition, then C™* § ! =S~ ! because
of the uniqueness. Therefore S =SC. But then we have

L=S0S"1=8CH(SC)"1=5COC~ 15 1=505 =L

This establishes the uniqueness.
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The only thing we have to show is that (2.27) implies (2.28) if its initial
value satisfies (2.28). Let r,, , = Res(I")=the coefficient of ! in the expansion
of I Note that 7,=rfieZ,. Then (2.27) imples that

ou, du
2 _
= ~2F3n41, =r o U Uy Ty,
0ty Oty
duy du,
_ 1
3 = Faon, F) =—ri b u—uyry,.
tan—1 Lrn—1

Since we assumed that R is super-commutative, we obtain

0
ot,

@M+ 2u,)=0 (2.32)

for all n=1,2, 3,4, .... Note that u?=0 in a super-commutative algebra. Since
(Ui 4 2u,)], = o =0 by assumption, (2.32) implies that ul'+2u, =0 as an element
of #. This completes the proof of Theorem 2.3.

3. Generalized Birkhoff Decomposition

In the previous sections we observed that the groups of infinite order (super)
micro-differential operators play a central role in establishing the unique solvabil-
ity of the initial value problem for the (super) KP systems. In this section we
give a proof of the decompositions (1.25), (2.14) and (2.15).

In the first half part of this section, £ denotes the set introduced in (1.23).
We start with the following;

Lemma 3.1. Every element Peé&* isinvertible in &*. More precisely, the Neumann
series Y (1—P)" gives an well-defined element in &>, which we define P!
n=0

Proof. Let P=Y a, 3’ a,ef. Since Peé, its coefficients satisfy a growth order
veZ

condition
val,a,>cpv—Np, forall v>M,.

Let Q=1—P=Y b,0"ed. Since Ql,-o=1—P|,_o€E ) val b, 21 for all v20.
veZ
Of course the coefficients of Q satisfy the same growth order condition

val,b,>cpv—Np for all v>M,.
Thus there exists a positive real number J such that
val,b,=zJ(v+1) for all v —1. (3.1
Actually, J = cp/(1 +cp Mp+ Np) will do.
Let 0"=Y b, ,0"eé. Then we have;

veZ

Claim. val, b, ,2J(v+n)for all v= —n. (3.2)
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Proof of the Claim. We use an induction on n. If n=1, then b; ,=b, and (3.2)
reduces to (3.1). Now assume that (3.2) is true for some n. We want to show
val, b,y ,=J(v+n+1)for vz —n—1. Since

Q"+1=Q'Qn=zbaaaz bn,ua”

aecZ peZ

=% % 3 (f)buaorr

aeZ peZ i=0

-3 |2 3 () eebinnd 2

veZ tacZ i=0
we have

29 a o .
n+1 v= Z Z (i>bab$:,)v-a+z+ Z Z( l )b—ﬂbn v+B+i

a=0 i=0 pg=1i=0
v+n a

=3 3 (3)bbienes (33
a=0 i=0

+ Yy ( )ba BO, o (3.4)
v+n+

a= 1i=0

‘Y lZl( )bi-zbﬁ‘?m. 3.5)

=1 i=0

‘We now assume that v= —n— 1. In the first summation (3.3), since 0<a<v+n
and i=20, we have v—a+i= —n. Hence by the induction hypothesis,

val, b®, . ;2val b, o, 2J(v—a+n)

because the derivation ¢ does not decrease the valuation with respect to t.
On the other hand, since a=0, we know val,b,=J(a+1). Therefore
val, (b, b, _,. )2 J(@+1)+J(v—a+n)=J(v+n+1), and hence

v+n a

val, [ > Z() by, _ a+l)>J(v+n+1).

=0 i=0
In the second summation (3.4), since a=v+n+ 1, we have
val,(z (?) DY, _ a+,)>va1, b,z2J@a+1)=J(v+n+2)

i=0
Therefore

» Z() ‘n"v-a+,~)zJ(v+n+1).

=v+n+1 i=0

Finally, in the third summation (3.5), since [ = 1, we have v+I=v+ 1= —n. Hence

-1
val,(z ( ; ,)b, by v+,)>val by v 2J(v+I+nm2J(v+n+1).

i=0
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Therefore

w -1
val(z Z( ’)bi_,bﬁ,‘}v+,)gJ(v+n+l).

=1 i=0

This completes the proof of the claim.

oo

Because of this claim, ) b, ,€Z is a well-defined element. Therefore
n=0

Lo-% Th.o=3 (b7

n=0 veZ veZ

Note that if v=0, then val, 3 b, ,=Jv. This implies that Z Q"eé. But since

n=0 n=0

€G, it is an element of &*. Since
=0

%9)

1= }O‘E (1—Py— i (1— Py

i —(l—P)Z(l Py PZ(I Py,

the Neumann series gives P~ 'e&*. Thus we have established Lemma 3.1.

Note that 9 =&* nJ becomes a subgroup of &*. The inversion in &>
is given by the Neumann series. For example, (1—t,0) '=1+t,0+1t}0*
+138%+...e€&*. On the other hand,

(1= '=(-0(1—-0"") '=-0""1(1-0"1)""
=—0 Y1401 4+0724+073+..)=—0"1-0"2-0"3—.. . €é.
Therefore, we cannot evaluate t by any numbers. In other words, the group
¢ is a purely formal object. However, as we have noted in Remark 1.5, the
use of group €™ and its factorization gives actual convergence of the solutions
of the KP system!
The algebra decomposition (1.7) was used effectively to determine all possible

isospectral deformations of LeE. The factorization theorem we are proving
is its group version.

Theorem 3.2 (Generalized Birkhoff decomposition). For every element Ueé&*,
there exist a unique S€% and a unique Ye D™ such that

U=S"1.Y. (3.6)
Namely, we have a unique factorization

E*=9.9x. 3.7



26 M. Mulase

Proof. The unlqueness is trivial. Indeed, if Sy =85'Y,, then S,S;!
=Y, Y, 'e¥nP*={1}. Hence S;=S, and Y, = Y2 To show the existence of
the decomposition, we have to solve the equation SUe % for an unknown Se%.

Solet U= ) ugdf and S=1+ Y, 5,0 *Then

BeZ a=1

SU=(1+ i saa-“)(z uy 0%

a=1 peZ

SULEDVD D} (i PRVLENE

BeZ a=1 BeZ i=0
=Y+ Y (3 z( , )s uﬁm)aw,
BeZ yeZ \a=1 i=0

Therefore the equation we have to solve is a system of algebraic equations

u_g+ Y z(‘i“)saugﬂ_ﬂ,:o for p=1,2,3,.... (3.8)
a=1i=0
Define
“=(u—-1>u~—2su—3a )a
52(31552,53, )
and

© [ .
M=[Z ( i )ug)—ﬂ+l:| ’
i=0 1 @, $=1,2,3, ...

where M is a square matrix of infinite size with coefficients in #. Equation
(3.8) now reads

SM=—u. (3.9)

Therefore the solution s is given by s= —uM ™! Our idea is to define M ~!

by the Neumann series Y (1—M)", and use a similar technique developed in

n=0
the proof of Lemma 3.1 to establish well-definedness of Z (Q1—M)"andu-M™!
n=0
Since s determines all the coefficients of S, well-definedness of u- Z (1—M)
implies the existence of S such that SUe . n=0
Let
N=1-M= [auv]u, v=1,2,3,..
and

N"= [an,uv]u., v=1,2,3,..°
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oo
Since a,,=0,,— Y. ( ; )ufj) y+i» We have
i=0

@ —'/»t ; e el - ;
auu|t=0:1_ Z ( l )us )it=0= - Z ( l‘u) u§)|t=0=05
i=1

i=0
because u;},.o =0 for all i>0. Similarly, if u> v, then

ee]

—u ;
auv|t=0=_z< i )u() v+l|t 0_0

i=0

Because of the growth order condition for u,’s, we can find a positive real
number J such that

val,a,,2J(u—v+1) forall py—vz—1 (3.10)
as before.

Claim. For every n= 1 we have
val,a, ,,=2J(u—v+n) if py—vz—n (3.11)

Proof of the Claim.If n=1, then a, ,,=a,, and (3.11) follows from (3.10). Assume
that (3.11) holds for some n=1. Since N**!=N"-N,

n+1 uv= Z an ulalv

patn

- Z a,, ul alv+ 2 an ulalv+ Z an,ulalv' (312)

l=p+n+1

Let us assume that y—v= —n—1.
In the first term of (3.12), since v—1=1, we have y—I=zpu—v+1= —n, and
hence

val,(a,, yai)2zvala, ,Z2J(u—l+n2J(p—v+n+1).
Therefore

v-1
val,( 2 an.uzazv>21(ﬂ——v+n+1).

1=1

In the second term of (3.12), since v=I<u+n, we have u—I1= —n and I—vz0.
Hence

val,(a,, , ar)=val,a, ,+val, a,Z2J(p—l+n)+J(—v+1)=J(p—v+n+1)
Therefore

u+n
Valt(Z an,uzazv)é-f(u——v+n+1).

I=v
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Finally, in the third term of (3.12), Iz u+n+1 implies | —v=pu—v+n+ 1. There-
fore

[«
vald Y a, . a;v>_2_val, a,2Jl—v+1)=2J(u—v+n+1).

=g+n+1

This completes the proof of the claim.

e8]

By this claim we can conclude that Y a, ,,€% is well-defined for all p, v
=1,2,3, .... Therefore n=0

M =Y (1-M)n=[z a]
n=0 7, v

n n=0

e’

is well-defined. Let M~ '=[b,,], - 2.3..., namely b,,= Y a,,,. If p>v,

© n=0

then val, b,,=val, Y a, ,,=J(u—v). Therefore
n=0

a0 v K
Sy= 2 U_yby=— Z U_ybu— Z Uy by,
#=1 n=1

p=v+1

is a well-defined element in %. Thus we have established the existence of Se¥%
such that SUe%.

Finally, let Y=SU. Then YeZ* and U=S""'-Y. This completes the proof
of Theorem 3.2.

When the differential algebra (R, 0) is trivial, i.e. if 3: R — R is the zero-map,
we write 0 =4 and consider it as a commuting variable. Then & can be identified
with a formal loop space of #=R[t] with pointwise multiplication. If 4 is

a complex variable, then P= ) a,A’e& is a map of the unit circle in € into
vel

#. The group &> is the connected component of the identity operator 1 in
the group of all invertible elements of &. The subgroup % consists of a function
S: S'a4S(A)eR which is holomorphic on the upper hemisphere of P} with
S(c0)=1. The other subgroup 9> of &* consists of a function Y: S'31— Y(4)eZ
which is holomorphic on the lower hemisphere of P} such that Y(0) is invertible
in &.

Thus we recover the usual Birkhoff decomposition of the connected compo-
nent of the identity of a loop group (Pressley-Segal [107]).

In the rest of this section, notations coincide with Sect. 2, namely &% &
etc. are sets of super micro-differential operators.

Lemma 3.3. (a) Every element Pe&* has an inverse in 8.
(b) If P&y, then P~ & .

Proof. The first part (a) can be proved by the same argument used in the proof
of Lemma 3.1. The only necessary alternation is to replace the Leibnitz rule
(1.3) by its super analogue (2.7), otherwise the proof is identical.

To establish (b), let P=) a,6'céy, Q=1—P=Y b,6" and Q"= Y b, , 0

veZ vel veZ
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Since

M- -Pr=L =1+ 3 Th o=l X (Lb)0

n=0 n=1 veZ veZ

we have to show that (Z 5::)=i Therefore we need to prove that b, ,=7
foralln>1. =t

If n=1, then b1 V—b —(5v0 a,)=ay;=7. So assume that /13:':——47 for some
n=1. Now, since

Q"+1:QQn= Z bvevz bn_,‘g“

veZ nelZ

-3 % %[l vFen e

veZ peZ i=0

=3 (3 3 [evee e

aeZ WeZ i=0

we have

n+1 a Z Z[}( 1)(a+1 ne= x)b bgﬂa“ﬂ v

veZ i=0

Note here that if b=, then b[“=(ﬂ/i) because 8 is an odd derivation. Thus
we have

T e —— /‘\/
(bv bE:,]a~v+1) b +bn a—v+i
=T+ G—V+i+i=4d.

Therefore b, , ; ,=& namely, P~ 'e&§. This completes the proof.
The following factorization is the main tool to establish the solvability of
the super KP system.

Theorem 3.4 (Super analogue of generalized Birkhoff decomposition). Let &>,
&5, D", %, D& and %, be the groups of super micro-differential operators defined
in Sect. 2. Then for every Ue&™, there is a unique element S of 4 and a unique
element Y of 2> such that

U=S"1.Y. (3.13)

Moreover, if U is an even operator in &g then the above S and Y are both
even;

Se%, and Yedyg. (3.14)
In other words, we have a unique factorization

E*=9-9* and &;=%, 9
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Proof. The proof is again the same as that of Theorem 3.2. We start with U
=Y u,0" and let S=1+ Y. S, 6% The equation we want to solve is SUed.

veZ a=1
By a similar calculation, we obtain

e o]
u_,+ Z Z [ ]( 1uu v+i(ll+l)S u[t_v_H 0.
u=1i=0
So let
M=[Z [—l/‘] (= 1)tu-v il “El—wJ ,
i=0 B,v=1,2,3,..
N=1-M=[a,,], ,-
and [ i3 ]u, 1,2,3, ...

N'l: [an, uv]u, v=1,2,3,..."*

Then the well-definedness of Y (1—M)" and the product

n=0

(M-, u_p,u_3,...) z (1—-M)"

n=0
can be shown in the same way. Therefore,
-1
(Sla Sz, 83, )= —(u—l, U_r,uU_3, ')M

gives a solution. Letting Y=SU, we obtain (3.13).
When U is an even operator, then &, =¥. Since

@0
—H S P
Ay =0y, — 2[ i ](—1)"" v

i=0

we have d,;= u/fp::, =(u=7). Now if G, ,,=(Z=V), then

an+1 nv (Zamv) m+az\v/=ﬁ—7’+7—‘7=(ﬁ)

Therefore @, ,,=(@=") for all n=1,2,3,.... Let M '=) (1-M)

n=0

= [buv]u, v=1,2,3,..* Then

’b‘,;=( S Gy ) = ().
n =0

Therefore
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namely, Se%,. Since U and S are both even operators, we have Y=8SUe%y,
thus (3.14) is obtained.

The uniqueness of the decomposition is trivial since ¥ N2> =%, " 9§ = {1}.
This completes the proof of Theorem 3.4.

4. Some linear total differential equations

To establish the uniqueness of the Cauchy problem for the generalized KP
system (1.19), we used the following fact; every solution S of (1.19) gives rise
to a solution U of the universal equation (1.29). In Sect. 1 we proved this fact
by assuming that Eq. (1.26) dY=Z, Y has a unique solution in 9> Recall
that if S is a solution of (1.19), then Z, satisfies the intergrability condition
dZ,=Z . nZ,.

For a finite dimensional situation, solvability of (1.26) under the integrability
condition is a well-known fact. But in our case, since the group we use and
the base space are both of infinite dimension, we need some technical tricks
to establish this fact.

Let D, 2 and & be algebras of ordinary differential operators introduced
in Sect. 1.

Theorem 4.1. Let w= Y. B,dt, be a D-valued 1-form satisfying

n=1

(a) there is a positive real number ¢ >0 such that

ord B<

o=

for all n=1.

(b) w is integrable, i.e. dw=w A ©.

Then for every given operator Y(0)eD, there is a unique solution Ye2 of
the linear total differential equation

dY=wY 4.1
having Y (0) as its initial value; Y |;.o= Y (0).
Proof. Note that (4.1) is equivalent to the system

oY
ot,

=PB.-Y. 4.2)

Let Y=} y, &' Then the zero-th order term of (4.2) gives an equation
i=0

0yo
=P
6t,, n(yO)

where P,(y,) means the function obtained by applying the differential operator
E, to the function y,. Therefore, we have to establish, first of all, the following,
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Lemma 4.2. Let » be as in the theorem. Then for every feR, there is a unique

solution ye & of the system
dy
ot

=By, n=123, .. 4.3)

n

such that y|,-g=f€eR.

Proof of the Lemma. For an individual t,, it is easy to solve dy/dt,= E(y).
Actually, let

[ve) . nfc
y=Y 2 ber, B=Y a4
i=o ! k=0
and
< "
a= Z @ j7yp G j€R
i=o
Then
dy oy @
= = — a
at, »0) at, ,E‘O Y
tl 1
= _ a b(k) tl+1
iz0 ( 1)' kgo jZO zZO k- ' ‘
w0 t(l
=Z[a+1 Z Z()aka tb(k)] ‘a
a=0 i=0 k20 @

namely we obtain

ax
o
k
byr1= Z () ak,az-ibg ),
i=0 kz o0\l

Therefore y is uniquely determined by bg=y|,, -¢-

We can repeat the above procedure for ¢, t,, t5, .... The integrability condi-
tion (b) establishes the compatibility of ¢,-dependence of y. In this way we obtain
a well-defined function ye 4.

Now let us go back to the proof of the theorem. If the differential algebra
(R, 0) is trivial, then Y and PB’s are all multiplication operators. Therefore, the
above Lemma establishes the existence of a formal solution Y. (We will show
later that it is actually an element of 9.)

So let us assume that (R, d) is non-trivial. Now let x be a dual operator
of 0. Namely, x satisfies

[R,x]=0 and [d,x]=1. 4.4)

(Of course x may not be an element of R.) The reason why we want to use
such an operator x is because its introduction makes computation much easier.
Logically, we do not need x.
In this proof we use the following simplified notation;
A-[, BI"=[[...[[4, B], B], ..., B], B]. (4.5)

n-times

Namely A-[, B]=[A4, B}, A-[, B]*=[[4, B}, B] etc.
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Claim 1. The equation dY/dt,= B, Y is equivalent to

I i i i
0 (z ).iy,_,-)=P,,(z %y,_,.) for all 1>0. (4.6)

oL, \[=p i! i—o

Let’s observe that the above claim establishes the unique existence of a
formal solution Y. Indeed, assume that we know y,, y,, ..., y;-,. Lemma 4.2
says that Eq. (4.6) is solvable for every initial data. Therefore, if we give yl,-o.
(4.6) determines y,c#. If we continue this procedure, then we obtain all

Yos V1> V2, ... Thus we get a formal solution Y y,d'=7Y of (4.2). Again its com-
patibility of t-dependence follows from (b). =0

Proof of Claim 1. We need the following formulas. Let F,= > a, ;¢’. Then

jz0
i
y (’l) 4y ;0 I=P, [’l"“] , @7
jz0 :
¥4 W L

(4.8)

Since
aY 5}
0=5-—RY= 5 ay‘a' Y a7 Yy
n 1=0 Yn jzo k=0
X 0 L
— Z lal Z Z Z () ;cl)aj'f'k i
1=0 jz0 k=0 i=0
- = Vi U+k=bY gl
“(F-3 T( 0 Jaar)e
I=0 jz0 k=0
we have
oy z(l_) . z()
jz0 k=0 jz0 k=0
_ N, -3 ] 4
= Z Z k )i~ e Z Wi-#)- (4.9
k=0 \jz0 k=0
Therefore,
P 1 x! 1 xi ayl_i 1 1= x! [’x]k
ot (;: Yz-z)—'zzoﬁ at, _.go kzoﬂ(ﬂ Kl )(}’z—;—k)
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Proof of (4.7). Since
[Ru X]—_—' Z an,j[aj’ x]= Z jan,jaj—l,

jzo0 izo
we have
LxY=YjG-DG-2...0—-l+1a, ;0"
Jjz0
=11y (J) a, ;0.
izo\l

Proof. of (4.8). If j=0, then (4.8) simply says that B,=F,. So assume that (4.8)
is true for some j. Then

J Jj J J
g.%+1=3.(§~.g_):__1_[;; x ]+_P ©
! jt j+1) j+1 j'

1 [d Xk [, x]* ] x g Xk [, x]*
== P"- . +' - Pn.
,~+1L§0(,-_k)! IR A TS I T
R A '(k~l—1)!‘P.[,x]"+1
LA Gk kL k)

L I O (20 L 4.1
P15 G—k+D)! (=R " k!

1 j+1 xj—k+1 [, x]k
=j+1,§1 G—k+D)! " k!
1 J xj—k+1 [ x]k
+ k+1)P-
;+1kzo(] k+1)! U—k+DE-=5

__jil xi—k+1 ‘k+j~k+1P'[,x]"
iy G—k+1)! j+1 k!

_j+1 xj—k+l [’x]k

L Gk k!

Thus induction on j works to establish (4.8).
Finally we have to establish a growth order condition to show that Y

=Y 3,0 is an well-defined element of 4. Let N=ord(Y(0). Note that by
1=0
assumption (a), we have ord R,< " . Therefore, by (4.7), ord (B, - ([, x]")/k')<~—k.

Namely, B -[, x]*=0if k>2 ~ Hence in (4.9), we have

0 (p LA [
2oy (r 52 k),)(yk)—kg_ﬂ(n =)o

k=0
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Since Y|,~o= Y(0)eD is of order N and y{|,— o =(l,=0)"”, we have

(7]
ot,

1 [
5 (R:lz=o L. x] )(y,-i,=o)=0 4.10)

'=O-—jgN+1 (l )'

forall 1224+ N+1.
C

Let J=(ny, n,, ..., n,) be an r-tuple of positive integers and let |J|=n,+n,
+...+n,. We denote
0 ol
3 - 4.11
T Eat Oty Oty ... O, .11)
Claim 2.
0, V))i=o=0 for all l>~1c—|J|+N+1. 4.12)

Proof of Claim 2. We use induction on r. If r=1, then it reduces to (4.10).
Assume that (4.12) is true for all s<r. For every sub-tuple I<J, we define
I°=complement of I in J and denote d,=]] 9/0¢;. By the induction hypothesis,

iel

Or Vile= O—Oforalll> [J]+N+1. Nowassumethatl> |J!+N+1+— Then

é%a,y,h:o:a,( in<”n [( x];)_'k)(y"))

kzl~=
<

=0

1 1—k
) ((a,c B)lics Li]—»—)«a,yk)l, =0

I=d kgl—

since k> — |J |+ N + 1. This completes the proof of Claim 2.

Therefore, we have
val, y,zn,+n,+...+n,

for all l>1 (ni+n,+...+n)+N+1. If we define My=N+1 and Ny=any
c
integer greater than c(N + 1), then the above inequality implies that

val, y,>cl—N, for all I>M,.

Therefore, Y=Y y, &' is a well-defined element of 9. This completes the proof
1=0

of Theorem 4.1.
Lemma 4.3. Let Q= ) dt, 0" If the universal equation (1.29) dU=QU has two

n=1
solutions U and Ve & with the same initial value U|,_q=V|,=o, then U=V.
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Proof. Let W=U — V. Note that W|,.o=Ul,~0— Vi =0=0. Since (1.29) is linear,
we have dW=QW, namely, 6W/dt,=08"- W. Therefore, 0, W=0"1 W, where 9,
is the operator defined in (4.11). Thus (8, W)l,—o=0"'W/|,_o=0 for all J
=(ny, Ny, ..., n,). This means that W does not depend on t. Since W|,.,=0,
we can conclude that W=0. This completes the proof of Lemma 4.3.

A similar statement is valid for the super case.

Lemma 4.4. Let
Q=Y di, 07+ Y dig, 02"—1(1— S s ou—l).
n=1 n=1 k=1

Then a solution of the initial value problem for (2.21) dU = QU is unique in &.

Proof. Let U and V be two solutions with Ul,.o=Vl|,=o. Let W=U —V. Using
the same argument given above, we can conclude that W does not depend
ont,,,n=1,23 .... Now, since

ow __:92;.—1(1_ Z trr-1 02k—-1>m
ath—l k=1
we have

ow

=02""1 W|,~o=0.
6t2n_1 ‘t 0

t=0

Thus W does not depend on odd variables either. Thus Lemma 4.4 is established.

To establish the uniqueness of the super KP system (2.25), we have to show
that every solution of (2.25) gives rise to a solution of the universal equation
(2.21). Namely, we need a super analogue of Theorem 4.1. For this purpose,
we have to impose the following condition on the super differential algebra
(R, 0);
Condition 4.5. There is a dual operator x of the derivation 6*: R — R such that

i) [0%x]=1.

(i) [R, x]=0.

(iii) [6, x] annihilates R,, namely a[0, x]=[0, x] a=0 for all aeR,.

(iv) [0, x]*=0.

The above condition will be satisfied if R A®, k[x, ] and 6=0/0¢ +£0/0x,
where A4 is a k-algebra consisting of even elements alone, x is an even variable

and ¢ is an odd variable with ¢2=0. Condition 4.5 does not require that x
and [0, x] are contained in R. Now we can establish the following;

Theorem 4.6. Let

[eo] o0 e e) K
o= dty, P+ Y dtyy Py + Y Y dtya i trko 1 Praran-z

n=1 n=1 n=1 k=1
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be a D-valued 1-form defined over a super differential algebra (R, 6) with Condition
4.5 satisfying that

. . n
(a) there is a positive constant ¢ such that ord B,<— for all n= 1, where P,,€ 2,
¢

and B,,_1€2,, and
(b) w is integrable, namely, dw=w A w.

Then for every given element Y(0)eD,, there exists a unique solution Ye D,
of the linear total differential equation

dY=wY 4.13)
with the initial value Y|,_ o= Y (0)eD,.

Proof. Note that (4.13) is equivalent to the following systems;

oY =P, Y forall n=1,23, ..., 4.14)
dt,y,
oY
Z kg =———=PB,_,-Y forall n=1,2,3,.... (4.15)
at2n 1 k= Olyn+ak-2

We will first solve the even system (4.14) consistently assuming that ¢,, =0
for all n= 1, and then solve the odd part (4.15) consistently.

Since the super differential algebra (R, 0) satisfies Condition 4.5, there is
an operator x with (i)~ (iv). Let us denote [0, x]=¢ which is an odd operator
on R. We want to use the same idea developed in the proof of Theorem 4.1
to show the solvability of (4.14). So we introduce the following notations. For
every n=0, we define

LI (4.16)
2 g @.17)
A-[ A=A, x]"=[L...[[4, x1, x], ..., x], x] (4.18)
n-times
A-[aP" =4[, x]% & (4.19)
The formulas we need are the following. Let B,= Y a,, ;8/€2, be an even
super differential operator. Then we have jzo
P - , j, I
y [’l] 4y ;07 '= B, LA (4.20)
izl 1]y
2}
and
Y i ik PRl
Z B, LA . 4.21)

T

Using the above formulas we can show the following;
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Claim. The equation

oY =P, Y for Y=Y y60€9,
Oty, =0
is equivalent to
i 1 ii
ZJ/z 1_’" :'PZn Zyl—i— (422)
i=0

atz" i=0 ify ify
21 21
for all [=0.

Since a super analogue of Lemma 4.2 can be easily established, (4.22) gives
a unique formal solution Y by the same argument we used in the proof of
Theorem 4.1.

Proof of (4.20). We use a Z,-graded induction on I If I=0, then (4.20) simply
says P,=P,,. So assume that (4.20) is true for an even number [=2m. We
want to show that it is also true for [I=2m+1 and |=2m+2.

Now, by (4.19) we have

[,/1](2m+1) [ [’ /1]2»1 ] [ [] ] om ]
Pn' = Pn' s 6= 2n jgj ’
2 [2————~m+1]' 2 [2m“]' : jgm 2m| " g
2 r 2|

- .] j—2m g J (— j j—2m
= % [ Jamsome= [ Jasni-rveo

jzaml2m jzam

J j——2m ji—1 pgji—2m~1
= : -1 &
j%2m[2m] az,.’,[ 1 ]( Y

: ] 2m-1 -] 2m-—1
= ayp ;0 0
jgmjtm] zmJ ng[Z +1]

by the definition of super binary coefficients. This establishes I=2m+1 case.
For [=2m+ 2, we have

[ A]2m+2 1 . [,l]Zm .
[2m+2] m+1 2n 1
2

]

e gl I L b

m+1 ,5.12m

1 J J=2m] i am-1
m+1j>2m[2m]a2"’j[ 1 ]59)

1 j j—-2m] e ame
— . o 2m~2
+m+1 j>2m[2m]azn,1[ )

Z :Iazmj'éej—bn—l

jizZ2m

J {{ji—=2m
Z 2m 2 pi-2m-2
+j;2m 2m+2 Aani '
2

2n°

m+1
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We are assuming a,, ;£=0 for odd j, thus the first term vanishes. (Remember
that we are working on even parameters now and assuming t,,-,=0 for all
n.) Since it is easy to see that

-

2m+2]  2m+2
we can conclude that 2
2m+2 .
p“.[_’i]”__ 3 [ J ] j0i72m=2,
[2m+2] jz2m 2m+2
2

It completes the proof of (4.20).
Proof of (4.21). We also use a Z,-graded induction. When j=0, (4.21) simply
says B,,= P,,. So assume that it is true for some j=2m. Then,
/{2m+1 lZm ] AZm
P2n'—*—= PZn'—haé +£P2n
Zm+1}, 2m], 2mf,
2 | 2| 2F
2m ,12m—k , A k T 2m ;LZm—k , A k
2m—k|, k|, =0i2m—k|, ki,
2 2] ] 2 | 2|
m AZm—ZI ’,1 2i+1 m /12m—-21+1 ,ﬂ 21
-5 B, LA S . LA

[ [ TP R

On the other hand, we have

ZEI /'LZm+1—-k . [,l]k
2n
k=0 |2m+1—k|, k|,
2 ' 2]
i A2m+1—-2! P [’i]2l+i ,12m—21 L/{]ZHI
2n

[2m+1 21] [y], [Zm 21] " [21+1],
2 21 2 2 |
Therefore, we obtain (4.21) for j=2m+ 1. Next,
12m+2 1 A2m X /12'"
28" = 2n° B + ‘PZH'
[2m+2], m+1 [Z_m], m+1 [Z_m],
2 | 2| 2
1 2m Azm-k [,i]k+2 1 2Zm 22m+2—k [’ ]k
2n° I>2

Cm+ 1, S [om—k ) k|, m+1,", 2m k 16_,
2 | 2] 2
[&], 2m+2 k
2m+2 2m+2-k k 21
=1 A p, L4 (423)
m+1 25 [2m+2—k|, K], \ [k=2], 2m k
2 ' 21 \[ 2~
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In the above summation, if k is an odd number, then A*"*27%Pp,, .

since £a,, ;=0 for odd j. And if k=21, then

s

=m+1.
k-2], 2m—k}|,
2 | 2 |
Hence (4.23) reduces to
12m+2 2m+2 12m+2—-k [ /Uk
2n’ = 2n"

o3

2m+2|, k=0 |2m4+2—k|,
2 ’ 2 )
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[, ATF=

Thus we have obtained (4.21) for j=2m+ 2. This completes the proof of (4.21).

Proof of (4.22). Since we have

O=—— _Z ZaanH Zy o

6t2n k20

= Z dyi — D) I:]:]("1)m(k_i)azn,k}’5]9k+m~i

0i=0

_ i (ﬂ_’,_ i [l km](_l)m(t*m)a L Yletm= 11>9,

Otzn  m=o k20

the equation is equivalent to

ayl 2 Z [ :I( l)m(l m)a2 ky[k m]

6t2n kz0 m=0

Z( D] o PR

kzm
- 3 (-apemp, b2
m=0 mf
Hi
Therefore,
0 A ay, ;

Z( 1!(1 1y _=

LN = T = i, 9t
2) 2l

=i l-i(—l)i(l—i)(—l)mu—i—m_'li_Pz,. [ A" Wt=m-1)

3 T
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¢ - j—m m
=% Y (pomermgpee T p LA
j=0 m=0 i=—m} LA ]
2 2
i ji—m m
Z 1)1(1 i) z 1)m(j+1) ‘),j PZ,,' [> /'{] ( l~j)
: 1"
2 2
Lo ! W
22(_1)1( J)Pzn‘—()’z—j)=Pzn ZJ’h;’—* s

i=0 ih i=0 I
21 21
where we used that /=™ P,,-[, A]"=01if j is even and m is odd. This completes

the proof of the claim.
The well-definedness of Ye %, can be shown by a similar argument we used

in the proof of Theorem 4.1, so it is omitted here.
Thus we have determined t,, dependence of Y. Finally, let us sketch how

to determine odd time dependence of Y. Since

d Y
L p Y
atz;: 1 g at2n+2k—2 2t
2 0 oy,
=Z(6tyl Z 2k-1 57 )G_Zan 1,10 ZyJOJ
1=0 2n—1 2n+2k 2 k=0 j=0

0

2 0 ad 0 k
=Z( Y —Ztlk—l¢_z Z[k+j—l]a2" 1kJ’£k+J ”>9’

Otyn—1 4=1 Otams2-2 x30 j=0

d ay, _
Y Z 2k—1 _Z Z[]an 1ky5 ,]]-

Otyn-1 1= at2n+2k 2 j=0 k20

For individual ¢,,_, dependence, we can expand y,=y, o+ty,—1 ¥ ; and
Ayp 1,k =02p—1,k 0+ 201 2,-1, 1- Lherefore, letting t,,_, =0, we obtain

d Fij
V1= Z lop—t 77— o Z Z [ ]aZn Lk o M ;ﬂo (4.24)

k=1 6 2n+2k 2 j=0 k20
k*n

This means that y|,, -, determines y,. Namely, Y|, , -, determines ¥ com-
pletely. Compatibility of t-dependence follows from the integrability do=w A w.
Since ord P,,_; <(2n—1)/c, (4.24) gives a lower bound for val,y, ;. Thus the
well-definedness Ye 9, follows. This completes the proof of Theorem 4.6.
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5. Examples

In this section we give some of the explicit forms of differential equations
obtained from the generalized KP system and the super KP system. From now
on, we use the following convention: for a function f, we denote éf/dx=f"
and of/0t,=f ,.
Let A be an associative k-algebra and let R=A®,k[x]. Then the generalized

KP system (1.19) produces the following equations;

Sy, 2=87—25; 5, +25)

5y, 2=53—2515,+25;

s1,3=57 =357 s, —3(s7)*+35], s?+35; —3s, 5, — 357 5, +355.
Eliminating s, and s, from the above equations, we obtain the non-commutative
KP equation

—~(3/4) 51,22~ (3/D 51, 51,21 —(1/4) 57" +(3/2) [(5,)*T =0. 6.1

When A is commutative, then (5.1) reduces to the original KP equation on
Up= —S5%;
4u,2,3”“3u2’22—'u/2/”—12(u2 ul2)1=0- (5.2)

Now let’s consider the super KP system. For a super differential algebra,
we take R= (E[[x é]] and 0=0/0¢+£0/0x, where x is an even variable and
¢ is an odd variable satisfying £2=0. Since 6> =0/d x, the derivation map 6*: R
— R is surjective. Let

L=0+u,+u, 0" ' +u; 072+

be a monic first order super micro-differential operator of homogeneous
Z,-degree 1 (ie. ii,=fieZ,). We assume the consistency condition

4 2u, =0

from now on. Then by Proposition 2.2 there is an SeG, such that L=S6S~"
Therefore, the Lax equation (2.27) is uniquely solvable for this L. To compute
actual forms of (super) differential equations, we need the following:
P=024+u107 +Qua+ v —ud) 07 2+ (i —uy bl h 673+,
3=03+u1 0% +uy 04 (us—ub )+ Cug+ul + P —uZ +u uih o1

A= 0% 4200+ 2QQuy + U — 1)+ Qul + P —2u, Wi 07

=0+ 3ul1 03 +3QQu,+ulT—u3) 02 + 3+ uF —u, uh') 0

+3Que+ i+ 26+ 1P+ uy ul — 20 g —u, Ul

+Gul 4+ 3ulP1 4+ 30l u, + 3u, b+ 3u, uP + 6ub T Ul

—3u s +ulP1—6ud Ut ot
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Substituting the above expression in (2.27), one obtains

1
Uy 1 =—uyl+ z Lon—1 Uz, 20
n=1
uy, = —2u,—ufl+ Z Lan—1U3 20,
n=1
[ o)
1 2 1 2
uy 3= —=3uf —uP— P+ duy w4 u WP+ Z Lyn—1U2, 20425

n=1
Uy 4 =2uF+ul—2u, ul?}
Uy o =20+ ul + 4, w20 Wl — 20y, + 20, Ul
=2 uy +2u, ub— 4ud ),
Uy 6=3u + 30l + 30, w2+ 30l 1wy + 3u, ufT— 3ubt 4l
+3uP ul =3P s + ulP — 6ud ulP.
For the purpose of elimination, we introduce a new variable v, such that

=Uu,. (5.3)

Then we obtain a closed system of equations for v, and u;:

K
205, +3ui), — Z t2n—1(2l7%3,]2n+2+3“[32,]2n)

n=1
— 2005 4 51— 4l ol 31 (54)
40fs— 300, 44— 12051 vy 4 — 6051 ol
=vh1—60fT oF— 6 (u5H)% + 1205wl — 1203 i, (5.5)

To eliminate further u; from (5.4) and (5.5) above, let us expand v, and u,
in the following form:

{Ua=fo+t1ffz+t3§f4+t1 tyha+ ...,

(5.6)
Us=Cga+1t1qatt386+t1t388s+...,

where f,, f5, f4, ha, 4a, 84, 86 and gg are all functions in C[x, t,, 6, ...]. Note
that we can identify t,-dependence with x-dependence because
O0L/dt,=[0% L1=[0/0x, L]=0L/0x.

We write f1?/= f” etc. from now on. Then Eq. (5.4) gives the following:

fa=—f0,

ha=fi+1fo.4,

84=—(3/2) fo, s +(1/2) o' = (1/2)(f3)* ~fa,

9a=(1/2) fo, a + (/2 f5' = (1/2)(f3)* + fas (57

86 =106 +(3/2 fa, s (/D f& —f5 fa+ 215 fa,
8s=Jfo,6 —(1/2) f4, 4= (/2 fo, aa + (/D5 4 =13 fo, « + W/ ' =3 S5 i+ 215 fa-
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Substituting the above expressions into Eq. (5.5) together with (5.6), we obtain
the following system of closed non-supersymmetric (i.e. in the usual sense of)
differential equations;

o fa—So J& + 1o Ja,a— S0, 4 20, (5.8)
41,6~ 30,44+ 615 fo,a— 15" +6(f5)* f5' + 125 fo=0. (59
Equation (5.8) has an obvious solution
fa=22fg

where AeC is a spectral parameter introduced to keep consistency of the
weighted homogeneous degree of variables. (The degree we are using is the
following: deg x= —2, deg é= —1, degt,= —n, deg Ai=1 and degf,=n.) Thus
one can eliminate f; in Eq. (5.9) and finally obtains the following new nonlinear
integrable partial differential equation;

4f5.6=3f0,44+ 615 fo.a— 13" +6(fo)* f5' +122% f fg' =0. (5.10)
The original unknown function u, of the super KP system is given by
uy=fo—t18fo +t3E 225+t ta3 (A f +f5 ) + ... (5.11)

In (5.7) we have expressed everything in terms of f, and f,. In connection
with the argument of Sect. 4, we can observe the following fact here; since
f4 1s uniquely expressible in terms of f, and g, by (5.7), v, and u, are completely
determined by vy, ,,~0=/fo and usl, ,,-o=Egs. In other words, once we deter-
mine all even time dependence under the condition of f,44=0, then terms with
odd variables are uniquely determined automatically by the super KP system.

Let us now solve Eq. (5.10). We introduce propergation speeds a and b and
set

fo=d(PPx+al*t,+bA%t). (5.12)

Then Eq. (5.10) reduces to an ordinary differential equation of ¢ = ¢(z);

Goz2z =602 b +12(a/2+1) §. b, +4(b—(3/4) a®) ... (5.13)
We can integrate this equation to obtain
Goa=2¢2+3(a+2) ¢; +(4b—3a%) ¢.+(1/2) ¢, (5.14)

with a constant of integration. Taking one more integration of (5.14) after multi-
plying ¢,, to the both hand sides, we have

Y2=y*+2a+2) Y2 +(@b—3a?) Y2 +c Y +cy, (5.15)

where we have introduced ¥ = ¢, and another constant of integration. The gener-
al solution of Eq. (5.15) can be expressed in terms of the Jacobi elliptic functions
[14]. When a=b=0, the original function u, does not depend on ¢, and t,.
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A solution ¥ =4/(4z2—1) of (5.15) gives a rational solution

A2 hee 216x e 2i8x +
Ax2—(1/4) 1T A4 x2—(1/4)? T (PxP-(1/4)2 T

U, =

in terms of u,. The corresponding solution of Eq. (5.10) is
Jo=log[(2A2x—1)/242 x+1)].
If we take a= —2 and b=5/2, then  =cosh(z)/sinh(z) is a solution of (5.15).

It gives a soliton-like solution
e 12 cosh(A2x—22%t,+(5/2) A% ts)
277 sinh(A2x—24%1,+(5/2) 25t4)

+[terms with odd variables].

The first term of the above solution, which is equal to fg, is not exactly a
soliton because of its boundary behavior, however, the x-derivative f;' behaves
very much like a soliton. Although it has a singularity, if we shift the x-axis
little bit to the imaginary direction, then we obtain a one-soliton solution. From
this point of view, we want to call Egs. (5.8) to (5.10) soliton equations.

Finally, if we set a=—2 and b=7—k?/2, then Eq. (5.15) has a solution
Y =cn(z)/sn(z), where sn(z) and cn(z) are the Jacobi elliptic functions of modulus
k. This gives a quasi-periodic solution

L en(A2x—22%t,+(T—k?/2) A% 1)

U, S X 27 1, (T—K22) 2 t6)+[terms with odd variables]

in terms of the original function u,. Thus Egs. (5.8) to (5.10) enjoy the common
properties which usual soliton equations such as KdV equation, KP equation
and others possess. We can also observe the formal resemblance among (5.2)
and (5.10). For example, their linear terms are identical. Moreover, when the
parameter 1 is set to be 0, then (5.10) reduces to the first modified KP equation,
whose integrability has been well understood. For example, it has a bilinear
expression of Hirota. (Hirota has shown recently that (5.10) can be recovered
from the first modified KP equation by a simple coordinate transformation.)

However, it should be noted that the new equations (5.8) and (5.9) cannot
be obtained from the KP equation (5.2). Of course the super KP system involves
the KP system. Therefore, we can derive all the hierarchy of the KP equations
from the super KP system. But the latter has much more equations which have
no counterpart in the usual KP framework even in the even variables. Our
coupled system of (5.8) and (5.9) are examples of such equations. In the usual
KP framework, the unknown function u, (or f,) is equal to 0. Therefore, Egs.
(5.8) to (5.10) emerge only if we generalize the framework of the KP theory
into the category of supersymmetry.

The KP equation is a unification of the KdV equation and the Boussinesq
€quation. In the notations of Introduction, if we set u,=0 in (2), integrate the
whole expression by x and set the constant of integration to be 0, then we
recover the KdV equation u,=(1/4)u,,,+3uu,. On the other hand, if we set
4,=0 in (2), then it becomes the Boussinesq equation. In a similar sense, we
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have shown that the super KP system is a natural unification of the KP system
and the first modified KP system. Namely, if we take the reduction of the super
KP system modulo odd variables, then we recover the KP system. On the other
hand, if we eliminate odd variables in the super KP system, then we can obtain
the first modified KP system.

Super KP system
Elimination Reduction modulo
of odd variables odd variables
First modified KP system KP system

Thus we can conclude that the extension into the category of supersymmetry
is not a trivial formalism generalization, but an essential step. As we have
observed, a supersymmetric extension of the KP system produces new nonlinear
differential equations. In this paper we have established the complete integrabil-
ity of those new equations.
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