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Summary. The unique solvability of the initial value problem for the total 
hierarchy of the super Kadomtsev-Petviashvili system is established. To 
prove the existence we use a generalization of the Birkhoff decomposition 
which is obtained by replacing the loop variable and loop groups in the 
original setting by a super derivation operator and groups of infinite order 
super micro- (i.e. pseudo-) differential operators. To show the uniqueness 
we generalize the fact that every fiat connection admits horizontal sections 
to the case of an infinite dimensional super algebra bundle defined over 
an infinite dimensional super space. The usual KP system with non-commu- 
tative coefficients is also studied. The KP system is obtained from the super 
KP system by reduction modulo odd variables. On the other hand, the 
first modified KP equation can be obtained from the super KP system by 
elimination of odd variables. Thus the super KP system is a natural unifica- 
tion of the KP system and the modified KP systems. 
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Introduction 

In this paper I will establish the complete integrability of the following new 
nonlinear partial differential equation 

fx,-(3/4)f,,+(3/2)fxxfy-(1/4)f~,xx+ (3/2)f2 fxx+ 3X2fxf~x=O, (1) 
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where f = f ( x ,  y, t), ;t is an arbitrary constant introduced in the process of inte- 
gration and the subscripts denote partial derivatives. We introduce the following 
degrees of the variables: deg f = 0, deg 2 = 1, deg x = - 2, deg y = - 4 and 
deg t = - 6. Then Eq. (1) is a homogeneous equation of degree 8. This equation 
is a kind of generalization of the Kadomtsev-Petviashvili equation 

uxt - (3/4) Uyy - (1/4) ux~xx - 3 u 2 - 3 u ux~ = 0. (2) 

Note that the linear terms of (1) and (2) are identical, but the nonlinear terms 
are quite different. (After the manuscript has been completed, Professor Ryogo 
Hirota kindly informed me that if one sets 2=0 ,  then Eq. (1) reduces to a well- 
known integrable equation called the First Modified KP equation, which admits 
bilinear expression.) Eq. (1) is a simplified version of the following system of 
two equations: 

f~t-(3/4)frr+(3/2)f~s (3) 

fxx~gx--fxxgx~+ f~g,--f~,g~=O. (4) 

If one substitutes g of Eq. (3) by a solution g = 22fx of Eq. (4), then Eq. (3) 
reduces to Eq. (1). 

What we shall do is to establish complete integrability of a certain system 
of infinitely many nonlinear partial differential equations and to show that Eq. (1) 
is nothing but the first closed differential equation among the system. The system 
we use is so-called the super KP system. 

Let x be an even variable and r be an odd variable with ~2 =0.  We set 
(R, O)= ((E Ix, ~,  O/d ~ + ~ d/dx), which is an example of super-commuting super 
differential algebras. The Lax formalism for the super KP system is defined 
as follows: 

dL/d t2. = [L 2~, L] = - [L2% L], (5) 

dL/dt2~-I=[L2~-I,L]-2L2"+ ~ t2k-t[L2"+2k-2, L] 
k = l  

= - [ L 2 - - " - I , L ] +  ~ t2k-x(dL/dt2,+2k-2) 
k = l  

(6) 

for n = 1, 2, 3 . . . . .  where [ ,  ] denotes the super commutator  (defined in Sect. 2), 

L=Oq-ul-l-u20-l-l-u30-2 +... (7) 

is a super micro-differential operator of order 1, and L~+ (resp. L'_) denotes 
the terms of non-negative (resp. negative) powers of 0. The even parameters 
t2, t4, t6, ... are usual commuting variables and the odd parameters t 1, t3, ts, ... 
are Grassmann variables satisfying t2n- 1 t2,,- 1 = - t2m- i t2 , -  1 and (tz,- 1) 2 =0.  
The first set (5) is identical with the Lax equation of the usual KP system, 
while (6) is quite different. The difference is due to the consistency of equations. 
If we set dL/Ot2,_ 1 = [L2~ - 1, L], then it is meaningless because it implies 0=0 .  
On the other hand, if we set dL/dt2,_ ~ = -[L2_ "- 1, L], then we get a meaningful 
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equation for an individual t2n_ t ,  but as a system it is not integrable. The expres- 
sion (6) is the simplest equation which is completely integrable and involves 
the term [L~: n- 1, L] in it. 

The importance of the usual KP system lies in the fact that it describes 
a universal family of isospectral deformations for an arbitrary ordinary differen- 
tial operator. The form of Eq. (2) looks very special, but this equation and 
its total hierarchy of the KP system have a universality mentioned above. More- 
over, it was this universality that led me to the discovery of the fact that every 
solution of the KP system naturally gives rise to a jacobian variety of an algebraic 
curve [7, 8]. This fact was the essential part of my solution of the Schottky 
problem. 

Because of its importance, various generalizations of the KP system have 
been proposed [3, 6, 13]. Among them, Manin and Radul [6] introduced the 
super KP system in the form of (5) and (6). In their paper, they assumed the 
solvability of a system of linear super differential equations (which is equivalent 
to our Eq. (9)) and the decomposability of its solution. 

What we are going to do in this paper is to prove their assumptions. More- 
over, we will show the following: If the operator L of (7) satisfies the consistency 
condition 

O(ul) + 2 u2 = 0 (8) 

which follows also from (5) and (6), then the initial value problem for the super 
KP system is uniquely solvable. 

We will show that every solution L of (5) and (6) gives rise to a solution 
U of the universal equation 

dU=f2U, (9) 

where f2 is the following formal 1-form defined on an infinite dimensional super 
space; 

[2= ~ dt~On+ ~ ~ dt2n_l't2k_l 02n+2k-2. (10) 
n = l  n = l  k = l  

Conversely, every solution of (9) determines a solution L of the super KP system 
uniquely. Therefore, the system of Eqs. (5) and (6) is equivalent to the linear 
total differential equation (9). Note that f2 satisfies the integrability condition 
dO = [2 ̂  t2. Therefore, the algebraic situation is the same as the usual KP system 
studied in [9]. From this point of view, we call the super KP system completely 
integrable in the sense of Frobenius. 

Then how can we solve Eq. (9)? It is quite easy. Simply put 

/ ) U = e x p  ~ t n O n �9 U (0) ,  
\n  = | 

where U(0) is the initial value of U. Then it gives the unique solution of (9) 

with the initial value U(O). Thus the operator H = exp tn 0 describes the 
\ n =  1 
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time evolution of the super KP system. Note that t2= d H . H - 1 .  Since the time 

evolution of the usual KP system is given by the operator exp , 
n 

the operator H is a natural supersymmetric extension of the usual one. This 
is the very point of our motivation of introducing the super KP system. 

Thus we have obtained a solution U of Eq. (9). Then how can we find a 
solution L of Eqs. (5) and (6)? This question is answered by a generalization 
of the Birkhoffdecomposition. The original Birkhoff decomposition gives a factor- 
ization of a loop group into a product of subgroups consisting of loops which 
are boundary values of holomorphic functions defined on the upper hemisphere 
of ~1 al containing oo and the lower hemisphere of II~IP 1 containing 0, together 
with a diagonal factor in between them, where we have identified the loop 
with the equator of ~ , 1  (Pressley-Segal [1t3]). It also gives the famous theorem 
of Grothendieck: Every holomorphic vector bundle over ~p1 is isomorphic 
to a direct sum of line bundles. The way we want to generalize this theorem 
is to replace the loop variable by a super derivation operator 0. Thus the loop 
groups in the original setting will be replaced by groups of infinite order super 
micro-differential operators. Then the generalized Birkhoff decomposition gives 
us a way to construct a solution L of the super KP system from a solution 
U of (9). Actually, L is given by L = SOS-  1, where S is the "upper hemisphere 
part" of U. 

A completely integrable system is always related with some kinds of group 
factorization. For example, the Toda lattice equations can be solved by the 
Bruhat decomposition, various two dimensional equations of classical and quan- 
tum models are solved by the original Birkhoff decomposition or the Riemann- 
Hilbert factorization, and the soliton equations by the generalized Birkhoff 
decomposition of infinite order micro-differential operators. What I am going 
to present in this paper is that if we go further in this direction toward a 
supersymmetric generalization of the group factorization, then we will encounter 
the super KP system in a very natural way. From this factorization point of 
view, the solution space of integrable systems always look like 

some "general" linear group/maximal "parabolic" subgroup. 

The appearance of the Grassmann varieties in the studies of integrable systems 
can be understood also from this point of view. 

I would like to emphasize that the super KP system is not a trivial formalism 
generalization of the KP system. Indeed, Eq. (1) cannot be obtained from the 
framework of KP equations. Of course, all the usual KP equations can be recov- 
ered from the super KP system by reduction modulo odd variables. On the 
other hand, we can eliminate the odd evolution parameters from Eqs. (5) and 
(6) so that we obtain nonlinear partial differential equations in usual even vari- 
ables alone. Eq. (1) is an example of such equations. The interesting fact is 
that the result of elimination does not agree with that of reduction. Actually, 
if we reduce Eq. (1) to the KP framework, then we get a trivial equation 0=0!  
Therefore, a supersymmetric extension produces new equations. 

This paper is organized as follows. In Sect. 1, we generalize the usual KP 
framework to the case of non-commutative coefficients. Recently, importance 
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of non-commutative geometry has been emphasised by various people 
[1, 2, 5, 15]. Our attempt was motivated by these trends. We will give a thorough 
treatment of the subject in this section because most of the techniques we need 
in the supersymmetric extension already appear in the theory with non-commu- 
tative coefficients. The main theorem in this section is the unique solvability 
of the Cauchy problem for the KP system with non-commuting coefficients 
(Theorem 1.4). Since our method of solving the equation is explicit, we can 
give a good convergence condition of the solution if the differential algebra 
has a norm (Remark 1.5). Also it will be shown that there is a unique solution 
even for an initial datum with arbitrary poles and logarithmic singularities. 
Therefore, in the framework of KP system of commutative coefficients, our solu- 
tion space, which is an affine space, is larger than any proposed solution spaces. 
For example, it contains Sato's universal Grassmann manifold [11] and the 
loop space Grassmannian of Segal-Wilson [12]. Thus all the compact complex 
Grassmann varieties are embedded in our affine space (Remark 1.6). 

In Sect. 2, we will introduce the super KP system motivated by the supersym- 

metric extension of exp tn O n to exp tn 0 . An almost perfect parallelism 
= \ n  = 1 

holds between the usual KP system and the super KP system. However, there 
is a big difference between them. In the super case, the 1-form f2 of (10) satisfies 
the zero-curvature condition dO = f2 ̂  f2, but dr2 + 0. On the other hand, in the 
usual KP case, the corresponding 1-form f2 satisfies dr2 = f2 ̂  f2 = 0. Therefore, 
from this fact, we can again realize that the super KP system is an essentially 
non-trivial generalization. The unique solvability of the initial value problem 
for the super KP system (Theorems 2.1 and 2.3) are the main theorems of this 
section. 

In Section 3 we will first establish the generalized Birkhoff decomposition 
of a group of infinite order micro-differential operators. For  a commutative 
case, the theorem was announced in [9]. Our Theorem 3.2 is the widest extension 
of the statement therein. Even though the groups are purely formal objects, 
we can establish actual convergence of the solution of the KP system because 
the group factorization gives an explicit formula of a solution depending on 
its initial data, as mentioned above. A supersymmetric analogue of the decompo- 
sition will also be proved, which was one of the assumptions of Manin-Rudul 
[6]. 

Section 4 is devoted to give the technical proofs of the statement we need 
in Sections 1 and 2 to establish the uniqueness for the (super) KP system. The 
theorem we need is the following. Let c~ be a Lie algebra valued 1-form satisfying 
the zero-curvature condition dco = (1/2)[09, r Then there is a Lie group valued 
solution Y of the linear total differential equation dY=ogY The statement is 
trivial /f the Lie algebra and the manifold we are talking about are both of 
finite dimension. In our case, however, the algebra we use is the set of (super) 
differential operators and the base manifold is an infinite dimensional (super) 
space. Theerefore we need a careful treatment. We will use some interesting 
formulas in this section. 

In the final section, we will compute actual shape of differential equations 
involved in the (super) KP system. We will derive Eq. (1) as the first non-trivial 
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equation among the super KP system which is a single closed equation, namely, 
it has only finitely many terms and has a single unknown function. Some of 
the exact solutions of (1) will also be given. They correspond to rational, soliton 
and quasi-periodic solutions of usual soliton equations. These solutions are 
given by a quotient of two Jacobi elliptic functions and their degenerate func- 
tions. This gives another contrast between Eqs. (1) and (2), since the simplest 
solutions of the original KP equation are given naturally by the Weierstrass 
ga-functions. 

Once we establish the unique solvability of the initial value problem for 
the super KP system, we can define the super KP dynamical system (X, T) 
as in [8], where X is the set of all operators L of the form (7) satisfying the 
consistency condition (8) and T =  {(tl, t2, t3, t4 . . . .  )} is the group of super evolu- 
tion variables. As the KP dynamical system has significant importance in alge- 
braic geometry and many related areas, it can be expected that the super KP 
dynamical system will play an even more important role in the non-commutative 
geometry. These subjects will be treated in a separate article. 

There are other approaches to supersymmetric extensions of the KP  system 
(see literature cited in [6]). Recently, Ueno and Yamada [13] found a supersym- 
metric extension of Sato's work [11] on the KP system and gave a formula 
for the solutions in terms of infinite size super matrices. Their solutions coincide 
with ours if the super differential algebra is C [Ix, ~ .  They also obtained a super 
analogue of Hirota-Sato's z-functions. However, the z-function method does 
not fit for the purpose of establishing the solvability of the Cauchy problem. 

During the manuscript of this paper was being typed, Professor Robert M. 
Miura kindly informed me of some of the explicit formulas of conservation 
laws for Eq. (1). The first two of them are the following: 

(L), = [(1/4)f~xx - (3/2) 2 z f ~  - (1/2)/3 - (3/2) f~ fr]x + (3/4) [ fz  + fr]r,  

(f~), = [( 1/2) f~ f~ x x - (1/4) f z  _ 2 2 a f )  _ (3/4) f4  _ (3/2) f z f r  - (3/4) fyz] 

+ (1/2) [ f~  + 3L fy]r- 

I do not  know whether Eq. (1) or the system of Eqs. (3) and (4) is related 
to any model of 2-spatial 1-time dimensional classical fluid dynamics. However, 
since there are soliton-like solutions (see Sect. 5) and conservation laws for 
Eq. (1), it is natural to believe that there is such a model. On the other hand, 
the study of  total hierarchy of the super KP equations and its solution space 
may have an importance in super string theories and moduli theories of super 
algebraic curves. 

I would like to express my gratitude to Professor R.M. Miura and Professor 
R. Hirota for valuable comments. 

1. The KP system with non-commutative coefficients 

In this section we study a generalized KP system with non-commutative coeffi- 
cients and show how the group decomposition theorem of  Sect. 3 establishes 
its unique solvability for an arbitrary initial datum. 
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Let (R, ~9) be a differential algebra defined over a field k of characteristic 
zero with the unity 1. Namely, R is an associative k-algebra with unity and 
O: R--,R is a k-linear map satisfying the Leibnitz rule ~3(fg)=O(f).g+fO(g) 
for all f and g in R. We do not assume commutativity of R. 

One of the mathematical motivations of the KP system is to find a universal 
family of isospectral deformations of an arbitrary ordinary differential operator. 
The differential operators we will consider are elements of 

co 

D={P=~=oa, O"la, eR, a ,=O for large n}. (1.1) 

Following Gelfand's idea, we use the set of formal ordinary micro-differential 
operators 

E = { P =  y '  a~3~laveR, a~=O for v>>O}. (1.2) 
v E X  

The set E 
rule 

becomes an associative algebra by virtue of the general Leibnitz 

co 

X (1.3) 
i=oktl 

for v~Z and f ~R, where f~~ and the binary coefficients (~) are defined 

by using F-functions. An operator P~E is said to be normalized if its leading 
coefficient is one (i.e. monic) and the second top term is zero; 

P = O ~ + 0. ~*- 1 + lower order terms. 

Twenty years ago Lax [-4] established the following. A parameter depending 
family {P(t)} of ordinary differential operators is an isospectral family if and 
only if P(t) satisfies the Lax equation 

ap(i_._,t, = [Q(t), P(t)] (1.4) 
dt 

with anoiher parameter depending differential operator Q(t), where [-A, B] 
= A B -  BA. The reason why we have to use a differential operator  Q (t) is because 
we want an isospectral family of differential operators. If we use a micro-differen- 
tial operator  Q(t)~E, then {P(t)} will no longer be a family of differential opera- 
tors, while the spectral structure is still preserved. 

An operator  P =  ~ p~O~E is said to be of order N if pN4:0 and p , = 0  
v ~ Z  

for all v > N. A normalized operator  P~E of order n > 0 has a unique normalized 
n-th root in E. Assume that P(t)eD is normalized of order N and 

L(t) = P(t)1/N = O + u2 O- 1 + u3 O- 2 +... ~ E (1.5) 
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be its N ' th  root. It is easy to show that the Lax equation (1.4) is equivalent 
to 

dL(t) 
= [Q(t), L(t)]. (1.6) 

dt 

Let E (- 1) be the set of all micro-differential operators of order at most - 1. 
Then we have a natural left R-module direct sum decomposition 

E=Et-1)OD. (1.7) 

According to (1.7), every PeE  decomposes into P=P_@P+, where P_eE (-1) 
and P+ eD. 

Since L(t) has the form of (1.5), its t-derivative dL(t)/dt is in E (- 1). Therefore 
Q(t) in (1.6) must satisfy 

[Q(t), L(t)] eE t- 1) (1.8) 

to make sense of (1.6). Therefore, to find out all possible isospectral deformations 
of P=LNeD, we have to determine all differential operators QeD such that 
(1.8) holds. Note that (Ln)+ eD satisfies (1.8) because 

[(L n ) +, L] = [ L. -- (L n) _, L] = - [(L') _, L ] e  E ( -1 ). 

Its converse is true if (R, ~) satisfies a special condition: 

Lemma 1.L Let LeE  be a normalized first order operator. I f  ker(R ~ R) is con- 
tained in the center of R, then the following conditions for QeD are equivalent; 

(a) [O, L] eEt-1) 

(b) Q is a linear combination of (L')+ "s over ker a. 

The proof can be easily performed by an induction on the order of Q. The 
above lemma tells us that essentially (L ") +'s give all possible isospectral deforma- 
tions of P = L  N. It is natural to introduce distinct deformation parameters for 
different deformations. Thus we obtain the KP system 

aL 
- -  = [ ( L ' ) + ,  L ] .  ( 1 . 9 )  
dt~ 

If k =ker (R ~ --* R), then Eq. (1.9) gives a universal family of isospectral deforma- 
tions of P = L  N. The advantage of using L = P  1IN instead of P itself is that (1.9) 
does not refer to the order of P. Therefore (1.9) is a master equation of all 
universal families for any normalized differential operator. If we want to find 
a universal family of a differential operator P of order m, then we solve (1.9) 
for L=t~+U2~-l+u3(~-2+... with an extra condition Lm=pED. For  more 
detail, see [8]. 

To establish solvability of (1.9), we have to specify t-dependence of operators. 
So we define 

~t=R~tl ,  t2, t3 .... ~ (1.10) 
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as a projective limit algebra with a valuation 

val,: ~t\{0} ~ N =  {0, 1,2, 3 .... } 

defined by valt(t.)= n, n = 1, 2, 3 . . . . .  The ~ -  valued operators are defined by 

and 

at3 

~ = { P =  ~oa, 8"[a,e~, a . = 0  for n>>0} 

g = { P =  ~ a, t3Vlave~t, av=0 for v>>0}. 
v E Z  

(1.11) 

(1.12) 

For a given normalized first order operator L~g, we define formal 1-forms 
by 

Z~ = +_ s dt.(L")+. (1.13) 
n = l  

Then the Lax equation for the KP system is given by 

dL = [zL+, L] = [zL_, L], (1.14) 

where d= ~ dr, 8/8t, denotes the exterior derivative in t. 
n = l  

To obtain an actual family of isospectral deformations, Eq. (1.14) must satisfy 
the integrability condition 

(1.15) 

Equation (1.15) is equivalent to the compatibility condition of deformations. 
Namely, (1.15) implies that the t,-deformation followed by the tin-deformation 
always coincides with the otherway around for all m and n. One of the interesting 
facts of the KP system is that (1.15) follows automatically from (1.14). Therefore, 
a solution L(t)eg of (1.14) always gives a family. However this does not itself 
imply that (1.14) is actually solvable. Indeed, the Cauchy problem of (1.14) for 
a general non-commutative differential algebra is not known. 

To simplify Eq. (1.14) we introduce a group of inner automorphisms of E. 
We define 

G= ~ s .~-" lso=l ,  s .eR (1.16) 
~ . n = O  

and 

fc={ =oS. -.iSo = 1, (1.17) 

Lemma 1.2. I f  R ~ R is surjective (i.e. if indefinite integration is always possible 
in R), then for every normalized first order operator L of D (resp. 9), there 
is an invertible operator S t  G (resp. (~) such that S-  1LS = O. 



10 M. Mulase 

The reason why we want to bring L into 0 is because L =  0 satisfies the 
KP system (1.14) trivially. Our idea is to produce a solution of (1.14) by applying 
an inner automorphism S to the simplest solution ~. 

Lemma 1.3. I f  ~: R ~ R is surjective, then the Lax equation (1.14) is equivalent 
to the following system for S~f#; 

{ L=S~S-x  (1.18) 

dS = zL- �9 S. 

We call the following equation 

d S = -  ~. dr,(SOnS-I)_ .S (1.19) 
n = X  

the generalized KP system. If the differential algebra (R, 0) satisfies 

O ~ k ~ R ~ R ~ O  exact, (1.20) 

then Eq. (1.19) is equivalent with the Lax equation of usual KP system and 
describes a universal family of isospectral deformations of normalized differential 
operators. For typical examples of such an algebra, we have R = k~x~ and 
iE((x)) [log x], the latter is the set of all polynomials in log x with coefficients 
in arbitrary Laurent series in x. 

For more general (R, 0), Eq. (1.19) does not give a universal family ofisospec- 
tral deformations. However, the reason why we introduced (1.19) is that the 
Cauchy problem of (1.19) is always solvable for any (R, ~). For example, an 
analogue of KP theory with matrix coefficients is very difficult. But if we start 
with (1.19) instead of (1.14), then we can solve it always for an arbitrary initial 
value of S. 

The technique we are going to use is a generalization of the Birkhoff decom- 
position which will be proved in Sect. 3. It is a factorization theorem of an 
infinite dimensional group. To define the groups, we need micro-differential 
operators of infinite order. So we define 

~ =  {P = ~ av 8vl a ~  and there is a positive real number Cp and positive 
VEZ 

integers Mp and Ne such that val t a~ > Ce v - Np for all v > Mp} (1.21) 
and 

~ = { P =  ~ a, O v l P ~  and av=0 for v<0}. 
v e Z  

(1.22) 

Note that ~ has a natural associative algebra structure. Let J be the ideal 
of ~ generated by {t x, t2, t3, ... }. We denote P It = o = P mod J e E for every P ~ o ~. 
Lemma 3.1 of Sect. 3 says that if PIt=oeG, then P is invertible in ~. Therefore 

• = {Peg  IPI,=oeG} (1.23) 
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forms a group. It is a connected component  of the identity operator  in the 
group of all invertible elements of ~. Similarly, 

~• ={Pe~lPl,=o=l} (1.24) 

is a subgroup of ~ • The generalized Birkhoff decomposition (Theorem 3.2) 
says that there is a unique factorization 

g• =~.~• 

U = S-1-  y. (1.25) 

Let us illustrate how we use this factorization to solve the generalized KP  system 
(1.19). Suppose we have a solution S6ff. Then we also have Z •  

+ ~ dt,(St3"S-~)+_ satisfying dZ• =Z• ^Z+_. Now by Theorem 4.1 of Sect. 4, 
n = l  

we have a unique element Y 6 ~  • such that 

dY=Z+ Y. (1.26) 

So define U=S -1. Y6~• and let 

f2= ~ dt.O". (1.27) 
n = l  

Since dO = 0 and f2 ̂  f2 = 0, f2 satisfies the integrability condition 

dO = f2 ^ f2 (1.28) 

trivially. Moreover,  we have 

dU= - S - I  dS.S -1 Y+ S-l  dy 

=S-l(dy.  y - I_dS .S-1)SS-1  y 
= S - I ( Z +  --Z_)SU 

=S -1 ~ dtnSc~nS-1SU 
n = l  

= ~ U ,  

namely, U = S-1 y satisfies the system of linear partial differential equations 
of constant coefficients; 

dU = ~U. (1.29) 

Thus a solution S of (1.19) gives rise to a solution U of the universal equation 
(1.29). Now the factorization theorem (Theorem 3.2) gives a way to go back. 
So let us start with a solution U e ~  • of the universal equation (1.29). By Theo- 
rem 3.2, we have a unique S e ~  and a unique Y e ~  • such that U=S -1 Y. Let 

Z+= + ~. dt.(SO"S-1)+. 
n = l  
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Then 

SOS-l= ~ dt,(SO"S-1)=Z+-Z_. 
n = l  

On the other hand, since dU=f2U, we have 

SI2S- I=SdU.U-1S- I=dy .  y - x _ d S . S  -1 

Comparing ~ part and ~(-1) part of the above two expressions of SOS-1 
we obtain Z+=dY.Y  -1 and Z_=dS .S -L  Namely we have a solution S of 
Eq. (1.19). If we define L=SOS -1, then it is a solution of the Lax equation 
(1.14). 

Here comes a natural question. How can we solve the universal equation 
(1.29)? It is easy. We can solve it for any initial value Ult=o=U(O) by simply 
letting 

We have chosen our definition (1.21) of ~ so that (1.30) gives a well-defined 

element of 8 for every U(O)eE. Therefore the operator exp t.O" is the heart 
\ n =  1 

of the KP theory. In the next section we generalize it to the case of super 
derivation. 

Now we can show the main theorem of Sect. 1. 

Theorem 1.4 (Unique solvability of the generalized KP system). For every initial 
value S(O)~ G, there is a unique solution S = S(t)6f~ of the generalized KP system 

d S = -  ~ dtn(S~"S-1)_.S 
n = l  

such that SIt=o = S(0). 

Proof To establish the existence, we simply define 

p(~ o") s(o) U = e x  tn . - l ~ •  
' ~ n =  1 

(1.31) 

Let U=S -1. Y be its unique factorization of (1.25). Then, as we have seen, 
S gives a solution of (1.19). Since Y It = o = 1, 

S(0) -1 = U[,=o =(S -1 h=o).(Y I,=o)=(S h=o) -1, 

namely, S It = o = S(0). 

To see the uniqueness, suppose we have another solution S of (1.19) with 
the same initial value ~lt=o=S(0). This solution also gives rise to a solution 
U = ~  --1. Y of (1.29) with the same initial value ~71t=o=S(0) -1. By Lemma 4.3 
of Sect. 4, we know the uniqueness for (1.29). Therefore U =/Y. But since the 
decomposition (1.25) is also unique, we conclude S = S. This completes the proof. 
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Remark 1.5. Assume that R is a normed algebra such as a ring of convergent 
power series in x. Then we can establish convergence of the above solution 
for small t. Actually, our construction of the solution S from S(0) and the 
group factorization (1.25) is explicit (see (3.9)), it is not hard to show the following. 

Let S(0) = ~ s, t3-" and the i-th derivative of s, satisfy 
n=O 

Ci i ! t~ n 
IIs~ni~lT < - -  

n! 

for a positive constant C and a small 6 > 0  for all n and i. Then the above 
solution S ~  converges absolutely for all t = (t~, t2, t 3 . . . .  ) satisfying 

s 

I t . l < A . - -  
n! 

for an arbitrary positive number A and a sufficiently small e>0 .  (For more 
detail, please see my forthcoming book on KP equations.) 

Remark 1.6. Let us consider the case of R=lI~((x))[logx]. Since it satisfies the 
exactness of (1.20), the Lax equation (1.14) or  (1.9) is uniquely solvable for 
any initial value 

L(O)=t~+u26~- l  + u 3 0 - 2  + . . . e E  

with coefficients in ~((x)) [log x]. Namely, every ordinary differential operator 
with arbitrary poles and logarithmic singularities at the origin x = 0  has also 
a unique universal family of isospectral deformations. In the case of the KdV 
equation, it means that there exists a unique solution u (x, t)~(C((x))[log x])~t~ 
of the KdV equation 

ut=�88 3uux (1.32) 

with an initial condition u(x,O)=f(x) for every given function 
f(x)~ffg((x)) [log x]. Our expression for u(x, t) obtained by the above theorem 
gives an asymptotic expansion of the solution around the singularity at x = 0. 

Now an interesting thing happens. The space of all solutions of (1.19) for 
R = 112((x))[log x] actually contains Sato's universal Grassmann manifold (UGM) 
[111 and Segal-Wilson's Grassmannian of the loop space 1-121 as proper sub- 
spaces. Let GR denote the group of (1.16) defined over an algebra R. By the 
unique solvability of the Cauchy problem, GR is the solution space for the 
generalized KP system (1.9). It is easy to see that  Gc[~ is an affine open subset 
(actually the "big-cell") of Sato's UGM.  On the other hand, U G M  is a subset 
of an affine space Gcttx))tlogxl; 

Gc[x~ ~ UGM c Gc(tx))tlogx]. 

Since all the compact complex Grassmann varieties are embedded in UGM, 
they are also embedded in our affine space! 

Sato's U G M  can be regarded as a subspace of the solution space Gct~x~)Vogxl 
consisting of operators S such that the corresponding L = SOS-~ has a regular 
singularity at x- -0 .  
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Remark 1.7. Since the basic differential algebra (R, O) is arbitrary in Theorem 1.4, 
we can take 

R={~za~(x,y)(f---y) ~ a~=O for v~O} 

and O = d/dx. In other words, we can consider something line a K P |  system. 
This example gives us a way to construct a higher dimensional analogue of 
the KP theory. 

2. The super KP system 

We introduce the super KP system in a rather different manner from Manin 
and Radul [6]. We will follow the argument of Sect. 1 in the reverse direction. 
So we start with the universal equation of the form dU=I2U and then define 
the super KP system by using a group decomposition. After this, we will also 
give the Lax formalism for the super KP system. 

To make our presentation precise, let us introduce algebras and groups 
of operators we need. Let (R, 0) be a super-differential algebra defined over 
a field k of characteristic zero. Namely, R=RoO)R 1 is a Z2-graded associative 
k-algebra with unity (called a superalgebra) and 0: R ~ R is a k-linear map 
satisfying the super Leibnitz rule 

O(ab) = O(a). b + ( -  1)n aO(b), (2.1) 

where beR and a is a homogeneous element of R with Z2-degree ~ Z z .  Such 
a map 0 is called an odd super-derivation. We also define h =  1/2(1 - ( - 1 ) " ) ~ Z z  
for n E Z. The super algebra R is said to be super-commuting if 

ab = ( -  1) "b ba (2.2) 

for all homogeneous elements a and b of R. We do not assume super-commuta- 
tivity of R. 

We define the set of all super micro-differential operators 

E = { P =  ~a~O~la~R and a~=0for  v>>0}, (2.3) 
v e Z  

and the set of super differential operators 

D = { P =  ~ a~O~IP~E and a~=0for  v<0}. 
v e Z  

(2.4) 

To introduce associative algebra structures in E and D, we need the super 

binomial coefficients 1~[. If v and i are both in N =  {0, 1,2 . . . .  }, then we define 
L~I  

( a + b ) ' =  ~ / ~ . / a ' b  ~-', (2.5) 
~=ol_tJ 
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where a and b are super-commuting homogeneous elements of Z2-degree 1 eZ2. 
For v~Z and ieN, we define 

/ [~]=O i f O < v < i  or (v,i)=(O, 1)mod2, 

[v][i] =([v/23~\[i/231 if v<0 and (v,i)~g(O, 1)mod2, 

(2.6) 

rv] 
where I-v] denotes the largest integer not greater than v. Wecan  extend [~ I 
for negative i by using Lt_l 

[vVi]=[~l and H + ( - 1 , ' + ' [ i :  1 [v+q,1]=[i+lj 

rv] 
however, we need only/ ' .  / with veZ and ieN. Let us give actual values for 
small i: / t d  

[;]:1 
1 1 

3 =v--1  
2 

if v is even 

if v is odd 

We can introduce an associative algebra structure in E by using the general 
super Leibnitz rule 

0 ~.f= (-- 1))'(v-Of ti] 0 v-i (2.7) 
i 

for veZ and f eR,  where ftij = Oi(f). We also have an algebra decomposition 

E=E~-I)~D 

in an obvious way, where E{-1)={P= ~avO~lav=Oforv>O}. Every PzE 
v~Z 

decomposes into P=P-OP+ with P_~E ~-~) and P+~D. The algebra E has 
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also a super algebra structure defined by 

E=Eo@E1,  

E o = { P =  ~, avOVlP~E and ~ v = ~ Z 2 } ,  (2.8) 
vEZ 

E , = { P =  Z a~O~l P e E  and l~v~--~-(~)~Z2}. 
vEZ 

Similarly, we define D o = D ~ E  o and D I = D n E  1 to make D a super algebra. 
The above E o is the set of homogeneous even operators and Et is the set 
of homogeneous odd operators. The group G of inner automorphisms is defined 
by 

G=(S=~=oS~O-' lSo= 1, s ~ R } .  (2.9) 

Its even part is given by 

Go = { S =  =~oS, O-'[SeG and g. : n e Z 2 }  , (2.10) 

but the odd part is not a group since go = 0 in G. 
As in Sect. 1 we use infinitely many deformation parameters t i ,  t2, t3, t4 . . . . .  

We define 

~=R~tt,t2,t3 . . . .  
and valt: ~ \ { O } ~ N  as before, namely we set val~(t,)=neN. However, the 
Z2-degree of t, is defined to be 

~n ~---- n ~ Z 2 .  

Namely, all even variables t~, t4, t6,--, are usual commutative variables, while 
odd variables t j, t 3, t5 . . . .  are Grassmann variables satisfying 

t 2 n -  i t 2m-1  ~- - - t2ra_ 1 t ' 2n-  1 

(t2,- 1) 2 = 0, 

The t-depending operators we consider are the elements of 

~ = { P =  ~ a~O~la~eR and a~=O for v>>O}. (2.11) 
v~Z 

Similarly, we introduce N, ~(-1), ~o, ~ ,  80, 81, f9 and fqo in an obvious way 
as before. The completion of ~ is also defined similarly; 

= {P = ~ av 0 ~ I a~ ~ ~l and there is a positive real number Ce and positive 
v~Z 

integers M j, and Np such that val t a~ > Cp v -  N e for all v > Mp}. (2.12) 
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The completion ~ of ~ is also given by the same way. Note that g has a 
natural associative algebra structure as well as a super algebra structure 

As in Sect. 1, let J be the ideal of 0~ generated by {tl, t2, t3, t4 . . . .  } and 
we write 

P l ~ = o = P m o d J E E  forall P~e  z. 

Lemma 3.3 of Sect. 3 says that P ~  is invertible if Plt=o~G. So we set 

[g• = {Pegl  PI,=oeG} 
[~• = { P ~ l P l , = o  = 1}. (2.13) 

These are infinite dimensional groups. We also introduce 

~ o ~ = ~ o n ~  • and ~ o •  • 

The generalized super Birkhoff decomposition (Theorem 3.4) gives the unique 
factorizations 

g• =~r215 

and 

to to to 

U = S  -1. Y (2.14) 

g~ =%-#~ 
to to to 

Uo = So 1. Yo. (2.15) 

With these preparations, we can now introduce the universal equation for 
the super KP system. Consider the following element of OZo ~ ; 

H = e x p  ~ t,O" . (2.16) 
X n = l  

This is the super extension of the important operator exp t.0" of (1.30) 
'm= 1 

and gives us the basic motivation how to generalize the KP system into the 
super category. If we set 

A =  ~ t2,O 2" and B =  ~ t2 , -10 2"- ' ,  (2.17) 
n = l  r l = l  

then B2= 0 and 

H = e a + 8 = e a e B = e ~ e A = ( i  + B )  e a. 

From this we can see that H is a well-defined operator in ~o ~ . Now define 

K2=dH. H -1, (2.18) 
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where d = ~ d t~ ~/~ t~ is the super t-exterior differentiation. (Therefore d t2n and 
n = l  

dt2m anti-commute while dt2n_ t and dt2m_ 1 commute.) Using (2.17) we get 

f2= d((I + B)  eA)e-A(1 -- B) = (1 + B) dA( t  - B ) +  dB(1 -- B) 

= dA + dB(1 -- B). 

Therefore 

and 
dl2 = dB ^ dB 

t-2 ̂  f 2 = d A  ^ dA + d A  ^ dB(1 - B ) + d B ( 1  - B )  ^ dA +dB(1  - B )  

^ dB(1 - B) = dB ^ dB. 

Namely, f2 satisfies the integrability condition 

dr2 = t2 ̂  f2. (2.19) 

Note that here is an important difference between the super KP system and 
the usual KP system. In the latter, remember that we have f2 which satisfies 
(1.28) trivially. But in the super case, (2.18) does not satisfy d O = O  nor f2 ̂  t2=0. 

The explicit form of f2 is given by 

t 2 = ~ d t 2 ~ O 2 n + ~ d t 2 . _ l O 2 " - l ( 1 - k ~ =  t2k_ lO2k - '  ) .  (2.20) 
n = l  n = l  1 

Consider the universal equation 

dU = f l U  (2.21) 

for U~do. It is obvious from the definition of 12 that U = H .  U(0) is a solution 
for every U(0)= UIt=oeEo.  The uniqueness of the Cauchy problem for (2.21) 
is proved in Sect. 4 (see Lemma 4.4). 

Take an arbitrary element S(O)eGo. Then U = H . S ( O )  -1 is a well-defined 
operator in O~o ~ and solves (2.21). Let U = S-  1. y be the decomposition of U 
according to (2.15). Then 

SI2S -1 = S d U U -  1S-1 = - d S . S  -1 + d Y .  y - 1 .  

Comparing ~o (- ~ part and ~o part of the above, we obtain 

dS. S -  1 = Z _  (2.22) 

dY.  Y -  1 = Z + ,  (2.23) 
where we define 

( ~176 Z + : +  E 1)++ d tEn_ l (SOEn- lS -1 ) •  
n =  n = l  

+ ~ ~ dt2n_l"t2k_l(sO2n-l+2k-ls-1)• (2.24) 
n = l  k = l  
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Motivated by the above expressions, we call the following equation the super 
KP system; 

dS= -- (SO"S-I)_ 

. = 1  k = l  

To obtain the Lax equation, we define 

L=SOS -t ,  

which is no longer a normalized operator. It is a monic operator of the form 

L=O+ul  +u20- l  +u30-2+. . .  

with ft. = f i t  Z2. The first two coefficients satisfy u m + 2 u2 = - u  2 �9 
Then Eq. (2.25) gives the Lax equation in terms of L; 

dL = [,Z_, L] (2.26) 

where [,, ] denotes the super Lie bracket defined by [,a, b] =ab-( -1)n~ 'ba  for 
homogeneous elements. Since SOS-1 = Z + - Z _ ,  we have 

dL = [,Z + - SOS-  1, L]. 
Therefore 

~3L 
- [ (L  =") + ,  L]  

Ot2n 

Ot2,-1 =['(L2"-I)+'L]--[LZ"-I 'L]+ t2k-l(L2"+Zk-2)+' (2.27) 
k 1 

= [(L2. - 1)+, L] - - 2L  2~ + ~ t2k_ 1 ['(L2"+2k-2)+, L]. 
k = l  

This system of equations is called the Lax equation for the super KP system. 
Actually it is equivalent to the system of Manin and Radul [.6]. To obtain 
their equations, simply change t, to - t , .  Remember that our motivation of 

introducing the super KP system was to replace exp t.O" of (1.30) by 
~ n  = I I 

exp t.O" of (2.16). If we define 02.=0/0t2. and 02._1=0/0t2._1 
n 1 

- ~ t2k-i O/Ot2k+ 2.- 2, then they satisfy [02., 02 . , ]=0 and [02.-1,  02.,-1] = 
k = l  

- 2 0 2 . . 2 . , - 2 .  On the other hand, Manin and Radul want to have 
[02 . - t ,  02m-1] = 2 02.+ 2.,-2 and use this as their motivation. 
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Our main theorem of this section is the following; 

Theorem 2.1 (unique solvability of the super KP system). For every given element 
S(O)~Go, there exists a solution S~fqo of the super KP system 

dS= - dt.(SO"S-~)_ 
1 

-'b ~ ~ dt2n-l't2k-l(SO2n+2k-2S-1)-)'S (2.25) 
n = l  k = l  

with the initial value S It=o=S(0). Moreover, if (R, O) satisfies the Condition 4.5 
of Sect. 4, then the above solution is unique. 

Proof. We start with U = H- S(0)- 16O~o ~ and decompose it as U = S-  x. y accord- 
ing to (2.15). Then S solves (2.25) and satisfies Slt=o=S(0). The uniqueness 
follows from the facts that every solution of (2.25) gives rise to a solution of 
the universal equation (2.21) (see Theorem 4.6), its uniqueness (Lemma 4.4) and 
the uniqueness of the factorization (Theorem 3.4). This completes the proof. 

For  a general super differential algebra (R, 0), we cannot say much about 
solvability of the Lax equation (2.27). However, if we assume an appropriate 
condition on (R, 0) and restrict a class of L, then we can also establish the 
unique solvability for (2.27). 

Since (2.25) is solvable, it is natural to try to find an S6Go for a given 
L. So let us characterize a first order monic operator L~E1 such that L =  SOS-1 
for some S~G o. Let 

S=1+s10-1+s20-2+ .... 

S-l=1-{-WlO-l+w20-2+..., a n d  

L=O+Ul +U20-1+ .... 

From S. S -  1 = 1 we obtain s~ + wl = 0 and 8 2 -  81 w~ + w2 = 0. The equation L 
=SOS -1 implies that u l=2s~  and u 2 = - l / 2 ( u 2 + u m ) .  Therefore Ul and u2 
satisfy 

�89 u~ + �89 u~ 11 + uz = O. (2.28) 

What is remarkable here is that the converse is essentially true. 

Proposition 2.2. Let (R, O) be a super differential algebra such that 

02: R ~ R is surjective. 

Then for a monic first order odd operator 

L = O + u l  +u20- l  +u30-2 +...~E1, 
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there exists an SeGo such that 

if and only if ul and U 2 satisfy 

L = S 0 S -  x (2.29) 

• U~2 + �89 + uz=O. 

1 - n  Proof Our  idea is to solve the equa t ion  LS-SO=O for S. Let  L =  u, 0 , 
n=O 

~ . = ~ e Z 2  and Uo = 1, and S =  ~ sIO -m, g , ~ = ~ Z 2  and So = 1. Then 

O=LS-SO= Un Ot- SmO -- Sm 01-m 
",11=0 Ikm=O I m=O 

1 n _ 1 ) r e ( l -  - "  Sire/] 0 1 - n - m - i  Sa 01-ct 

n = 0  m = 0  i = 0  J a=O 

: ~ (m~__ a~m[1--o:~m+il(--l'm~u~-m-lS[im]--S~)01-~" 
a=O 0 i = 0  

Let �9 = 2 n. Then 

2n 2 n - m [ 1 - - 2 n + m + i ]  
O =  E E �9 U2n-m-iS[im]--S2n 

m=O i = 0  l 

2 n - 1  2n--m 

2 2 
m=O i=O 

2n--2 2n-m--2 
l ,  ~+u~s2.- + Z Z = S2n- 1 

m=O i=O 

If c ~ = 2 n +  1, then 

2 n + l  2 n + l - m  

0 = E  Z 
m=O i=O 

--2n + m  + i](_ 1) m U2n+ 1 - m - i  Slim 1 - - S 2 n +  1 
I 

2 n - 1  2n--m--1 
[1] 

= - - 2 S 2 n + I + S 2 n + U l S 2 n +  E E 
m=O i = 0  

Thus we have  

_ 1 ~ [ 1 1 •  
S2n+ 1 - -  2 ~  7 - ~  ~1 S2n 

1 2 n - 1  2 n - m - l [ - - 2 n T m + i  ] ,, o[il +g Z Z (--1)m"2.+l-m-'~ �9 
m=O i=O 

(2.30) 
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Using this expression with the even case above, we get 

�89 ~2n T ~ " 1 ~ [ 2 ]  • 1 ,,2 S2 n j r  �89 U[11 ] S2 n _~_ U2 $2 n 

z ~ l  2 n - m - i ~ [ m _ l _ 2 n + i  ] ~il 

+m:o i 

1 r m - 2 n + f l  ,, . _m_i s~l)}=0. 
+2[ i J(-1) 

Because of the assumption (2.28), we have an recursion formula 

S~22=-- ~=o ~2 m - l - 2 n + i  ,, ~ti] 
. t ~ 2 n +  2--m-- i  ~ 

m = O  i 1 

m - 2 n + i  ,, U2n+l_~_is~l)}. (2.31) + [  i ] (-l)((u2n+l-m-iS[iml)[1]q-ul 

Since 02:R--* R is surjective, (2.30) and (2.31) determine all s,'s up to constants 
of integration. Therefore SeGo exists. 

Theorem 2.3. Let (R, O) be a super-commutative super-differential algebra satisfying 
Condition 4.5 and that 02: R --* R is surjective. Then for every monic first order 
odd operator L(O)6E 1 with the condition (2.28), there exists a unique solution 
L~gl  of the Lax equation (2.27) such that LIt= o = L(0). 

Proof The existence is obvious from Theorem 2.1 and Proposition 2.2. To estab- 
lish uniqueness, we want to show that every solution L of (2.27) starting with 
LI t=o=L(0)  satisfies the condition (2.28) for all t. Assume that it is acrually 
true. Let S(O)eGo be such that L(0) = S(0) OS(O)- ~ and S~f# o the unique solution 
of (2.25) starting at S(0). Then L=SOS  -~ is a solution of (2.27) with initial 
value Llt=o=L(0).  Now suppose that Le81 is another  solution of (2.27) with 
the same initial value L[ t=o=L(0  ). Since we are assuming t h a t / ,  satisfies (2.28), 
there exists an operator  ~ c ~  o such that r ,=SOS -~. Unfortunately, such an 

is not unique. However, if we impose S to be a solution of (2.25), then it 
is uniquely determined by its initial value S(0)~ G O . Note  that 

L(O) = S(O) OS(O)- ' = S(O) 0 '~(0)- ! 

Therefore C=S(O)-IS(O)eGo satisfies CO=OC. Let t .7=H-S(O) - t  and U 
= H-  S(O)- .1 Then 

U = H .  S(0)- 1 = H .  (S(0) C)-  1 = H C -  ' S(O)- ' 

=(1 + B ) e  a C -x ~(0) - t  = C  -x Hg(0) -1 = C  -~ U. 

If U = S -  1. y and/.7 = g -  1 . 2  be the decomposition, then C -  ~ S -  ~ = S -  1 because 
of the uniqueness. Therefore S = SC. But then we have 

L = S O S -  1 = ~JCO(SC)- 1 = S C O C -  1 g -  1 =SOS-  1 =L. 

This establishes the uniqueness. 
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The only thing we have to show is that (2.27) implies (2.28) if its initial 
value satisfies (2.28). Let r , + t =  Res(L")=the coefficient of 0-1 in the expansion 
of L". Note that ?, = heZ2.  Then (2.27) implies that 

~ul ~u2 --,.DI t +  ul+ul  2 r 2 n + l ,  - - ' 2 n +  r 2 n + l  r 2 n + t ,  
r OtZn 

~U 1 2r2n ' ~U2 " t q •  ul --ul  
"~- - -  ~ 2 n  T 2 n  r2n. 

Since we assumed that R is super-commutative, we obtain 

- -  ( / , / I l l ]  q - 2U2) = 0 (2.32) 
Ot, 

for all n = 1, 2, 3, 4 . . . . .  Note that u 2 --0 in a super-commutative algebra. Since 
(ut~11 + 2 u2)[t = 0 = 0 by assumption, (2.32) implies that u ~  2 u2 = 0 as an element 
of Y/. This completes the proof of Theorem 2.3. 

3. Generalized Birkhoff Decomposition 

In the previous sections we observed that the groups of infinite order (super) 
micro-differential operators play a central role in establishing the unique solvabil- 
ity of the initial value problem for the (super) KP systems. In this section we 
give a proof  of the decompositions (1.25), (2.14) and (2.15). 

In the first half part of this section, ~ • denotes the set introduced in (1.23). 
We start with the following; 

Lemma 3.1. Every element P~e* • is invertible in ~ • More precisely, the Neumann 

series (1 - P ) "  gives an well-defined element in ~ , which we define P -  1 

Proof. Let P =  ~ a, O~ a~eN. Since Pe~ ,  its coefficients satisfy a growth order 
v ~ . Z  

condition 
valt a~ > ce v -  Ne for all v > Mp. 

Let Q = I - P =  ~ b~O~e~. Since Q[t=o=l -P l t=o~E( - t ) , va l tb~>l  for all v>0.  
v e Z  

Of course the coefficients of Q satisfy the same growth order condition 

valt b~ > cv v -  Ne for all v > Me. 

Thus there exists a positive real number J such that 

va l tb~>J(v+l )  for all v > - l .  (3.1) 

Actually, J = ce/(1 + C e Me  + Ne) will do. 
Let Q"= ~ b,, ,  O~eo z. Then we have; 

v ~ Z  

Claim. val, b,. ~ > J(v + n) for all v ~ - n. (3.2) 
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Proof of the Claim. We use an induct ion on n. If n = 1, then b,,  ~ = b~ and (3.2) 
reduces to (3.1). N o w  assume tha t  (3.2) is t rue for some n. We  want  to show 
valr b.+~, ~>J(v+n+ 1) for v >  - n -  1. Since 

Q,+,=Q.Qn= ~, b,O,Z bn.,O" 
aeZ tteZ 

we have 

= Z ~ b.b~.'?, a'+"-' 
a e Z  n e Z  i=O \ l /  

[a~Z h(i) 1 --z f 
w Z  i = O \  I /  

b , + l , v =  =~o ~, h(i) . [3 b_ah(o qJ~ un,  V--~+i  / Vn, v+~+i  
= i = 0  f l = l  i = 0  

h(O (3.3) 
�9 =o i=o\Z/ 

+ ~ i(~.lb~ h''' (3.4) 
�9 =v+n+l  i=okZ/ 

"~ t " i - I  Un, v+l  �9 
/ = 1  i = 0 \  l ,] 

We now assume that  v > - n - 1 .  In the first s u m m a t i o n  (3.3), since 0 < a < v + n 
and  i > 0, we have v - a  + i > --n.  Hence  by the induct ion hypothesis,  

valt h(i) >va l t  b. ~_~+i>J(v-e+n) t/n, V - - ~ + i - -  , 

because the der ivat ion 0 does not  decrease the va lua t ion  with respect  to t. 
On the o ther  hand,  since ~__>0, we know valtb,_>_J(ct+l).  Therefore  
val, (b, b~,~! v _ ~ + i) > J (a + 1 ) + d (v - ct + n) > J (v + n + 1), and hence 

[v+n 

v a l , ~  ~ ,=okt/i (~.lb~b(.i),-~+i)>J(v+n+l)', - 

In  the second s u m m a t i o n  (3.4), since cr > v + n + 1, we have 

" ) v a l , ( ~  (Ct]b,b(,'),_,+i >_val, b,>d(ot+l)>J(v+n+2). 
\i=o\i ] . . . .  

Therefore  

val,( ~ ~(~.lb, b~,i!,_,+O>=J(v+n+l ). 
~ = v + n + l  i = O \  l /  

Finally, in the third s u m m a t i o n  (3.5), since l > 1, we have  v + l > v + 1 > - n. Hence  

i t - i l l  
b(.~)v+1/>valt b n v+,>J(v+l+n)>J(v+n+ 1). va l , [  Z / - / ]  b,-z 

\ i = o \  t I . . . . .  7 
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Therefore 

This completes the proof of the claim. 

Because of this claim, ~ b., y e n  is a well-defined element. Therefore 
n = O  

Q"= b,.vO~= b,. ,  •'. 
n = O  n = O  v e Z  v e Z  k n = O  t 

Note that if v>0, then val, ~ b , . v~Jv .  This implies that ~ Q"eS. But since 
n = 0  n = O  

(i)l  Q" �9 G, it is an element of g • Since 
t kn=O / l  =0 

1= ~ (l--P)"-- ~ ( I -P ) "  
r l = O  n =  1 

n = O  n = O  n = O  

the Neumann series gives P-  1 E ~ • Thus we have established Lemma 3.1. 
Note that ~ • = ~  • n ~  becomes a subgroup of ~ • The inversion in ~ • 

is given by the Neumann series. For example, ( 1 - t l O ) - l = l + t 1 0 + t 2 d  2 
+t3 (~3 q - ...E~ x . On the other hand, 

(1 _0)-1 =(_0(1_0-1))-1= _9-1(1_0-1)-1 
= - - t~-  1(1 + t3- 1 + t ~ - 2  + 63-3 + . . . ) - -  - - - ~ -  1 - - 0 - 2 - - ~ - 3 - - . . . ~ .  

Therefore, we cannot evaluate t by any numbers. In other words, the group 
~• is a purely formal object. However, as we have noted in Remark 1.5, the 
use of group ~ • and its factorization gives actual convergence of the solutions 
of the KP system ! 

The algebra decomposition (1.7) was used effectively to determine all possible 
isospectral deformations of LeE.  The factorization theorem we are proving 
is its group version. 

Theorem 3.2 (Generalized Birkhoff decomposition). For every element U ~ 8  • 
there exist a unique S~f f  and a unique Y E ~  • such that 

U = S- 1. y. (3.6) 

Namely, we have a unique factorization 

~• = f f  .~•  (3.7) 
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Proof The uniqueness is trivial. Indeed, if S ; I Y ~ = S z ~ Y z ,  then S~S;  1 
=Y1 Yz x s f f n ~ •  ={1}. Hence $1=$2 and YI=Y2. To show the existence of 
the decomposition, we have to solve the equation SU~.~ for an unknown Sefg. 

So let U = ~ u# a # and S = 1 + ~ s. O-.~ Then 
# ~ Z  = = 1 

Z Ufl 0 O + otZ Z "-'. O~ U~ ) 0 --ot + fl --i '~- Sot 
# e Z  = 1  # e Z  i=o \ I ] 

-- s  
#~z 1 /=ok t / 

Therefore the equation we have to solve is a system of algebraic equations 

Define 

and 

+ot{,_, :- qs ,,,,,_ = 0  u_# = i/,=ok i ] ot,..ot #+. 

u=(u_,,u_z,u_3 . . . .  ), 

s~---(s1, $2, $3, ...) 

M:[ 
Li=o\ I I Jot, t~=l, 

for fl = 1, 2, 3 . . . . .  (3.8) 

2 , 3  . . . .  

where M is a square matrix of infinite size with coefficients in ~ .  Equation 
(3.8) now reads 

s M =  --u. (3.9) 

Therefore the solution s is given by s = - u M - .  ~ Our idea is to define M -  1 

by the Neumann  series ~ ( l - M ) " ,  and use a similar technique developed in 
n=O oD 

the proof  of Lemma 3.1 to establish well-definedness of ~ (1 - M ) "  and u. M -  .1 
n = O  o o  

Since s determines all the coefficients of S, well-definedness of u. ~ (1--M)" 

implies the existence of S such that S U ' ~ .  .=0 
Let 

N =  1 - M =  Iambic, v=l, 2, 3 .... 
and 

N" = [a.. ~v],. v = 1.2, s .... �9 
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a~ = 6u~ - i ,,r ,z,o h a v e  Since _ i ' -u -v+ i ,  ,"-  

a . . I , = o = l -  i "I"l ,=o=-  _"].'" - 0  i t = O  - -  

, = 1 \  ~ / 

because  u~lt=o = 0  for  al l  i > 0 .  S imi l a r ly ,  if  # >  v, t hen  

- -  u! i) 

Because  of  the  g r o w t h  o r d e r  c o n d i t i o n  for  uv's, we c a n  f ind a p o s i t i v e  real  
n u m b e r  J such  t h a t  

v a l t a . ~ J ( ~ - - v + l  ) for  al l  / ~ - v > - i  (3.10) 
as before .  

Claim. F o r  eve ry  n > 1 we have  

valta. ,uv>J(#--v+n ) if / • - -v>  - -n .  (3.11) 

Proof of the Claim. If  n = 1, t hen  a l, u~ = auv a n d  (3.11) fo l lows  f r o m  (3.10). A s s u m e  
tha t  (3.11) h o l d s  for  s o m e  n >  1. S ince  N "+1 =N".N,  

an+l,uv = ~ an, glair 
/ = 1  

v-1 p+n ~, 
= ~ a.,uzal~+ ~ a.,~tat~+ a,,~atv. (3.12) 

1 = 1  l=v l = / ~ + n +  1 

Let  us a s s u m e  t h a t / ~  - v > - n - -  1. 
In  the  first  t e r m  of  (3.12), s ince  v - 1  > l ,  we have  # - - l > l l - - v + l  >--n,  a n d  

hence  

va l  t (a,,  ul a ir)  > valt  a . ,  u t > J (P --  l + n) > J (/~ - -  v + n + 1). 

The re fo re  

( '  ) valt  ~ a . , . l a l ~  > J ( # - v + n + l ) .  
\ 1 = 1  

In the  s e c o n d  t e r m  of  (3.12), s ince  v<l<#+n ,  we h a v e  # - l >  - n  a n d  l - v>O.  
H e n c e  

valt  (a., ut at v) = valt  a . ,  ut + valt  at v > J ( # -  l + n) + d ( l -  v + 1) = J (# - v + n + 1). 

The re fo re  

/~+n v) valt~l~__van, ula t >=J(#-v+n+ l). 
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Finally, in the third term of (3.12), l>It+n+ 1 implies 1 - v > t i - v + n +  1. There- 
fore 

valt a.,~a al >valt alv>=J(1--v+ 1)>=J(#--v+n+ 1). 
kI=t~+n+ i 

This completes the proof of the claim. 

By this claim we can conclude that ~ a,, ~ e ~  is well-defined for all / / ,  v 

= 1, 2, 3 . . . . .  Therefore n = 0 

I ] M - l =  Z ( l - M ) " =  E a. 
n = O  L n = O  ,/~v ,a,v 

is well-defined. Let M-l=l-bt~v]u,~=t,2,3 ..... namely b ~ =  ~ a . ,~ .  If #>v ,  
n = O  

then val t b,~ = valt ~ a.. ,~ ____ J ( ~ -  v). Therefore 
n = O  

/i=! ~=I /x= vq- I 

is a well-defined element in ~ .  Thus we have established the existence of Sefr 
such that SUe~,. 

Finally, let Y= SU. Then Y e ~  • arid U =  S -1. Y. This completes the proof 
of Theorem 3.2. 

When the differential algebra (R, O) is trivial, i.e. if d: R ~ R is the zero-map, 
we write 0 = 2 and consider it as a commuting variable. Then ~ can be identified 
with a formal loop space of ~ = R ~t~ with pointwise multiplication. If 2 is 
a complex variable, then P =  ~ a~ 2 ~  is a map of the unit circle in ~ into 

veZ  

~.  The group ~ ~ is the connected component of the identity operator 1 in 
the group of all invertible elements of ~. The subgroup ~ consists of a function 
S: Sl~2~---~S(2)e~ which is holomorphic on the upper hemisphere of P~ with 
S (oo)= 1. The other subgroup ~ • of ~ • consists of a function Y: $1~ 2 ~ Y(2)e~ 
which is holomorphic on the lower hemisphere of Pc 1 such that Y(0) is invertible 
in ~ .  

Thus we recover the usual Birkhoff decomposition of the connected compo- 
nent of the identity of a loop group (Pressley-Segal [10]). 

In the rest of this section, notations coincide with Sect. 2, namely ~^• 8o" • 
etc. are sets of super micro-differential operators. 

Lemma 3.3. (a) Every element P ~  • has an inverse in ~ • 
(b) I f  P ~ ,  then P-  1 ~ .  

Proof. The first part (a) can be proved by the same argument used in the proof 
of Lemma 3.1. The only necessary alternation is to replace the Leibnitz rule 
(1.3) by its super analogue (2.7), otherwise the proof is identical. 

To establish (b), let P =  ~ a~ 0~e~o ~, Q = 1 - P  = ~ b v 0 ~ and Q"= ~ b,,~ 0 ~. 
v ~ Z  v~Z w Z  
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Since 

P - t =  ( l - P ) " =  Q " = I +  ~2 b. ~0~=1+  b. 0 ~, 
n = O  n = O  n = 1 v ~ Z  " v e Z  k n =  i " / 

we have to show that =g. Therefore we need to prove that b~.~= 
n for all n__> 1. 

If n =  1, then bl.v=b~=(6~o-a~)=ff'(=~. So assume that b~.~=~ for some 
n > 1. Now, since 

we have 

Q.+X=QQ.= E b~ 0~ ~. b.,uOU 
v e Z  ~ e Z  

rv] . - ~  =Z Z Z/./(-1) b " ' " " - ' ) b  bill Ov+u i 
v e Z  ~ e Z  i = o L / J  v n , ~  

�9 . h [ i ]  

b.+ 1.,,= ~ _ l)(,,+i-~)~-i~ h hm 
vez i=o LiJ vv ~n,~+i-v. 

Note here that if ~=  ~, then b '~= (n-~) because 0 is an odd derivation. Thus 
we have 

Un,~--v+i l  n , a - v + i  

=f~+~--~+i+i=8. 

Therefore ~'. + i , ,  = 8, namely, P - 1  e oe~. This completes the proof. 
The following factorization is the main tool to establish the solvability of 

the super KP system. 

Theorem 3.4 (Super analogue of generalized Birkhoff decomposition). Let ~ • 
~x ~x ~x o, ~ , (~, 9o and ~o be the groups of super micro-differential operators defined 
in Sect. 2. Then for every Ue~ • there is a unique element S of ~ and a unique 
element Y of ~ • such that 

U=S - I .  Y (3.13) 

Moreover, if U is an even operator in ~ then the above S and Y are both 
even; 

Se~o and Y e ~ .  (3.14) 

In other words, we have a unique factorization 

•215 and g ~ = ~ o . ~ .  
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Proof  The p r o o f  is again  the same as tha t  of  Theo rem 3.2. We start  with U 

= ~ Uv 0 ~ and  let S = 1 + ~ S, ~ The  equa t ion  we want  to solve is SUE.~.  
v~Z  ~= 1 

By a similar calculation,  we obta in  

So let 

U-v - l -  E ( - -  I"Wu- ~ + ((" + i) t" ' ' [I] --~I Jr! o #  ~ p - v + i - - v "  

~ = 1  i = 0  

M=[~=o[-il](--1)a,-, ,§ ] ~ t t - - V + q  
i ~ / J ,  v =  1, 2 ,  3 . . . .  

and N = 1 - M = [auv], ' v = 1, 2, 3 .... 
Nn =[an,~,,,]~,,,,=l.z, 3 .... �9 

Then  the well-definedness of  ~ ( 1 -  M)n and  the p roduc t  
n = 0  

( u - l ,  u - 2 ,  u - a ,  ...) ~ ( l - M ) "  
n = 0  

can be shown  in the same  way. Therefore,  

(sx, sz, s3, . . . )=  - - ( u - l ,  u - z ,  u -  3 . . . .  ) M -1 

gives a solution. Let t ing Y =  S U, we obta in  (3.13). 
W h e n  U is an even opera tor ,  then ~ = g. Since 

v"/,t-- v + I ~ 
i=0 

we have a ~  = ~ = (ff'~'f). N o w  if an. ,~ = (ff '~f). then 

a . + l , , ,  = an, ulat,, =an, u t + a t , , = p - T + T - v = ( , u - v ) .  
l=  

Therefore  ~.. ,v=(ff '='-~) for  all n = 1 , 2 , 3 , . . . .  Let  M - l =  ~ ( l - M )  n 
n = O  

[b, ,]u,  ~= 1, 2, 3 .... . Then  

Therefore  

( ~ o  a ) (~ v) 
n ~ 

~,-- - v = - ~ + ~ - ~ = ~ ,  
# ! 
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namely, S~f~o. Since U and S are both even operators, we have Y = S U e ~ ,  
thus (3.14) is obtained. 

The uniqueness of the decomposition is trivial since fr  ~ • = f#0 n ~ = { 1 }. 
This completes the proof of Theorem 3.4. 

4. S o m e  l inear total  di f ferential  equat ions  

To establish the uniqueness of the Cauchy problem for the generalized KP 
system (1.19), we used the following fact; every solution S of (1.19) gives rise 
to a solution U of the universal equation (1.29). In Sect. 1 we proved this fact 
by assuming that Eq. (1.26) d Y = Z +  Y has a unique solution in ~• Recall 
that if S is a solution of (1.19), then Z+ satisfies the intergrability condition 
dZ+ = Z +  ^ Z + .  

For a finite dimensional situation, solvability of (1.26) under the integrability 
condition is a well-known fact. But in our case, since the group we use and 
the base space are both of infinite dimension, we need some technical tricks 
to establish this fact. 

Let D, ~ and ~ be algebras of ordinary differential operators introduced 
in Sect. 1. 

T h e o r e m  4.1. Let co= ~ P.dt.  be a ~-valued 1-form satisfying 
n = l  

(a) there is a positive real number c > 0 such that 

ord P, _-< n for all n >= 1. 
e 

(b) co is integrable, i.e. dog=co ^ 09. 

Then for every given operator Y(0)eD, there is a unique solution Y e ~  of 
the linear total differential equation 

dY=o~Y (4.1) 

having Y(O) as its initial value; Ylt=o = Y(0). 

Proof Note that (4.1) is equivalent to the system 

0Y 
- -  = P. .  Y. (4.2) 
0t, 

Let Y= ~ Yt Oz. Then the zero-th order term of (4.2) gives an equation 
1=0 

~Yo 
Otn'=Pn(Yo) 

where P.(Yo) means the function obtained by applying the differential operator 
P~ to the function Yo- Therefore, we have to establish, first of all, the following. 
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Lemma 4.2. Let o) be as in the theorem. Then for every f e R ,  there is a unique 
solution y e ~  of  the system 

8y 
8t~ = P~(Y)' n=  1, 2, 3 . . . .  (4.3) 

such that Ylt=o = f  eR. 

Proof of the Lemma. For an individual 
Actually, let 

nlc 
b i  i y = ~. t~, biER, P~ = Y', ak O k, 

i=0  k=O 

and 

Then 

namely we obtain 

tn, it is easy to solve Oy/Ot~=P~(y), 

~=Oak. j ~i, ak, jeR.  a k  ~ j �9 - -  

Oy Oy a 
0 = ~ .  -- P. (y) =-~ - - -  E k y(k) 

6tn k>=O 

= E b, ( i - 1 ) !  E ak, j ~ -n 
i__>0 k->_O j=O i = 0  

b , +  y~, 0~ t n 

~ct  - - '  
"= k>_o i ak'a-lb~k) 0~! 

b~+ l -  i k , o ~ - i  i "  
i = 0  k>O 

Therefore y is uniquely determined by bo--Y[t,= o- 
We can repeat the above procedure for tl, t2, t3 . . . . .  The integrability condi- 

tion (b) establishes the compatibility of t,-dependence of y. In this way we obtain 
a well-defined function y e ~ .  

Now let us go back to the proof of the theorem. If the differential algebra 
(R, O) is trivial, then Y and P~'s are all multiplication operators. Therefore, the 
above Lemma establishes the existence of a formal solution Y. (We will show 
later that it is actually an element of ~.) 

So let us assume that (R, 0) is non-trivial. Now let x be a dual operator 
of O. Namely, x satisfies 

[R, x] = 0  and [0, x] = 1. (4.4) 

(Of course x may not  be an element of R.) The reason why we want to use 
such an operator  x is because its introduction makes computation much easier. 
Logically, we do not need x. 

In this proof  we use the following simplified notation; 

A. [, B]"=  [[ . . . [ [A,  B], B], ..., B], B]. (4.5) 

n-times 

Namely A- [, B] = [A, B], A. [, B ]  2 = [[A, B], B] etc. 
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Claim 1. The equa t ion  O Y/O tn = P. Y is equivalent  to 

~3 t. i ~ y t -  = P" ~ ~ y~- i for all l > 0. (4.6) 

Let 's  observe tha t  the above  claim establishes the unique existence of a 
formal solut ion Y. Indeed,  assume that  we know Yo, Yl . . . . .  Y~-I. L e m m a  4.2 
says that  Eq. (4.6) is solvable for every initial data. Therefore,  if we give Ytlt=o, 
(4.6) determines  y ~ .  If  we cont inue  this procedure ,  then we obta in  all 

Y0, Y~, Y2 . . . . .  Thus  we get a formal  solut ion ~ ytOt= Y of (4.2). Again  its com-  

patibili ty of  t -dependence follows f rom (b). t= o 

Proof of Claim 1. We need the following formulas.  Let  P~ = ~ an, j dJ. Then  
j=>o 

~" (i) an'JOJ-t= P~ " [' x]t (4.7) 
j=>O 1! ' 

xJ J x~-k [' x]R (4.8) 
~ 2., =~__2o v -  k ) - ~  e.. T 

Since 

we have  

oo 

o = O Y - - P n Y = E  Oy, o,_ e'J~ Yk Or. ,=o ~ Y, an, j O k 
j > O  k = O  

Z ~ an, JY~k ''O'+t-i 
/ = O  j__>-O k = O  i = 0  

oo O y t 0o j 
= Z  - - - 2  o', ,=o(O,. ,oo 

Therefore, 

a y ,  v . u  + ~ -  o v ,,(~-~) 
Otn l - k  an, j YZ_k 

j>=o k j>_o t, 

= k -  = an, j 0J-  ~ ( y , _ 0  = k P~" ~ T - . v  } ( y ' - 0 "  

dt--~ ~.I Y,-i : , = o  i! dtn E iT. [ ,'---~. )(Yt-,-k) 
i = O  k = O  

, 

= ~ P~ " kT-- . t  (Y'- ' )  j=o k=o ( j - k ) !  

z xi Yt-i). 

(4.9) 
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Proof of (4.7). Since 

we have 

[e., x] = Y~ a., j [& x] = ~ j a., ~ ~J- 1, 
j ~ O  j>-O 

P~. [, x]/= ~,j( j-1)(j-2) . . . ( j - l+l)a~,jO j-t 
j->O 

Proof of (4.8). If j=0 ,  then (4.8) simply says that P~=P,. So assume that (4.8) 
is true for some j. Then 

x J+ 1 
e.- 

(/+1)! 
(xJ xJ ] x 

= ~  7., /+1]  / + 1 [  ~ j~.,x + j - ~ e . . / - f  

_ 1 xJ-k [' x]k + j - - ~  (j--k)! k! 
j + l  k= (J--k) ~Pn"  k~'X" k = 0 - -  

_ 1 ~ x ~-~ (k+l)____~.'.p.[,xy +' 
j + l  ( j -k) !  k! (k+l)!  k=O 

1 ~ x j-k+~ ( j - k + l ) !  p . [ , x ] *  
+j--~- ( j - k +  1)! ( j -  k)! k! k=O 

1 j~l xy-k+l [ ,x]* 
- - j + l  k=, ( j - k + i ) !  kP.. k---f-. 

1 ~ x j-k+1 [, x] k 
+ j - - ~  ( j - -k+l ) !  ( j - k + l ) P , .  k---~ 

k=O 

~--- j ~ l  x j - -k+l  . k + j - k + l  en" --['x']k 

~=o ( j - 2 ~ i ) !  j +  1 k! 

=j~l xj-~+l [, x]~ 
k=o (j--~+i-)!  P"" k--~ 

Thus induction on j works to establish (4.8). 
Finally we have to establish a growth order condition to show that Y 

= ~ yzO l is an well-defined element of ~.  Let N=ord(Y(0)). Note that by 
I = 0  

assumption (a), we have ord P, __< n. Therefore, by (4.7), ord (P~. ([, x]k)/k !) < n_  k. 
C C 

Namely, P~. [, x]k=0 if k>  n.  Hence in (4.9), we have 
C 

~t,--k= o -(l-~. } (y*)= (l--k)!/ 
k >=t--g 
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Since Ylt=o = Y(O)eD is of order N and y}i)l,=o=(Yzl,=o)"), we have 

t?y, = Z P, It=o" J- (YJl,=o) = 0  
t~tn t = 0  j > _ _ S + l \  - -  " 

(4.10) 

for all l>=n+ N + i. 
c 

Let J=(n~, n2, ..., n,) be an r-tuple of positive integers and let IJl=n~ + n  2 
+ . . .  + n~. We denote 

~?s=l-[ Otj (?t., Ot.~ Ot. " (4.11) 
j~J "'" r 

Claim 2. 

O j y t l t = o = O  for all l>  1 ] J I + N + I .  (4.12) 
C 

Proof of Claim 2. We use induction on r. If r =  i, then it reduces to (4.10). 
Assume that (4.12) is true for all s<=r. For every sub-tuple I c J ,  we define 
I c = complement of I in J and denote 0i = FI o/o t~. By the induction hypothesis, 

iel 

Ot y~l~=o=0 for all l>  -I [J[ + N +  1. Now assume that l>  -1 [JI + N +  1 +_n. Then 
C C C 

at~ n as y i l t = o = a s  pn. 

=Z 
l ~ J  

[ ,  X-] l - k  

k > t -  c 

since k > 1 l j[ + N + 1. This completes the proof of Claim 2. 
c 

Therefore, we have 

valt y t>  nl + n 2 +  ... +nr 

for all l > l ( n l + n 2 + . . . + n r ) + N + l .  If we define M y = N + I  and N r = a n y  
C 

integer greater than c(N + 1), then the above inequality implies that 

va l~y l>c l -Nr  for all l > M r .  

Therefore, Y= ~ Yt 01 is a well-defined element of ~.  This completes the proof 
/ = 0  

of Theorem 4.1. 

Lemma 4.3. Let f2= ~, dt ,  t?". I f  the universal equation (1.29) d U = f 2 U  has two 
n = l  

solutions U and V ~  with the same initial value UIt=o = Vii=o, then U = E 
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Proof Let W= U -  V. Note that WIt=o = Ul t=0 -  Vii=0=0. Since (1.29) is linear, 
we have dW=OW, namely, aW/Ot,=a". W. Therefore, OsW=dtsI W, where dj 
is the operator defined in (4.11). Thus (OjW)lt=o=alJIWlt=o=O for all d 
=(nl ,  n= . . . . .  nr). This means that W does not depend on t. Since Wl,=o=0,  
we can conclude that W=0.  This completes the proof  of Lemma 4.3. 

A similar statement is valid for the super case. 

Lemma 4.4. Let 

= 02n-- 1 02k - 1 ~'~ dtEnOEn+ dt2n-1 
n=l  n=l  

Then a solution of the initial value problem for (2.21) d U = g2 U is unique in ~. 

Proof Let U and V be two solutions with UI,=o = V[t=o. Let W= U -  ld. Using 
the same argument given above, we can conclude that W does not depend 
on t2,, n=  1, 2, 3 . . . . .  Now, since 

we have 

~ W  :02n_l(l__k~__ t2k-1  02k_ l )W~ 
~t2n-1 1 

~W _~02n_ 1 Wit = o ..= 0" 
8727 , ,=o 

Thus Wdoes not depend on odd variables either. Thus Lemma 4.4 is established. 
To establish the uniqueness of the super KP system (2.25), we have to show 

that every solution of (2.25) gives rise to a solution of the universal equation 
(2.21). Namely, we need a super analogue of Theorem 4.1. For  this purpose, 
we have to impose the following condition on the super differential algebra 
(R, 0); 

Condition 4.5. There is a dual operator x of the derivation 0 2: R ~ R such that 

(i) [02, x] = 1. 
(ii) JR, x ] = 0 .  

(iii) [0, x] annihilates R, ,  namely a[O, x] =[0 ,  x] a = 0  for all aeRt .  
(iv) [0, x]  2 =0 .  

The above condition will be satisfied if R ~ A | k Ix, r and 0 = a/d r + r d/a x, 
where A is a k-algebra consisting of even elements alone, x is an even variable 
and r is an odd variable with Ca=0. Condition 4.5 does not require that x 
and [0, x] are contained in R. Now we can establish the following; 

Theorem 4.6. Let 

n=l  n=l  n=l k= l  
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be a N-valued l-form defined over a super differential algebra (R, O) with Condition 
4.5 satisfying that 

(a) there is a positive constant c such that ord P, < n for all n >= 1, where P2,~No 
c 

and P2,- a E~I ,  and 
(b) o) is integrable, namely, do=o)  A Co. 

Then for every given element Y(O)eDo, there exists a unique solution Y ~ o  
of the linear total differential equation 

dY=co Y (4.13) 

with the initial value Ylt=o = Y(O)~Do. 

Proof Note that (4.13) is equivalent to the following systems; 

OY 
=P2. '  Y for all n = l ,  2, 3 . . . . .  (4.14) 

t?t2n 

t?Y L 0Y t2k-1 = P z . - I " Y  for all n = l ,  2, 3 . . . . .  (4.15) 
Ot2n-1 k=l t~t2n+2k-2 

We will first solve the even system (4.14) consistently assuming that t2n_ 1 --=0 
for all n_>_ 1, and then solve the odd part (4.15) consistently. 

Since the super differential algebra (R, 0) satisfies Condition 4.5, there is 
an operator x with (i)~ (iv). Let us denote [0, x] = ~ which is an odd operator 
on R. We want to use the same idea developed in the proof of Theorem 4.1 
to show the solvability of (4.14). So we introduce the following notations. For  
every n > 0, we define 

22n--=X" (4.16) 

22"+1 =~x"  (4.17) 

A. [, 212" = A �9 [, x]" = f t . . .  I-I-A, x], x], ..., x],  x] (4.18) 
n-times 

A. I-, 212"+1 = [A �9 [, x] ", r (4.19) 

The formulas we need are the following. Let P2,= ~ a2,.jOJENo be an even 
super differential operator. Then we have i>=o 

j~_>_ t [~ ] a2n, j Oj- l= P2n � 9  
E, 2] t 

and 

e2.- �9 e' l--2 

Using the above formulas we can show the following; 

(4.20) 

(4.21) 
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Claim. The equation 

is equivalent to 

f-~-Y =P2." Y for Y= ~ Yt Ot~o 
Ot2n /=0 

Ot2,1~--oYl-'~):P2"i Yl-i (4.22) 

for all l > 0. 
Since a super analogue of Lemma 4.2 can be easily established, (4.22) gives 

a unique formal solution Y by the same argument we used in the proof of 
Theorem 4.1. 

Proof of (4.20). We use a Zz-graded induction on l. If l=  0, then (4.20) simply 
says Pz,=Pz,.  So assume that (4.20) is true for an even number l=2m. We 
want to show that it is also true for l = 2 m +  1 and l = 2 m + 2 .  

Now, by (4.19) we have 

�9 r  Z 

by the definition of super binary coefficients. This establishes / = 2 m +  I case. 
For I = 2 m + 2 ,  we have 

[, ~]2..+2 
Pzn" = m + l  P2,, 

m + l  /___2m Lzmj ' 

_ 1 X [Jla2.,~gj--?m]~oi_2,._ , 
m + l  j>__2,.lzm] k l ] 

1 j a2n,./ Oj_ 2,._ 2 
+ m + l  j>_~2,._ 2m 

1 
--m+ 1 j>-~zm azn, j" ~0 j-2"-1 

m] 
+ ~" 2 m + 2  ae"'jOJ-zm-z" 

j > 2 m  
2 
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We are assuming a2n" 1 ~ = 0 for odd j, thus the first term vanishes. (Remember 
that we are working on even parameters now and assuming t2._ 1 = 0  for all 
n.) Since it is easy to see that 

we can conclude that 
[, 2] 2m+2 

Pzn" 

It completes the proof of (4.20). 

2 m + 2  ' 
2 

_ a 2 n ' j  �9 

Proof of (4.21). We also use a Z2-graded induction. When j--0,  (4.21) simply 
is true for some j = 2 m .  Then, 

+r 22" 

~" Ut ~ ' - k  . [ ,  ,1.]~ 

_ _ +  ~ 22m-zl+l P~'--["~]21 

says P2. = P2,. So assume that it 

/~2m+ 1 I2n. ,~2ra 

= p~. [ , x y ,  ~ 

L ,,t2,,,_21 [, ,,t,] 2l+l 
P2n" 

On the other hand, we have 

2m+l 22m+1-k r ,  21 k 
E e ~ . . - -  

m 22m-21 [, 2121+1 
+t=~o P2.- 

;~2,.+1-2, [, ,L]21 
= P2n 

t=o[2m+l--21]! [~--~/l' 

Therefore, we obtain (4.21) for j =  2m + 1. Next, 

P2n- •2m+2 1 [p~ 22" X1 X )~2ra 
= m + l  "" , + ~ -  P2," - -  

' L- J 
1 2,, ;t2m-k [, ).]k+ 2 

- ~ P2." q- 

1 2m+2 ~2ra+ 2--k 

1 ~ )2m+2-k [, ~.]k 
m + l  P 2 , ' - -  

[ ,2]k ( [ k ]  ! [2 m +22-~k]' 1 

i m + l  
(4.23) 
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In the above summation,  if k is an odd number, then ~.2ra+2-kP2n" [-, 23k=0 
since Ca2 , , j=0  for odd j. And if k=2 / ,  then 

Hence (4.23) reduces to 

[2 7- q 
~- - m + l .  

P2, [ ~ _ 2 ] ,  k~=O l_2mT_k.], P2." [k],  

Thus we have obtained (4.21) for j = 2 m + 2. This completes the proof of (4.21). 

Proof of (4.22). Since we have 

- - - - - -  2n Y=I - - - -  E a2n, k Ym 
Cqt2n = 63t2n k>-O m=0 

[./1 -,:oC3tz-~--~ ~ ~ (--1)''t-')a2.,ky~lO k+.-i 
k>O m=O i=O 

--l=O~k~2n--~O k~>=o[l ~.__m] (-1)m(l-m)s l])Ol, 

the equation is equivalent to 

,[k] ~Yt= ~ m~ = (__l)m(t-m)a2n, ky[k_-m m] 
Ot2n _ m k>-O 0 

' x [ 1  = E (--l)mtZ-m) k 
m=O k >-m Lind a2n' k ok-m(yt-m) 

I 
= E ( - -  1)m(l-m)e2n' E, ~ ] m  (Y,-=). 

Therefore, 

Yz- 1 = Z ( -  1) " ~ - "  - -  
Ot2. i i=o 

l l--i 
= E ~ (--1) '( ' -0(--1) =~'-'-"0 

i=O m=O 

"~i ~Yl-i 
2]! Or2. 

,~ [ ,  ,~]~ [2],P2"'~. (y'-m-i) 
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~ - j  _ _  E, '~]  '~ , , = Y~ Y~ ( -  1 ) ~ J - ' ~ " - i + ' ~ (  - ~ ) m . - i ~  ~J- '~  8 ~ ' - -  ~Y~-j~ 

= E (-1)~"-~ F~ ( - l r  ~ j §  P ~ . . - - ( y , - j )  

)j t 2j \ 
=~o( - -1 ) i " - / )P~ , , ' - - (Yt - , )=P~ .  ~oYt-j - , )  

where we used that 2 ~-" P~n" [, 2] m=0 i f j  is even and m is odd. This completes 
the proof of the claim. 

The well-definedness of Y e ~  0 can be shown by a similar argument we used 
in the proof of Theorem 4.1, so it is omitted here. 

Thus we have determined t2, dependence of Y. Finally, let us sketch how 
to determine odd time dependence of E Since 

~Y ~Y 
O-- L t2k-1 P2n-1 Y 

t~t2n--1 k=l ~t2n+2k-2 

~Yl _~ 0 l_  Ok ~ yjOJ 
l=o\~t2n-1 k = l  I ~t2n+2k_2] k>O j = 0  

t=0  \ t~t2n--  1 
t2k -  E k + j - -  a2n- 1,k.rj ] 0 ' ,  

k= l  1 ~t2n+Zk_ 2 k>= 0 J 

we have 

dten-1 k=l tzk-I dt2n+2k-2 j=O k=>O 

For individual t 2n_  1 dependence, we can expand y t=yz ,  o + t 2 . _ l  y~.l and 
a2n - 1, k = a2n - 1, k, 0 + tEn - 1 a2n - 1. k. 1" Therefore, letting t2n_ 1 ---- 0, we obtain 

~Y~,o § E a2n-l.k, oYt-j,o" 
Yt' l= t2k-1 ~ t 2 n + 2 k - 2  j = 0  k_ k = l  J 

k4:n 

This means that Yt[t2.-l=o determines Yr. Namely, Y[todd=0 determines Y com- 
pletely. Compatibility of t-dependence follows from the integrability do9 = r ^ a~. 
Since ord P2n-1 =<(2n-1)/c, (4.24) gives a lower bound for val ty ,  1. Thus the 
well-definedness Ye~o  follows. This completes the proof  of Theorem 4.6. 
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5.  E x a m p l e s  

In this section we give some of  the explicit forms of differential equat ions  
ob ta ined  f rom the general ized K P  system and the super  K P  system. F r o m  now 
on, we use the following convent ion:  for a funct ion f, we denote  8 f /ax  = f '  
and 8f /8  t, =f , , .  

Let  A be an associat ive k-a lgebra  and  let R = A |  [x~. Then  the generalized 
K P  system (1.19) produces  the following equat ions ;  

st, 2 = S'x'- 2s'l sl + 2 s ~  

S2, 2 = S ~  - -  2 s'l s2 + 2 s~ 

Sl, a - S l  . . . .  -- 3s'l' s1--3(s'l)2 + 3S'l S2 + 3s'~--3s'2sl--3s'l sE+ 3S'3. 

Eliminat ing s2 and s 3 f rom the above  equat ions,  we obta in  the non-commutative 
K P  equation 

sl, a --(3/4) sl, 2z -- (3/2) Is'l,  sl, 2] --(1/4) s'l'" + (3/2)[(s'1)23 ' = 0 .  (5.1) 

When  A is commuta t ive ,  then (5.1) reduces to the original K P  equa t ion  on 
u2 = - s'l ; 

4u~, 3 - 3 u 2 ,  2 2 - u ~ " -  12(u2 u~)' = 0. (5.2) 

N o w  let 's consider  the super  K P  system. Fo r  a super  differential algebra,  
we take R = ~ x ,  ~ and 0 = 8 / 8 4 + ~ a / 8 x ,  where x is an even var iable  and 

is an odd var iable  satisfying 42=  0. Since 0 2 =  a/a x, the der ivat ion m a p  02: R 
R is surjective. Let  

L=O+ux  q'-U 2 O- 1 ..~U a 0 -2  At_ ... 

be a mon ic  first order  super  micro-differential  ope ra to r  of  h o m o g e n e o u s  
Z2-degree 1 (i.e. t~, = fieZ2). We assume the consis tency condi t ion 

utll] + 2U2 = 0  

f rom now on. Then  by Propos i t ion  2.2 there is an  SeGo such that  L = S O S  -~. 
Therefore,  the Lax  equa t ion  (2.27) is uniquely solvable  for this L. T o  compu te  
actual  forms of  (super) differential equat ions,  we need the following: 

Z 2 = 02 -q- u[21] 0 - 1 .q_ ( 2 u 4  _~. u[31 ] _ u 2) 0 - 2 3 L (u[1] _ u2 u[21 ]) 0 -  3 "Jr-...,  

L3=O3+u102+u20+(u3--u~l])+(3u4+u[311+u[22]--u2+ul u[2 l l)  0 - 1  . . . .  

La=O4+2utl lO+2(2u4 ill 2 [ll [31 +U 3 - -U2)+(2U 4 +U 2 --2U 2ut21I) O-1 . . . ,  

L6 =O6 + aut21J OS + 3(2u4 + utalJ-- u2) O2 + 3(utaU + ut23J--UE Ut2~J) O 

+ 3(2U6 + uDI + 2U[421+ U~31+ U2 "'DI"3 --~-"2"~"[tl "3--"2"2121"1! 

+ (3 U[611-1- 3 u~ 3J + 3 u~ u u4 + 3 u2 "4"[11 w "J"2 " 3 - L "  "1 . . . .  [2] ~ " 2 - ' L  g ,,[1] "3"[1] 

- 3 u t2J ua + ut2 sj - 6 u~ u m)  0 -1 . . . .  
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Subst i tu t ing  the a b o v e  express ion  in (2.27), one  ob ta ins  

U2,  1 = - - U [ 1 ] - [ -  ~ t2n-1 U 2 , 2 n ,  
n = l  

, [ t ]  
u3, 1 = - - 2 u 4 - - u  3 -I- t 2 n _ l U 3 , 2 n  ~ 

n = l  

,,[3]_t_A . . . .  [I]..L,, U[22]q.. ~ t2n_lU2,2n+2 ' 
( I q  

/ ' /2 ,3  "~" " t * 4  " 3  - - ~ 2  f - r ' 2 ~ 2  f t * l  
n = l  

u2. , =  eut421+ ut ' l -  2u2 G21, 

-- ,  [21 _2ut2  u , , [ 1 ] _ _ ' ) , , [ 2 ]  ,, .2U 2 U[331 / ' / 4 , 4 = 2 a 6  +ut44]+au2 Uk 2] ~ 4  / " a 2  a 4 - -  

--  2 ut231 u3 + 2 u2 ut241 - 4 u 2 ut221, 

,,[31 2 , , [11 ,,[2] u2, 6 = 3 ut62~ + 3 u t41 + 3 u2 u t2J + 3 ut221 u4 + 3 u2 ,-3 - - ' -2  -3 

+3u[221ut3H3ut231, _L. ,,[6] t~,,2 ,,[21 
~ 3 ~ 2  - - , a . 2 ~  2 , 

For  the p u r p o s e  of  e l iminat ion,  we in t roduce  a new var iable  Vo such tha t  

Vto 2~ = Uz. (5.3) 

Then  we ob t a in  a c losed sys tem of  equa t ions  for Vo a n d  u3: 

,,[31 _a_ "1, d2l ~ (2 Vto3 Jz. + 2 + 3 ut32,12,) v0 ,  3 ~ . a  ~3 ,  1 - -  t2n-1 
n = l  

- ' -~o-  "~,,[61 ---'~oa"tu V[oSl 4V[o21 vo"[4l - -  "3"[3], (5.4) 

4 V[0216 -- 3 V0, 44 ~ 12 Vto 4j Vo ~,,[31 ,,Ill 
, , 4 - - u t ' 0  to0, 4 

= Vto a l -  6rio 3J Vto s ~ -  6 (Vto41) 2 + 12Vto a~ uta l j -  12Vto al uta2k (5.5) 

To e l iminate  fur ther  u3 f r o m  (5.4) a n d  (5.5) above ,  let us e x p a n d  Vo a n d  ua 
in the fo l lowing fo rm:  

vo = f o  + tl ~f2 + t3 r  + tl t3 h4 + . . . .  
(5.6) 

u3 =~g4-k t 1 q4 q-ta g6 q-tl t3 ~gs q" .... 

where fo , f2 , f4 ,  h4, q4, ga,  g6 and  gs are  all func t ions  in r  t4, t6 . . . .  ~. N o t e  
that  we c an  identify t2 -dependence  with x -dependence  because  

c3L/c~t2 = I-0 2, L ]  = [O/Ox, L] = OL/Ox. 

We write ft21 = f ,  etc. f r o m  n o w  on. T h e n  Eq. (5.4) gives the fo l lowing:  

f2= --f;,  

h4=f4+fo.4, 
g4 = -- (3/2) fo. 4 + (1/2) f6 '  - -  (1/2)(f;)2 _ f , ,  

q,* = (1/2) fo, 4 + (1/2) ft;' - -  (1/2)(f~) 2 + f 4 ,  (5.7) 

g~i = f ; ,  6 + (3 /2 ) f<  4 -  (1 /2)f47-- f6f ,~+ 2f~'f`*, 

gs = f ; ,  6 --  (1/2) f4, 4 --  (3/2)fo, 4,, + (1/2) f;{ ,, --f~ f~, ,, + (1/2) f~' - -  3 f ;  fd + 2 f ; '  f4- 
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Substituting the above expressions into Eq. (5.5) together with (5.6), we obtain 
the following system of closed non-supersymmetric (i.e. in the usual sense of) 
differential equations; 

f~" f~ -f~' f~' + f~' f4, 4 --f6. 4f~ =0,  (5.8) 

4f~,6--3fo, 44+6f~'fo.4--f~'"+6(f~)Ef~'+12f~'f4=O. (5.9) 

Equation (5.8) has an obvious solution 

f4 = 22fd 

where 2 e ~  is a spectral parameter introduced to keep consistency of the 
weighted homogeneous degree of variables. (The degree we are using is the 
following: deg x = - 2, deg ~ = - 1, deg t, = - n, deg 2 = 1 and degf,  = n.) Thus 
one can eliminate f4 in Eq. (5.9) and finally obtains the following new nonlinear 
integrable partial differential equation; 

4f~,6--3fo,44+6f~'fo.4--f~'"+6(f~)2f~'+1222f~f~'=O. (5.10) 

The original unknown function u2 of the super KP system is given by 

u2=f~--t1~f~' +t3~22f~' +tl t3(22f~' + f~,4)+ .... (5.11) 

In (5.7) we have expressed everything in terms of fo and f4- In connection 
with the argument of Sect. 4, we can observe the following fact here; since 
f4 is uniquely expressible in terms o f fo  and g4 by (5.7), Vo and u 3 are completely 
determined by VOltoaa=o=fo and U3l,odd=O = ~g4" In other words, once we deter- 
mine all even time dependence under the condition of toad = 0, then terms with 
odd variables are uniquely determined automatically by the super KP system. 

Let us now solve Eq. (5.10). We introduce propergation speeds a and b and 
set 

f0 = ~b (22 x + a 24 t 4 + b 26 t6). (5.12) 

Then Eq. (5.10) reduces to an ordinary differential equation of 4) = ~b(z); 

c~ . . . .  =6(oz~ dPzz+12(a/2 + l)dpzC~=z+4(b-(3/4)aZ)qb= . (5.13) 

We can integrate this equation to obtain 

dpz== 2dp3 + 3(a + 2) c~z +(4b -  3aE) dp, +(1/2)cl (5.14) 

with a constant of integration. Taking one more integration of (5.14) after multi- 
plying ~bz, to the both hand sides, we have 

q12=~4+2(a+2)~k3+(4b-3a2)r ~k +c2,  (5.15) 

where we have introduced ~b = ~bz and another constant of integration. The gener- 
al solution of Eq. (5.15) can be expressed in terms of the Jacobi elliptic functions 
[14]. When a = b = 0 ,  the original function u2 does not depend on t4 and t 6. 
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A solution ff = 4/ (4z  2 - 1 )  of (5.15)gives a rational solution 

2 2 226x 228x 
u 2 -  24x2_( i /4 )  Ftl ~ (24x 2-(1/4))  2 t3~ (24x 2-(1/4))  2 + "'" 

in terms of u2. The corresponding solution of Eq. (5.10) is 

fo = log [(2 22 x -  1)/(2 22 x + 1)]. 

If we take a = - 2  and b=5/2 ,  then ~9=cosh(z)/sinh(z) is a solution of (5.15). 
It gives a soliton-like solution 

u2 = 22 cosh (2 z x -  2 24 t4 + (5/2) 26 t6) 
sinh (22 x -  2 24 t 4 + (5/2) 26 t6) F [terms with odd variables]. 

The first term of the above solution, which is equal to f~, is not exactly a 
soliton because of its boundary behavior, however, the x-derivative fd' behaves 
very much like a soliton. Although it has a singularity, if we shift the x-axis 
little bit to the imaginary direction, then we obtain a one-soliton solution. From 
this point of view, we want to call Eqs. (5.8) to (5.10) soliton equations. 

Finally, if we set a = - 2  and b = 7 - k 2 / 2 ,  then Eq. (5.15) has a solution 
~k = cn(z)/sn(z), where sn(z) and cn(z) are the Jacobi elliptic functions of modulus 
k. This gives a quasi-periodic solution 

U2 = 22 r n (22 x -- 2 24 t 4 "1- (7 - k2/2) 26 t 6 )  ~- [terms with odd variables] 
s n(2 z x -  2 24 t4 + (7 - k2/2) 26 t6) 

in terms of the original function u2. Thus Eqs. (5.8) to (5.10) enjoy the common 
properties which usual soliton equations such as KdV equation, KP equation 
and others possess. We can also observe the formal resemblance among (5.2) 
and (5.10). For  example, their linear terms are identical. Moreover, when the 
parameter 2 is set to be 0, then (5.10) reduces to the first modified KP  equation, 
whose integrability has been well understood. For  example, it has a bilinear 
expression of Hirota. (Hirota has shown recently that (5.10) can be recovered 
from the first modified KP equation by a simple coordinate transformation.) 

However, it should be noted that the new equations (5.8) and (5.9) cannot 
be obtained from the KP equation (5.2). Of course the super KP system involves 
the KP system. Therefore, we can derive all the hierarchy of the KP equations 
from the super KP system. But the latter has much more equations which have 
no counterpart  in the usual KP framework even in the even variables. Our 
coupled system of (5.8) and (5.9) are examples of such equations. In the usual 
KP framework, the unknown function u2 (or fo) is equal to 0. Therefore, Eqs. 
(5.8) to (5.10) emerge only if we generalize the framework of the KP theory 
into the category of supersymmetry. 

The KP equation is a unification of the KdV equation and the Boussinesq 
equation. In the notations of Introduction, if we set ur = 0  in (2), integrate the 
whole expression by x and set the constant of integration to be 0, then we 
recover the KdV equation ut=(1/4)Ux:,x+3uu:,. On the other hand, if we set 
ut=0 in (2), then it becomes the Boussinesq equation. In a similar sense, we 
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have shown that  the super K P  system is a na tu ra l  unif icat ion of the K P  system 
and  the first modified K P  system. Namely,  if we take the reduction of the super  
K P  system m o d u l o  odd variables, then we recover the K P  system. On the other  
hand,  if we eliminate odd variables in the super  K P  system, then we can ob ta in  
the first modified K P  system. 

Super K P  system 

~ Reduction modulo Elimination ~ d d  variables of odd variables 

Firs t  modified K P  system K P  system 

Thus  we can conclude tha t  the extension into the category of supersymmetry  
is no t  a trivial formalism generalizat ion,  bu t  an  essential step. As we have 
observed, a supersymmetr ic  extension of the K P  system produces new non l inea r  
differential equat ions.  In  this paper  we have established the complete integrabi l-  
ity of those new equations.  
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