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Abstract. A set of super-commuting vector fields is defined on the super Grassman-
nians. A characterization of the Jacobian varieties of super curves (super Schottky

problem) is established in the following manner: Every finite dimensional integral mani-
fold of these vector fields has a canonical structure of the Jacobian variety of an algebraic

super curve, and conversely, the Jacobian variety of an arbitrary algebraic super curve

is obtained in this way. The vector fields restricted on the super Grassmannian of index
0|0 give a completely integrable system of partial super differential equations which gives

a new supersymmetric generalization of the KP system. Thus every finite-dimensional

solution of this new system gives rise to a Jacobian variety of an algebraic super curve.
The correspondence between this super Grassmannian and the group of monic super

pseudo-differential operators of order zero (the super Sato correspondence) is also estab-

lished.
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0. Introduction.

The purpose of this paper is to establish a characterization of the Jacobian varieties
of arbitrary algebraic super curves defined over a field k of characteristic zero by using
certain super-commuting vector fields on the super Grassmannians.

Since our main theorem is a supersymmetric generalization of the characterization
theorem of usual Jacobian varieties obtained in [M2], let us sketch the nonsupersym-
metric situation first. Consider the ring k

[
[x]
]

of formal power series in one variable
x with coefficients in the field k, and a formal pseudo-differential operator

(0.1) S = 1 + s1(x)
( ∂
∂x

)−1 + s2(x)
( ∂
∂x

)−2 + · · ·

of order zero with coefficients in k
[
[x]
]
. The Kadomtsev-Petviashvili (KP) system is

the following completely integrable system

(0.2)
∂S

∂tn
= −

(
S · ( ∂

∂x
)n · S−1

)
− · S, n = 1, 2, 3, · · ·

of nonlinear partial differential equations of the coefficients of S which also depend
on parameters t = (t1, t2, t3, · · · ), where (•)− denotes the negative power terms of
∂
∂x . What makes this nonlinear system so interesting in pure mathematics is the Sato
correspondence which assigns a point of an infinite dimensional Grassmannian to every
pseudo-differential operator S. The Grassmannian we need here is the set G(0,−1) of
all vector subspaces W of the field k

(
(z)
)

of formal Laurent series in another variable
z such that the natural map

(0.3) γW : W −→ k
(
(z)
)
/k
[
[z]
]
z

is Fredholm of index zero. (The new variable z can be thought of as the Fourier
transform of ( ∂∂x )−1.) Sato [S] discovered that there is a natural bijection between
the group Γ0 of all pseudo-differential operators of the form (0.1) and the big cell
G+(0,−1) of the Grassmannian consisting of the points W ∈ G(0,−1) such that the
γW of (0.3) is an isomorphism. Thus one can interpret the KP system as a dynamical
system, or a system of vector fields, on the Grassmannian G(0,−1).

Theorem 0.1 [M2]. A finite-dimensional algebraic variety M is the Jacobian variety
of an algebraic curve C if and only if M can be an orbit of the KP system defined on
the Grassmannian G(0,−1).

Thus the KP system characterizes the Jacobian varieties among everything else. If one
incorporates the theory of τ -functions of Hirota and Sato, then one obtains a charac-
terization of the Jacobians among the Abelian varieties in terms of theta functions by
using Theorem 0.1.

Because of the success of the KP theory, it is natural to try to generalize the entire
theory to the supersymmetric cases. The program of supersymmetrization was initi-
ated by Manin and Radul [ManR]. They introduced a supersymmetric generalization
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of the KP system in the Lax formalism. The unique solvability of the initial value
problem and the complete integrability of the super KP system of Manin-Radul was
then established in [M3] as a corollary of the super Birkhoff decomposition of infinite-
dimensional groups of super pseudo-differential operators. I did not write explicitly
in that paper, but the exact solution I obtained in [M3, Section 5] turned out to be
a super elliptic function of Rabin and Freund [RF]. Unfortunately, the case of genus
one is an exceptional case. More general solutions of the Manin-Radul system have
nothing to do with the super conformal structures on the algebraic super curves. It
has also become clear that this system does not have any simple relation with the
Jacobian varieties of algebraic super curves.

We present in this paper a new supersymmetric generalization of the KP system
which enjoys the following properties:

(1) It is a completely integrable system of nonlinear partial super differential equa-
tions;

(2) The initial value problem is uniquely solvable;
(3) The even part of the equation recovers the original KP system; and
(4) Every finite-dimensional solution of this system gives rise to the Jacobian va-

riety of an algebraic super curve.

Our version of the super KP system is described as follows. We consider the ring
k
[
[x, ξ]

]
of formal power series in the even variable x and the nilpotent odd variable

ξ. This ring has a super derivation operator

δ =
∂

∂ξ
+ ξ

∂

∂x

satisfying δ2 = ∂
∂x . As in (0.1) above, we use a super pseudo-differential operator

(0.4) S = 1 + s1(x, ξ)δ−1 + s2(x, ξ)δ−2 + · · ·

of order zero such that every s2n is an even quantity and s2n+1 is an odd quantity.
Now our new super KP system is introduced as follows:

(0.5)

{
∂S
∂t2n

= − (S · ∂n · S−1)− · S
∂S

∂t2n+1
= − (S · ∂n · ∂ξ · S−1)− · S

n ≥ 1 ,

where ∂ = ∂
∂x , ∂ξ = ∂

∂ξ , t2n’s are the usual even parameters and t2n+1’s are the
anti-commuting odd parameters.

It is obvious from the definition that this system is completely integrable and re-
covers the original KP system. The unique solvability of the Cauchy problem can be
shown by the super Birkhoff decomposition of [M3, Theorem 3.4].

If one compares our system (0.5) with the Manin-Radul system{
∂S
∂t2n

= − (S · δ2n · S−1)− · S
∂S

∂t2n−1
= −

(
S · (δ2n−1 +

∑∞
k=1 t2k−1δ

2n+2k−2) · S−1)− · S ,
3



then one realizes that the even part of the systems coincides because it is essentially
the original KP system, but the odd part is far from similar. The term involving the
infinite sum was necessary to make the Manin-Radul system completely integrable,
but the term also made it quite difficult to understand its geometric meaning.

In order to study the geometric meaning of the new system, let us introduce another
odd variable θ, which is the Fourier transform of ∂ξ, and consider V = k

(
(z)
)
⊕k
(
(z)
)
θ.

The super Grassmannian G(0|0,−1) is the set of all super vector subspaces W ⊂ V
such that the natural map

(0.6) γW : W −→ V/k
[
[z, θ]

]
z

is Fredholm of index 0|0. We have

Theorem of super Sato correspondence. There is a canonical bijection between
the group of all super pseudo-differential operators of the form of (0.4) and the big cell
G+(0|0,−1) consisting of W ∈ G(0|0,−1) such that γW of (0.6) gives an isomorphism.

Thus the system (0.5) defines a system of super commutative vector fields (flows) on
the super Grassmannian G(0|0,−1). Now we have

Theorem 0.2. Every finite-dimensional integral manifold of the flows on G(0|0,−1)
defined by the system (0.5) gives rise to the Jacobian variety of a certain algebraic
super curve.

But why does an integral manifold determine an algebraic super curve? Of course,
we can ask the same question for the Theorem 0.1.

In the nonsupersymmetric case, the reason why an algebraic curve appears is be-
cause of the Krichever map. Let (C, p, z,L, φ) be a quintuple consisting of an algebraic
curve C of an arbitrary genus g, a smooth point p ∈ C, a local coordinate z around
p, a line bundle L of degree g − 1, and a local trivialization φ of L near p. Then
the quintuple corresponds to a unique point W of the Grassmannian G(0,−1). This
correspondence was discovered and formulated in the above form by Segal and Wilson
[SW].

What we need here is a supersymmetric generalization of the Krichever map. In
the joint work with Rabin [MR], we discovered the following:

Theorem 0.3. Let
(
C, p, (z, θ),L, φ

)
be the geometric data consisting of an arbitrary

algebraic super variety C of dimension 1|1 defined over a field k of arbitrary char-
acteristic, a 0|1 divisor p ⊂ C, a local coordinate (z, θ) which defines the divisor by
p = {z = 0}, a line bundle L of rank 1|0, and a “local trivialization” φ of L near
the reduced point pred. Then this set of data corresponds uniquely and injectively to
a point of the super Grassmannian G(0|n,−1) consisting of the super subspaces of V
such that the natural map of (0.6) has index 0|n. The number n is the degree of the
odd line bundle N on Cred which defines the structure sheaf

(0.7) OC = ∧•(N ) = OCred ⊕N .
4



Actually, we established in [MR] a much stronger theorem which includes not only line
bundles but also arbitrary vector bundles, based on the construction of the Krichever
functor of [M4].

Let M ⊂ G(0|0,−1) be a finite-dimensional orbit of the flows defined by the new
super KP system of (0.5). It can be shown that every point W ∈ M corresponds to
the geometric data

(
C, p, (z, θ),L, φ

)
and that the first three data depend only on the

orbit itself and are independent of the specific point W . The algebraic super curve
appearing here has the structure sheaf (0.7) given by a line bundle N of degree 0. The
statement of the Theorem 0.2 can be refined as follows: M is canonically isomorphic
to the Jacobian variety Jac(C) of C, where we define

Jac(C) = H1(C,OC)/H1(C,Z) .

More general algebraic super curves appear in the super GrassmannianG(µ0|µ1,−1)
of an arbitrary index µ0|µ1. In order to obtain the Jacobian varieties of all the algebraic
super curves, we have to extend our vector fields to all the super Grassmannians. But
how?

In order to define more general vector fields on the Grassmannian of an arbitrary
index, we introduce the ring E of all super pseudo-differential operators and re-define
the super vector space V as the representation module of E. Through the action
on V , every super pseudo-differential operator induces a vector field on the super
Grassmannian of an arbitrary index. Consider now the set(⊕

n≥1

k · ∂n
)
⊕
(⊕
n≥1

k · ∂2n+1 · ∂ξ
)

of infinitely many super-commuting super differential operators. We have a corre-
sponding set of super-commuting vector fields on the super Grassmannian

G(µ0|µ1,−1),

which we call the Jacobian flows.

Main Theorem. Every finite-dimensional orbit of the Jacobian flows is canonically
isomorphic to the Jacobian variety of an algebraic super curve. Conversely, the Ja-
cobian variety of an arbitrary algebraic super curve defined over k is obtained as a
finite-dimensional orbit of the Jacobian flows.

Therefore, a super manifold is the Jacobian variety of an algebraic super curve if
and only if it can be a finite-dimensional orbit of the Jacobian flows on the super
Grassmannians. This is the characterization of Jacobian varieties of arbitrary algebraic
super curves we are establishing in this paper as a supersymmetric generalization of
the theory of [M2].

Of course, the restriction of the Jacobian flows on G(0|0,−1) coincides with the
flows determined by the equations (0.5).
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The importance of the algebraic super geometry lies in the theory of families. The
peculiar properties of algebraic super varieties come in when we define these varieties
over super schemes. In this paper, however, we have to assume that everything is
defined over a field k. This is an unfortunate restriction for the super geometry, but
we cannot do better at this moment because the theories and techniques we need in
this paper, which have been developed in [M1–4], are all based on a field. Further
developments should be left to the (hopefully, near) future.

Another aspect which is missing from our current theory is the super τ -function of
A. S. Schwarz [Sch]. It will be very interesting to study the super τ -function from the
point of view of the nonlinear partial super differential equations of (0.5), but this will
also be left to the future.

I do not know of any relation between our current theory and the very interesting
work by Kac and van de Leur [KvdL]. It would be nice to provide a geometric frame-
work for their work, but it is beyond the scope of this paper. There is a large literature
on the current topics in the physics context. Since it is impossible to list them all and
since I am not familiar with the physics literature, I do not cite them here.

We do not study the Manin-Radul system in this paper. Therefore, whenever we
say “the super KP system,” we mean the system (0.5). The geometric meaning of the
Manin-Radul system has been studied by Rabin [R]. He has discovered a remarkable
fact that the system mixes the deformations of the 1|0 line bundles on the super curve
and the deformations of the base manifold itself. Rabin has also arrived the system
(0.5) as a deformation equation of line bundles.

For a necessary background of the algebraic super geometry, we refer to the funda-
mental literature by Manin [Man].

This paper is organized as follows. In Section 1, we define the ring of super pseudo-
differential operators and its representation module. The super Grassmannians are
defined using this module. The super Sato correspondence is formulated and proved
in section 2. As far as I know, no precise statements or proofs of this correspondence
have been proposed before, except for some speculations. In Section 3, we introduce
our new supersymmetric generalization of the KP system. The unique solvability of
the initial value problem of this system is established by using the super Birkhoff
decomposition of [M3]. We state the main theorem of [MR] in Section 4 in a slightly
more general form. The proof of anti-equivalence of the super Krichever functor is
based on the algebro-geometric technique of [M4]. In Section 5, we define the Jacobian
variety of an algebraic super curve, the Jacobian flows on the super Grassmannians,
and prove the main theorem.

1. Super pseudo-differential operators and the super Grassmannians.

Let k be an arbitrary field of characteristic zero. In this section, we define the alge-
bra E of all formal super pseudo-differential operators and construct a representation
module V of this algebra. The filtration of E defined by the order of operators induces
a filtration in this module, and we define the super Grassmannians classifying certain
super vector subspaces of V by using the filtration.
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Let us start with the definition of the super pseudo-differential operators following
Manin–Radul [ManR] and [M3]. The function space we need is the super-commutative
algebra

R = k
[
[x, ξ]

]
= k

[
[x]
]
⊕ k
[
[x]
]
ξ = R0 ⊕R1

of formal power series in an even variable x and an odd variable ξ. These variables
satisfy x · ξ = ξ · x and ξ2 = 0. An element of R0 (resp. R1) is called a homogeneous
element of degree 0 (resp. degree 1). The ring R has a super derivation operator

(1.1) δ =
∂

∂ξ
+ ξ

∂

∂x

which satisfies the super Leibniz rule

δ(ab) = δ(a) · b+ (−1)ãaδ(b) ,

where a is a homogeneous element of R of Z2-degree ã, and b is an arbitrary element
of R. Note that we have δ2 = ∂

∂x . We call an expression

(1.2) P =
∞∑
m=0

amδ
n−m

a super pseudo-differential operator with coefficients in R if am ∈ R. The order of P is
defined to be n only when 0 6= a0 ∈ R0. In particular, we do not assign any order to a
nilpotent operator. The set of all super pseudo-differential operators with coefficients
in R is denoted by E.

For an arbitrary integer ν and a nonnegative integer i, we define the super binomial
coefficients following [ManR] by

(1.3)
[
ν

i

]
=

{
0 , if 0 ≤ ν < i or (ν, i) ≡ (0, 1) mod 2(

[ ν
2 ]

[ i
2 ]

)
, otherwise,

where [α] is the largest integer not greater than α. The super binomial coefficients
satisfy

(1.4)
[
ν

i

]
+ (−1)i+1

[
ν

i+ 1

]
=
[
ν + 1
i+ 1

]
and

(1.5)
n∑
i=0

(−1)
i(i+1)

2 +i(ν−n)

[
ν

i

][
ν − i
n− i

]
= 0 for n > 0.
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The set E of the super pseudo-differential operators has a super algebra structure
introduced by the generalized super Leibniz rule

(1.6) δν · f =
∞∑
i=0

(−1)f̃ ·(ν−i)
[
ν

i

]
f [i]δν−i ,

where ν is an arbitrary integer, f is a homogeneous element of R of degree f̃ , and
f [i] = δi(f). We say that the operator P of (1.2) is in the right nomal form. The left
normal form of P is given by

(1.7) P =
∞∑
m=0

δN−m · bm ,

where the coefficients bm of (1.7) can be computed by the adjoint super Leibniz rule

(1.8) fδν =
∞∑
i=0

(−1)
i(i+1)

2 +f̃ν

[
ν

i

]
δν−if [i]

which follows from (1.4), (1.5) and (1.6).
Let E(n) denote the set of all super pseudo-differential operators of the form of

(1.2). It is important to notice that the definition of E(n) does not depend on the
choice of the normal form of operators. We have a natural filtration

(1.9) · · · ⊃ E(n+1) ⊃ E(n) ⊃ E(n−1) ⊃ · · ·

of E which satisfies ⋃
n∈Z

E(n) = E and
⋂
n∈Z

E(n) = {0} .

Thus E has the structure of a complete topological space. The expressions in (1.2),
(1.6) – (1.8) are convergent series with respect to this topology of E. Let us define

(1.10)

E0 = {
∑
ν

fνδ
ν | f̃2ν = 0 and f̃2ν+1 = 1} ,

E1 = {
∑
ν

fνδ
ν | f̃2ν = 1 and f̃2ν+1 = 0} .

Then E = E0⊕E1, and hence E has also the structure of a super algebra. An element
of E0 (resp. E1) is called a homogeneous even (resp. odd) operator.

Symbolically, we can write E = R
(
(δ−1)

)
, where k

(
(x)
)

is the standard notation
for the field of quotients of the power series ring k

[
[x]
]
. Let us consider the other set
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R
(
(∂−1)

)
⊕ R

(
(∂−1)

)
∂
∂ξ of operators, where ∂ = ∂

∂x . Since ∂ = δ2 and ∂
∂ξ = δ − ξδ2,

the new set of operators is included in R
(
(δ−1)

)
. On the other hand, we have∑

ν

aνδ
ν =

∑
µ

a2µδ
2µ +

∑
µ

a2µ+1δ
2µ+1

= (
∑
µ

a2µδ
2µ +

∑
µ

a2µ+1ξδ
2µ+2) +

∑
µ

a2µ+1δ
2µ(δ − ξδ2)

= (
∑
µ

a2µ∂
µ +

∑
µ

a2µ+1ξ∂
µ+1) +

∑
µ

a2µ+1∂
µ ∂

∂ξ
.

Therefore, we can conclude that

R
(
(δ−1)

)
= R

(
(δ−2)

)
⊕R

(
(δ−2)

)
(δ − ξδ2) = R

(
(∂−1)

)
⊕R

(
(∂−1)

) ∂
∂ξ

.

We call the third line of the above expansion the standard form of the super pseudo-
differential operator

∑
ν aνδ

ν .
In order to define a left E-module, let us consider the left ideal E(x, ξ) of E generated

by x and ξ. Note that it is not a maximal ideal of E. Now we define

(1.11)
{
z = δ−2 mod E(x, ξ) = ∂−1 mod E(x, ξ)

θ = δ mod E(x, ξ) = ∂
∂ξ mod E(x, ξ) .

We regard z as an even variable of order −2, and θ as an odd variable of order 1. Let
us define V = E/E(x, ξ) and denote the canonical projection by

(1.12) ρ : E −→ E/E(x, ξ) = V .

If we write elements of E in the standard form, then it is easy to see that there is a
canonical isomorphism

(1.13) V = E/E(x, ξ) ∼= k
(
(z)
)
⊕ k
(
(z)
)
θ ,

which is given by (1.11). The filtration (1.9) introduces a filtration

(1.14) · · · ⊃ V (n+1) ⊃ V (n) ⊃ V (n−1) ⊃ · · ·

of V , where we define V (n) = ρ(E(n)). The filtration (1.14) satisfies⋃
n∈Z

V (n) = V and
⋂
n∈Z

V (n) = {0} ,

and defines a topology in V . Under the identification of (1.13), each V (n) has the
following expression:{

V (2n+1) = {v ∈ V | ord v ≤ 2n+ 1} = k
[
[z, θ]

]
z−n ,

V (2n) = {v ∈ V | ord v ≤ 2n} = k
[
[z, θ]

]
z−n+1 ⊕ kz−n .
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We also have the super space structure in V defined by

V = V0 ⊕ V1 ,

where V0 = ρ(E0) and V1 = ρ(E1). Obviously, the identification (1.13) gives V0 =
k
(
(z)
)

and V1 = k
(
(z)
)
θ.

A super subspace W of the super vector space V is a direct sum W = W0 ⊕W1

which satisfies W0 = W ∩ V0 and W1 = W ∩ V1. We call W0 (resp. W1) the even
(resp. odd) part of W . For every super subspace W ⊂ V , we define the canonical map
γW (ν) : W −→ V/V (ν) by

(1.15)

V V

inclusion

x yprojection

W
γW (ν)−−−−→ V/V (ν) .

We call γW (ν) Fredholm if both its kernel and the cokernel are finite-dimensional over
k. For a Fredholm map γ, we define the Fredholm index by

Index γ = dim Ker γ − dim Coker γ ,

which is a pair µ0|µ1 of integers indicating the indices of the even part and the odd
part.

Definition 1.1. Let µ0, µ1 and ν be arbitrary integers. The super Grassmannian
G(µ0|µ1, 2ν + 1) of index µ0|µ1 and level 2ν + 1 is the set of all super subspaces
W = W0 ⊕W1 ⊂ V such that the canonical map γW (2ν + 1) is Fredholm of index
µ0|µ1.

Remark. Note that W0 (resp. W1) is subspace of V0 (resp. V1). Thus for every pair
(U,U ′) of points U ∈ G(µ0, ν) and U ′ ∈ G(µ1, ν), the map (U,U ′) 7−→W = U ⊕ θ ·U ′

gives a bijection
G(µ0, ν)×G(µ1, ν) ∼= G(µ0|µ1, 2ν + 1),

where G(µ, ν) = { subspace U ⊂ k
(
(z)
)
| U → k

(
(z)
)
/(k
[
[z]
]
z−ν) is Fredholm of

index µ} is the Grassmannian of index µ and level ν studied in [M4]. Using this
bijection we introduce the structure of a pro-algebraic variety of Grothendieck in our
G(µ0|µ1, 2ν + 1). The super manifold structure of our super Grassmannian is defined
by the projective limit of the finite-dimensional super Grassmannians defined by Manin
[Man].

In the nonsupersymmetric case, the index 0 and the level −1 is the standard choice
for the Grassmannian and every point W of G(0,−1) gives rise to the geometric data
consisting of an arbitrary algebraic curve if it has a nontrivial stabilizer AW . In
the supersymmetric case, however, no single super Grassmannian can produce all the
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algebraic super curves. Especially, the obvious choice G(0|0, 0) or G(0|0,−1) does not
correspond to algebraic super curves with super conformal structures except for the
genus 1 case (see Section 4). This is the reason why we need to consider all the super
Grassmannians of arbitrary indices. The level of the Grassmannians can be fixed, for
example to −1, without loss of generality.

If we imagine E as a generalization of a field, then the subring of E which cor-
responds to the integer ring is the set D of super differential operators. We call an
element P =

∑
ν aνδ

ν ∈ E a super differential operator if aν = 0 for all negative ν.
There is a natural (left, right or both-sided) R-module direct sum decomposition

(1.16) E = D ⊕ E(−1)

which does not depend on the choice of the form of operators. According to (1.16),
we write P = P+ + P−, where P ∈ E, P+ ∈ D and P− ∈ E(−1). Since D = D0 ⊕D1

for D0 = D ∩ E0 and D1 = D ∩ E1, D is a super subalgebra of E.

2. The super Sato correspondence.

The supersymmetric generalization of the theorem of Sato [S] is proved in this sec-
tion. In order to investigate further the relation between the super pseudo-differential
operators and the super Grassmannians, we need an adic topology in R and a super
analogue of the Taylor’s expansion formula, which is also proved in this section.

Let val : R −→ N ∪ {∞} be the valuation defined by{
val ξ = 1 ,
val x = 2 ,

where N denotes the set of all nonnegative integers. The valuation of an element of R
is defined to be the valuation of its leading term. Let us denote by Rm the subset of
R consisting of elements of valuation greater than or equal to m. Then we have

(2.1)
∞⋃
m=0

Rm = R and
∞⋂
m=0

Rm = {0} ,

and hence R becomes a complete topological ring with respect to this valuation.
The super analogue of the Taylor expansion takes its simplest form in terms of the

new variable λ which is defined as follows:

(2.2)
{
λ2m = 1

m!x
m ∈ R2m for m ≥ 0 ,

λ2m+1 = 1
m!x

mξ ∈ R2m+1 for m ≥ 0 .

Every element f ∈ R has a unique expansion

f =
∞∑
n=0

cnλ
n, cn ∈ k
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which is a convergent series with respect to the topology of R. Let us define f(0) =
c0 ∈ k. It is easy to show that

δm(λn) =
{
λn−m, if n ≥ m
0 , otherwise

which implies that f [n](0) = cn. Thus we can establish the super Taylor formula

(2.3) f(x, ξ) = f(λ) =
∞∑
n=0

f [n](0)λn .

An element f ∈ R is contained in Rm if and only if f [`](0) = 0 for all 0 ≤ ` < m. Note
also that R ∩ E(x, ξ) = R1.

In order to give the explicit formula for the projection ρ of (1.12), we need a new
symbol ζ of order −1 defined by ζ` = δ−` mod E(x, ξ). In terms of the variables z
and θ, we have

(2.4)
{
ζ2m = zm

ζ2m−1 = zmθ

for every integer m. Note that the order of the both hand sides of the above equations
is consistent. Let us take an operator P ∈ E. First, we write it in the right normal
form

P =
∞∑
n=0

δN−n · fn(λ)

with coefficients in the λ-expansion. Then we have

ρ(P ) =
∞∑
n=0

fn(0) · ζ−N+n ∈ V .

The left P ∈ E action on V is given by

P : V 3 v = ρ(Q) 7−→ Pv = ρ(PQ) ∈ V .

The following lemma gives an interesting characterization of the super differential
operators in E.

Lemma 2.1. A super pseudo-differential operator P ∈ E is a super differential oper-
ator if and only if it preserves ρ(D) in V , i.e.

Pρ(D) ⊂ ρ(D) .
12



Proof. Every super differential operator P ∈ D preserves ρ(D) because Pρ(Q) =
ρ(PQ) ∈ ρ(D) for every Q ∈ D. In order to prove the converse, let P be a super
pseudo-differential operator and let

P− =
∞∑
n=1

δ−n · fn(λ)

be the E(−1)-part of P according to the decomposition of (1.16). The condition
Pρ(D) ⊂ ρ(D) implies that PD ⊂ D + E(x, ξ), and hence

(PQ)− ∈ E(x, ξ)

for every Q ∈ D. In particular, we have P− ∈ E(x, ξ) by taking Q = 1 ∈ D. Thus
fn ∈ R1 for all n ≥ 1. So let ` ≥ 1 be the largest integer such that fn ∈ R` for all
n ≥ 1. Then we have

(P · δ`)− = (P− · δ`)−

=

( ∞∑
n=1

δ−n · fn(λ) · δ`
)
−

=

( ∞∑
n=1

∑̀
i=0

δ−n+`−i(−1)
i(i+1)

2 +f̃n·`
[
`

i

]
f [i]
n (λ)

)
−

=

 ∞∑
j=1

δ`−j
∑̀
i=0

(−1)
i(i+1)

2 +f̃j−i·`
[
`

i

]
f

[i]
j−i(λ)


−

=
∞∑

j=`+1

δ`−j
∑̀
i=0

(−1)
i(i+1)

2 +f̃j−i·`
[
`

i

]
f

[i]
j−i(λ) .

Since f [i]
n (0) = 0 for 0 ≤ i < `, we have

ρ
(
(P · δ`)−

)
=

∞∑
j=`+1

(−1)
`(`+1)

2 +f̃j−`·`f
[`]
j−`(0) · ζ−`+j

=
∞∑
n=1

(−1)
`(`+1)

2 +f̃n·`f [`]
n (0) · ζn ,

where we have used the fact that
[
`
`

]
= 1 for ` ≥ 0. Since ρ

(
(P · δ`)−

)
= 0, we have

f
[`]
n (0) = 0 for all n ≥ 1, i.e. fn ∈ R`+1. But this contradicts to our assumption that
` is the largest integer satisfying this condition. Therefore, fn ∈ Rm for all n ≥ 1 and
m ≥ 1. By (2.1), we can conclude that fn = 0 for all n ≥ 1, which means that P is a
differential operator. This completes the proof.

13



Definition 2.2. The super Sato Grassmannian, which is denoted by SSG+, is the set
of right super D-submodules J = J0⊕J1 ⊂ E (i.e. JD ⊂ J) such that E = J ⊕E(−1).

The geometric counter part of this set is the big cell G+(0|0,−1) of the super
Grassmannian of index 0|0 and level −1 consisting of the super subspaces W ⊂ V
such that W ⊕ V (−1) = V . Note that ρ(D) = k[z−1, θ] ∈ G+(0|0,−1).

We call an operator in E monic if its leading coefficient is 1.

Theorem 2.3.

(1) Let Γ0 ⊂ E0 denote the group of homogeneous even monic super pseudo-
differential operators of order zero, and let SSG+ be the super Sato Grass-
mannian. Then there is a natural bijection σ : Γ0

∼−→ SSG+ obtained by

Γ0 3 S
σ7−→ σ(S) = S−1D = J ∈ SSG+ .

(2) Let G+(0|0,−1) be the big cell of the Grassmannian of index 0|0 and level −1.
Then the natural projection ρ : E → V induces a bijection

ρ : SSG+ ∼−→ G+(0|0,−1) .

Proof. (1) Well-definedness of σ:
Take an element S ∈ Γ0 and define J = J0 ⊕ J1 = S−1D0 ⊕ S−1D1. Then J

is a right super D-module which satisfies E = J ⊕ E(−1), because S−1E = E and
S−1E(−1) = E(−1). Therefore, J ∈ SSG+.
Injectivity of σ:

Suppose we have two operators S1 and S2 such that σ(S1) = σ(S2) = J . This means
that S−1

1 D = S−1
2 D, hence S1S

−1
2 ·1 = S1S

−1
2 ∈ D. Therefore, S1 ·S−1

2 ∈ Γ0∩D = {1},
i.e. S1 = S2.
Subjectivity of σ:

Let J ∈ SSG+ be an arbitrary element. Since E = J ⊕ E(−1), we can choose a
monic zero-th order operator S such that S−1 ∈ J ∩ Γ0. Then J contains the right
super D-module S−1D generated by S−1 in E. Define

J (N) = J ∩ E(N)

and take an arbitrary element P ∈ J (N) for N ≥ 0. Since S−1 ∈ J is monic of order
0, we have

P − S−1QN ∈ J (N−1) ,

where QN ∈ D is the leading term of P . Similarly, there is a QN−1 ∈ D ∩ E(N−1)

such that
P − S−1QN − S−1QN−1 ∈ J (N−2) .

14



If we repeat this process N -times, then we end up with

P − S−1
N∑
n=0

QN−n ∈ J (−1) = J ∩ E(−1) = {0} .

Therefore, P = S−1
N∑
n=0

QN−n ∈ S−1D, i.e. J ⊂ S−1D. Thus J = S−1D = σ(S).

(2) Well-definedness of ρ:
For every J ∈ SSG+, we have an S ∈ Γ0 such that J = S−1D by the above (1).

Since ρ(J) = S−1ρ(D) and S−1V (−1) = V (−1), we have

V = S−1ρ(D)⊕ V (−1) .

Thus ρ(J) is an element of G+(0|0,−1).
Injectivity of ρ:

Suppose that S−1
1 ρ(D) = S−1

2 ρ(D). Then S1S
−1
2 ρ(D) = ρ(D), which means that

S1S
−1
2 ∈ D by Lemma 2.1. Therefore, S1S

−1
2 ∈ D ∩ Γ0 = {1}, namely, S1 = S2.

Surjectivity of ρ:
Let W be an arbitrary point of the big cell G+(0|0,−1). Since V = W ⊕V (−1) and

W = W0 ⊕W1, we can choose a basis {wn}n≥0 for W in the following form for every
n ≥ 0: {

w2n = ζ−2n +
∑∞
`=1 a

2n
2` ζ

2`

w2n+1 = ζ−2n−1 +
∑∞
`=1 a

2n+1
2`+1 ζ

2`+1 .

Of course {w2n}n≥0 forms a basis for W0 and {w2n+1}n≥0 spans W1. For the conve-
nience, let us define

(2.5) an` =
{
an` if both n and ` are even or odd,
0 otherwise.

In order to construct a homogeneous even operator S ∈ Γ0 which satisfies that
S−1ρ(D) = W , let us give S−1 in the right normal form

S−1 =
∞∑
`=0

δ−` · s`(λ) ,

where s0(λ) ≡ 1 and s`(λ) ∈ R. The coefficients satisfy s̃2` = 0 and s̃2`+1 = 1. Then
the equation

w0 = S−1 · 1 = ρ(S−1) = 1 +
∞∑
`=1

s`(0)ζ`

determines the constant terms s`(0) of the coefficients of S−1 by s`(0) = a0
` for all

` ≥ 1.
15



Now let us assume that we know s
[i]
` (0) for all ` ≥ 1 and 0 ≤ i < n. Note that we

have

S−1 · ζ−n = ρ(S−1 · δn)

= ρ

( ∞∑
m=0

δ−m · sm(λ) · δn
)

= ρ

( ∞∑
m=0

n∑
i=0

δn−m−i · (−1)
i(i+1)

2 +s̃m·n
[
n

i

]
s[i]m(λ)

)

= ρ

(
δn +

∞∑
`=1

δn−`
n∑
i=0

(−1)
i(i+1)

2 +s̃`−i·n
[
n

i

]
s
[i]
`−i(λ)

)

= ζ−n +
n−1∑
`=1

∑̀
i=0

(−1)
i(i+1)

2 +s̃`−i·n
[
n

i

]
s
[i]
`−i(0)ζ−n+`

+
n−1∑
i=0

(−1)
i(i+1)

2 +s̃n−i·n
[
n

i

]
s
[i]
n−i(0)

+
∞∑
`=1

n∑
i=0

(−1)
i(i+1)

2 +s̃n+`−i·n
[
n

i

]
s
[i]
n+`−i(0)ζ` .

The nonnegative order terms of the above expression exactly coincides with

wn +
n−1∑
`=1

∑̀
i=0

(−1)
i(i+1)

2 +s̃`−i·n
[
n

i

]
s
[i]
`−i(0)wn−`

+
n−1∑
i=0

(−1)
i(i+1)

2 +s̃n−i·n
[
n

i

]
s
[i]
n−i(0)w0 ,

which contains only known quantities. Therefore, the equation

S−1 · ζ−n = wn +
n−1∑
`=1

∑̀
i=0

(−1)
i(i+1)

2 +s̃`−i·n
[
n

i

]
s
[i]
`−i(0)wn−`

+
n−1∑
i=0

(−1)
i(i+1)

2 +s̃n−i·n
[
n

i

]
s
[i]
n−i(0)w0
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determines s[n]
j (0) for all j ≥ 1 by

(−1)
n(n+1)

2 +s̃j ·ns
[n]
j (0) = anj +

n−1∑
`=1

∑̀
i=0

(−1)
i(i+1)

2 +s̃`−i·n
[
n

i

]
s
[i]
`−i(0)an−`j

+
n−1∑
i=0

(−1)
i(i+1)

2 +s̃n−i·n
[
n

i

]
s
[i]
n−i(0)a0

j

+
n−1∑
i=0

(−1)
i(i+1)

2 +s̃n+j−i·n
[
n

i

]
s
[i]
n+j−i(0) .

Thus we can determine the coefficients s`(λ) =
∞∑
n=0

s
[n]
` (0)λn because of the super

Taylor formula, and hence the operator S−1 =
∑∞
`=0 δ

−` · s`(λ). It is easy to see from
this construction that S satisfies S−1ρ(D) = W as required. The only remaining thing
we have to show is that S is a homogeneous even operator. Since the coefficients of
our operator are defined on the field k, S is even if and only if s[n]

j (0) = 0 for (1) j is
odd and n is even, or (2) j is even and n is odd. Using the mathematical induction
and the property (2.5) of anj , we can show the vanishing of the coefficient s[n]

j (0) in
the both cases. This completes the proof.

3. A new supersymmetric generalization of the KP system.

In this section, we introduce a system of completely integrable nonlinear partial
super differential equations which gives a supersymmetric generalization of the KP
system. We prove the unique solvability of this system following the technique of
[M3].

Let us recall the variable ζ of (2.4). If we further identify{
z = ∂−1

θ = ∂ξ = ∂
∂ξ

following (1.11), then we can use ζ to indicate

(3.1)
{
ζ−2m = ∂m

ζ−2m−1 = ∂m · ∂ξ .

In order to introduce the time evolution of the operator S ∈ Γ0 of Section 2, let
us define the set {t2n}n≥1 of infinitely many even variables and the set {t2n+1}n≥1

of infinitely many odd variables. The even variables commute with everything and
the odd ones anti-commute one another. For differential forms, we use the convention
that dt2n’s are odd quantities which anti-commute one another and dt2n+1’s are even

17



quantities which commute with everything. Since the coefficients of the time evolution
of S is a function in t = (t2, t3, t4, · · · ), we have to extend our function ring R to

R = R
[
[t2, t3, t4, · · · ]

]
= lim←−

n
R
[
[t2, t3, t4, · · · , tn]

]
.

We need a new valuation valt : R → N ∪ {∞} defined by valt (R \ {0}) = 0 and
valt tn = n. The set of all elements of R whose valuation is greater than or equal to
m is denoted by Rm. Note that R/R1 = R. An expression

(3.2) P =
∞∑

ν=−∞
aν(t)δν

is called an infinite order super pseudo-differential operator if aν(t) ∈ R and there
exist positive real numbers c1, c2 and c3 depending on P such that

valt aν(t) > c1ν − c2

for all ν > c3. The set of all infinite order super pseudo-differential operators is
denoted by E. Even though our P has infinitely many terms in both the positive
and the negative directions, it is not so hard to show that E forms an associative
algebra. Like E, the extended algebra has a super algebra structure E = E0⊕E1 in an
obvious way. If P of (3.2) has no negative power terms of δ, then we call it an infinite
order super differential operator. We denote by D the ring of all infinite order super
differential operators. Define

(3.3)

E×
0 = {P ∈ E | P mod R1 ∈ Γ0}

D×
0 = {P ∈ D | P mod R1 = 1}

G = {1 +
∑
n>0

sn(t)δ−n | sn(t) ∈ R}

G0 = G ∩ E0 .

It is established in [M3, Theorem 3.4] that these are infinite-dimensional groups and
satisfy the super Birkhoff decomposition

(3.4) E×
0 = G0 ·D×

0 .

This is the group version of the module decomposition

E0 = E
(−1)
0 ⊕D0 ,

where E(n) = E(n)⊗̂R and E
(n)
0 = E(n) ∩ E0.

18



With these preparations, let us now introduce the time evolution operator of our
super KP system by

H = exp(
∑
m≥2

tm · ζ−m) = (1 +
∑
n≥1

t2n+1∂
n · ∂ξ) · exp(

∑
n≥1

t2n · ∂n) ∈ D×
0 .

This operator defines a connection form

(3.5) Ω = dH ·H−1 =
∑
n≥1

dt2n · ∂n +
∑
n≥1

dt2n+1 · ∂n · ∂ξ ,

which satisfies the zero-curvature condition trivially:

dΩ = Ω ∧ Ω = 0 .

Definition 3.1. The new super KP system is the total differential equation for an
even homogeneous monic pseudo-differential operator S ∈ G0 of order zero:

dS = −(S · Ω · S−1)− · S ,

where (•)− denotes the E(−1)-part of the super pseudo-differential operator appearing
in the coefficients of the differential form.

In the coordinate system tn, the above system is given by

(3.6)

{
∂S
∂t2n

= −(S · ∂n · S−1)− · S
∂S

∂t2n+1
= −(S · ∂n · ∂ξ · S−1)− · S .

Remark. If we apply the reduction modulo ξ to the super KP system, then the even
equations recover the entire KP system. Therefore, our system is a supersymmetric
generalization of the usual KP system.

theorem 3.2. For an arbitrary initial datum S ∈ Γ0, there is a unique solution
S(t) ∈ G0 of the super KP system.

Proof. By applying the super Birkhoff decomposition (3.4) to the operator H · S−1 ∈
E×

0 , we can find unique operators S(t) ∈ G0 and Y (t) ∈ D×
0 such that

S(t)−1 · Y (t) = H · S−1 ,

i.e. S(t) = Y (t) · S · H−1. Since the differential form dS(t) · S(t)−1 contains only
negative order terms of δ, and since dY (t) · Y (t)−1 contains only positive order terms
of δ in their coefficients, we have

dS(t) · S(t)−1 = dY (t) · S ·H−1 · S(t)−1 − Y (t) · S ·H−1 · dH ·H−1

= dY (t) · Y (t)−1 − S(t) · Ω · S(t)−1

= −
(
S(t) · Ω · S(t)−1

)
−
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which is nothing but the super KP system. The uniqueness of the solution follows
from the uniqueness of the super Birkhoff decomposition.

The above proof is exactly the same as that of [M3, Theorem 2.1], but this time
it is far simpler. Just compare our equation with (2.25) of [M3]! The key point of
the unique solvability is the super Birkhoff decomposition. Since this decomposition
theorem is proved in its most general framework in [M3, Theorem 3.4], it applies to
our new situation without any modification.

4. The super Krichever functor.
In order to study the geometric meaning of the super KP system (3.6), we need

a super analogue of the Krichever map of Segal–Wilson [SW]. In the joint work with
Rabin [MR], we have established the anti-equivalence of the super Krichever functor
between the category of algebraic data consisting of points of the super Grassmannians
and their stabilizers and the category of geometric data consisting of algebraic super
curves and sheaves of super modules on them. In this section, we state the main
theorem of [MR] in a more general framework. Only in this section, k can be a field
of arbitrary characteristic.

For a point W of the super Grassmannian G(µ0|µ1, 2ν + 1), we define the maximal
stabilizer AW of W by

(4.1) AW = {a ∈ V | a ·W ⊂W}.
It is a super subalgebra of V and satisfies AW = (AW )0⊕(AW )1 for (AW )i = AW ∩Vi,
i = 0, 1. Note that we have always k ⊂ AW . If W is a generic point of the super
Grassmannian, then the maximal stabilizer is just k. We say a super subalgebra
A = A0 ⊕ A1 ⊂ AW a nontrivial stabilizer of W if A0 6= k and A1 6= 0. Since A is a
super-commutative algebra, A1 is a torsion free module over A0.

Definition 4.1. The category S(2ν + 1) is defined as follows:
(1) An object of S(2ν+1) is a pair (A,W ) consisting of a point W of an arbitrary

super Grassmannian of the fixed level 2ν + 1 and its nontrivial stabilizer A ⊂
AW ;

(2) A morphism among the objects is a pair

(α, ι) : (A′,W ′) −→ (A,W )

consisting of inclusion maps α : A′ ↪→ A and ι : W ′ ↪→W .
We call an object of this category a Schur pair.

The rank of a Schur pair is the positive integer defined by

(4.2) rank (A,W ) = rank A =
1
2
G.C.D.{ord a0 | a0 ∈ A0} .

If A has rank r and W is a point of G(µ0|µ1, 2ν+ 1), then we say (A,W ) a Schur pair
of rank r, index µ0|µ1, and level 2ν + 1.

The geometric counterpart of the category of Schur pairs is the category Q(2ν + 1)
of quintets.
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Definition 4.2. For a positive integer r and arbitrary integers µ0, µ1 and ν, the
quintet of rank r, index µ0|µ1 and level 2ν + 1 is a collection (C, p, π,F , φ) of the
following geometric data:

(1) C = (Cred,OC) is an irreducible complete algebraic super space of even-part
dimension 1 defined over k, that means, Cred is a reduced irreducible complete
algebraic curve over k and the structure sheaf is defined by OC = OCred ⊕N ,
where N is a torsion free sheaf of rank one OCred-modules which has also a
structure of the nilpotent algebra N 2 = 0;

(2) p ⊂ C is a divisor of C such that its reduced point pred is a smooth k-rational
point of Cred;

(3) π : Uo → Up is a morphism of formal super schemes, where Uo = Spec k
[
[z, θ]

]
is the formal completion of the affine line A1|1

k along the divisor o = {z = 0}
and Up = Spec ÔCred,pred⊗̂OC is the formal completion of C along the divisor p.
We require that π is surjective, i.e. the corresponding ring homomorphism π∗ :
ÔCred,pred⊗̂OC → k

[
[z, θ]

]
is injective, the reduced morphism πred : (Uo)red →

(Up)red is an r-sheeted covering ramified at pred, and that

H0(Up,KUp) ∩H0(Uo,OUo) = H0(Up,OUp)

as a subring of H0(Uo,KUo), where KU denotes the sheaf of quotient rings of
the structure sheaf OU of the formal super scheme U ;

(4) F = F0⊕F1 is a direct sum of torsion free sheaves F0 and F1 of OCred-modules
of rank r such that

dimkH
0(C,F)− dimkH

1(C,F) = µ0|µ1 .

We require that F has an OC-module structure which induces an injective
homomorphism N ↪→ Hom(F0,F1) and the zero homomorphism N → 0 ∈
Hom(F1,F0);

(5) φ : FUp

∼−→ π∗OUo
(ν) is an OUp

-module isomorphism, where FUp
is the formal

completion of F along the divisor p ⊂ C and OUo
(ν) = OUo

⊗O(Uo)red(ν).
Two quintets (C, p, π1,F , φ1) and (C, p, π2,F , φ2) are identified if we have

H0(Up,FUp
)

φ1−−−−→
∼

H0(Up, π1∗OUo
(ν))

φ2

yo yo
H0(Up, π2∗OUo(ν))

∼−−−−→ H0(Uo,OUo(ν)) .

The reason why we call the above quintet having level 2ν + 1 is because we have

H0
(
Uo,OUo

(ν)
)

= k
[
[z, θ]

]
z−ν = V (2ν+1).
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Definition 4.3. The category Q(2ν+1) of quintets of level 2ν+1 is defined as follows:
(1) An objects of Q(2ν + 1) is a quintet (C, p, π,F , φ) of fixed level 2ν + 1;
(2) A morphism among quintets is a pair

(β, ψ) : (C1, p1, π1,F1, φ1) −→ (C2, p2, π2,F2, φ2)

consisting of a morphism β : C1 → C2 of algebraic super spaces and an OC-
module homomorphism ψ : F2 → β∗F1 of sheaves on C2 such that

(4.3) p1 = β−1(p2),

(4.4)

Uo Uo

π1

y yπ2

Up1
β̂−−−−→ Up2 ,

i.e. π2 = β̂ ◦ π1, where β̂ is the morphism of formal super schemes induced by
β, and

(4.5)

F2Up2

ψ̂−−−−→ β̂∗F1Up1

φ2

yo o
yβ̂∗(φ1)

π2∗OUo(ν) β̂∗π1∗OUo(ν) ,

where ψ̂ is the homomorphism of sheaves on Up2 associated with ψ.

Theorem 4.4. There is a contravariant functor

χ(2ν + 1) : Q(2ν + 1) ∼−→ S(2ν + 1)

which makes these categories anti-equivalent.

Remark. In [MR], we proved this theorem only when C is an algebraic super variety
of dimension 1|1. But the same argument which is based on the technique of [M4] can
be applied to the current situation.

This functor is called the super Krichever functor . For every quintet of rank r,
index µ0|µ1 and level 2ν + 1, it assigns a Schur pair of the same rank, the same index
and the same level by

(4.6)
{
A = π∗

(
(H0(C \ p,OC)

)
W = φ

(
H0(C \ p,F)

)
.
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The super space C is a super variety, i.e. a super manifold with singularities, if
and only if the odd part of the stabilizer A1 is rank 1 over A0. We proved in [MR] an
interesting theorem which says that this condition is always satisfied for the maximal
stabilizer AW if it is nontrivial. Since the assignment W 7−→ (AW ,W ) is canonical,
every point W of the Grassmannian gives rise to a quintet consisting of an algebraic
super curve if AW is nontrivial.

Let C = (C,OC) be an algebraic super space of even-part dimension 1. In this
paper, we call a sheaf F on C a vector bundle of rank r|0 if there is a torsion free
OCred-module sheaf F0 on Cred such that F = F0 ⊗ OC . When Cred is nonsingular,
our F coincides with the usual split vector bundle on C. But note that F is not locally
free in general.

Proposition 4.5. Let (C, p, π,F , φ) be a quintet of rank 1 corresponding to a maximal
Schur pair (AW ,W ). Then F is a line bundle of rank 1|0 if and only if (AW )1 ·W0 =
W1.

Proof. Following the construction of [M4, Section 3], the (AW )0-modules (AW )1, W0

and W1 determine the OCred-module sheaves N , F0 and F1. The condition (AW )1 ·
W0 = W1 then implies F1 = F0 ⊗ N , which is equivalent with F = F0 ⊗ OC . This
completes the proof.

Remark. The proposition does not hold in general if the quintet is not corresponding
to the maximal Schur pair.

Since everything is defined on a field k, we can derive from the usual Riemann–Roch
theorem the following (cf. [RSV]):

Theorem 4.6. Let (C,OC) be an algebraic super curve defined over k with the struc-
ture sheaf

OC = ∧•(N ) = OCred ⊕N

and let F = F0 ⊗OC be a vector bundle of rank r|0 on C. Then we have

dimkH
0(C,F)− dimkH

1(C,F)

=
(
degF − r(g − 1)

)
|
(
degF + degN − r(g − 1)

)
,

where degF = degF0 and g is the (arithmetic) genus of Cred.

This theorem tells us that a quintet (C, p, π,F , φ) consisting of an algebraic super
curve of genus g with degN = n and a vector bundle F of rank r and degree r(g− 1)
gives rise to a point on the super Grassmannian G(0|n, 2ν + 1). Therefore, no single
super Grassmannian can handle all the algebraic super curves. In particular, since a
super conformal structure on an algebraic super curve comes from a special line bundle
N of degree g − 1, the super Grassmannian G(0|0, 0) or G(0|0,−1) is not the right
space to study universal moduli of super conformal structures.

23



We can interpret both the super KP system of Manin and Radul [ManR] and our
super KP system of (3.6) as dynamical systems on the super Grassmannian G(0|0,−1)
through the super Sato correspondence. It becomes clear for us now why nobody could
ever discover a connection between the super conformal structures and the Manin-
Radul super KP system. Because there is no such relation!

However, our theory is good enough from purely mathematical point of view, be-
cause it gives an interesting characterization of the Jacobian varieties of arbitrary
algebraic super curves, as we are going to see in the next section.

5. A characterization of the Jacobians of super curves.

In this section, we define the set of super-commuting vector fields on the super
Grassmannians and show that every finite-dimensional integral manifold of this flows
has a natural structure of the Jacobian variety of an algebraic super curve. Since every
Jacobian can be obtained in this way, what we are giving is a characterization of the
Jacobian varieties of arbitrary algebraic super curves. It is also shown that if we restrict
these flows on the big cell of the super Grassmannian of index 0|0 and level −1, then
they coincide with the flows which are defined by the super KP system of Section 3. In
the nonsupersymmetric situation of [M4, Section 6], we defined a quotient space of the
Grassmannians in order to deal with the generalized KP flows in the coordinate–free
manner. But it is impossible to define a corresponding quotient space of the super
Grassmannians rigorously in the infinite-dimensional supersymmetric situation we are
working with. Our idea is to define the vertical vector fields on the Grassmannians and
to study the horizontal integral manifolds of a super-commuting vector fields, so that
we can avoid defining the quotient spaces. Of course the method we are presenting
here can be also used for the nonsupersymmetric case.

Let us consider the super-commutative subalgebra

(5.1) K = k
(
(∂−1)

)
⊕ k
(
(∂−1)

) ∂
∂ξ

of E. Since

∂

∂ξ
· δn = (δ − ξδ2) · δn = δn+1 + (−1)n

[
n

1

]
δn+1 − (−1)nδn+2ξ ,

∂
∂ξ maps V1 to 0 and zm to zmθ. Therefore, the operator action of elements of K on
V is equal to the V action on itself by multiplication. In this sense, we can identify V
with the subalgebra K of E by the bijection

(5.2) K −→ ρ(K) = V .

We denote K(1) = K ∩ E(1). The identification (5.2) gives K(1) = V (1).
Every P ∈ E defines an element ΦW (P ) ∈ Hom(W,V/W ) through the action on V :

ΦW (P ) : W ↪→ V
P−→ V → V/W .
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Since Hom(W,V/W ) is the tangent space of the super Grassmannian at the point W ,

Φ(P ) : G(µ0|µ1, 2ν + 1) 3W 7−→ ΦW (P ) ∈ Hom(W,V/W )

gives a vector field. We call Φ(K(1)) the set of vertical vector fields on the super
Grassmannians. For every P ∈ E, the vertical component of the vector field Φ(P ) is
given by Φ

(
ρ(P (1))

)
using the identification of (5.2), where P (1) is the image of the

projection
E 3 P 7−→ P (1) ∈ E(1) .

We denote by

(5.3) Φ+(P ) = Φ(P )− Φ
(
ρ(P (1))

)
the horizontal vector field defined by P ∈ E.

Definition 5.1. Let F be a super-commutative subalgebra of E. A horizontal inte-
gral manifold of the super-commuting flows Φ(F ) is a nonsingular subvariety M of
G(µ0|µ1, 2ν + 1) such that the tangent space TWM of M at every point W ∈ M
coincides with the set

{Φ+
W (P ) = ΦW (P )− ΦW

(
ρ(P (1))

)
| P ∈ F}

as a subspace of Hom(W,V/W ).

We call the super-commuting flows Φ(K) on the super Grassmannian the Jacobian
flows, and its horizontal integral manifolds the orbit of the Jacobian flows.

The one-parameter subgroup of the vector field Φ(ζ−n) is given by the infinite
order super differential operator exp(tnζ−n) ∈ D×

0 , where ζ−n represents the su-
per differential operators of (3.1). It acts formally on the super Grassmannians by
W 7−→ exp(tnζ−n) ·W , and on the Schur pair by

(A,W ) 7−→(exp(tnζ−n) ·A · exp(−tnζ−n), exp(tnζ−n) ·W )

= (A, exp(tnζ−n) ·W ) ,

where the last equality holds because exp(tnζ−n) is a pure even operator which com-
mutes with A ⊂ V = K. Therefore, the action of one-parameter subgroup exp(tnζ−n)
on a point W of the super Grassmannians preserves the maximal stabilizer AW , and
hence preserves the geometric data (C, p, π) of the corresponding quintet. Thus the
Jacobian flows correspond to infinitesimal deformations of the sheaf F and its local
information φ.
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Definition 5.2. The Jacobian variety Jac(C) of an algebraic super space C of even-
part dimension 1 defined over k is the quotient module

Jac(C) = H1(C,OC)/H1(C,Z)

of cohomologies, where Z ⊂ OCred is the sheaf of constant functions which are consid-
ered to be even.

It is obvious from the definition that the reduced points of the Jacobian variety is
given by

Jacred(C) = Jac(Cred) = H1(Cred,OCred)/H
1(Cred,Z) ,

which is the Jacobian variety of the algebraic curve Cred.

Remark. Unlike the usual situation, our Jacobian variety is not isomorphic in general
to the Picard variety of the algebraic super space.

The following is the main theorem of this paper.

Theorem 5.3. Every finite-dimensional orbit of the Jacobian flows on the super
Grassmannian G(µ0|µ1, 2ν + 1) is canonically isomorphic to the Jacobian variety of
an algebraic super variety of dimension 1|1. Conversely, every Jacobian variety of an
algebraic super variety of dimension 1|1 is obtained in this way. Therefore, a super
manifold is the Jacobian variety of an algebraic super variety of dimension 1|1 if and
only if it can be a finite dimensional orbit of the Jacobian flows defined on the super
Grassmannians.

Proof. Let M be a finite-dimensional orbit of the Jacobian flows, W ∈ M be a point
and (C, p, π,F , φ) be the quintet corresponding to the maximal Schur pair (AW ,W ).
The tangent space TWM of M at W is spanned by Φ+

W (P ) for P ∈ K, where Φ+ is
the map of (5.3). Since V = K, we have KerΦ+

W = AW +K(1). Therefore,

TWM ∼= V/(AW + V (1)) .

The finite-dimensionality of the orbit thus implies that AW has rank 1. Take an
arbitrary element a0 ∈ (AW )0 of positive order and define

(AW )∞ = {a−n0 b | n ≥ 0, b ∈ AW and ord a−n0 b ≤ 1}.

Then we can show that the completion of (AW )∞ with respect to the adic topology is
equal to V (1). Therefore, we obtain

(5.4) TWM ∼= V/(AW + V (1)) ∼= H1(C,OC)

by the same argument of [M4, Section 3]. Since AW does not change along the orbit
M , (5.4) implies that M is covered by the vector space H1(C,OC). On the other
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hand, [M4, Theorem 6.3] shows that the reduced part of the orbit is isomorphic to the
Jacobian

Jac(Cred) = H1(Cred,OCred)/H
1(Cred,Z) .

Therefore, as a super manifold, we obtain that

M = Jac(C) = H1(C,OC)/H1(C,Z) .

In order to prove the converse, let C be an arbitrary algebraic super variety of
dimension 1|1 and pred be a nonsingular point of the reduced algebraic curve Cred.
Choose an arbitrary local coordinate (z, θ) of C around pred and define the divisor
by p = {z = 0} ⊂ C. We supply π = identity, F = OC and φ = identity. Then
(C, p, π,F , φ) becomes a quintet of rank 1 and determines a Schur pair (A,W ) of rank
1. Certainly, the orbit of the Jacobian flows starting at W is finite-dimensional and is
isomorphic to the Jacobian variety of C. This completes the proof.

Theorem 5.4. The Jacobian flows on the big cell G+(0|0,−1) coincide with the vector
fields given by the super KP system of (3.6) through the super Sato correspondence of
Theorem 2.3.

Proof. Let S−1 ∈ Γ0 be the initial datum of the super KP system and W = S−1ρ(D) ∈
G+(0|0,−1) be the corresponding point of the Grassmannian. The time evolution of
the super KP system is given by the super Birkhoff decomposition

(5.5) S(t)−1 · Y (t) = exp(
∑
n≥0

tn · ζ−n) · S−1,

where S(t) is the solution and Y (t) ∈ D×
0 . If we apply the both hand sides of (5.5) to

ρ(D) ∈ G+(0|0,−1), then we have

(5.6) S(t)−1ρ(D) = exp(
∑
n≥0

tn · ζ−n) ·W ,

since Y (t) stabilizes ρ(D) because of Lemma 2.1. Let us differentiate the both hand
sides of (5.6) with respect to the parameter tn and set t = 0. Then we see that the
vector field ∂

∂tn
at W corresponds to the vector field

W ↪→ V
ζ−n

−−→ V → V/W

obtained by the multiplication of the element ζ−n ∈ K. This completes the proof.

Remark. In particular, the differentiation ∂
∂tn

of (3.6) applied to S satisfies the super
commutation relation{ [

∂
∂t2m

, ∂
∂tn

]
= ∂

∂t2m
· ∂
∂tn
− ∂

∂tn
· ∂
∂t2m

= 0[
∂

∂t2m+1
, ∂
∂t2n+1

]
= ∂

∂t2m+1
· ∂
∂t2n+1

+ ∂
∂t2n+1

· ∂
∂t2m+1

= 0
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for arbitrary m and n which follows from [ζ−m, ζ−n] = 0. Therefore, our super KP
system of (3.6) is completely integrable in the category of partial super differential
equations.

Thus every finite-dimensional solution of the super KP system gives rise to the
Jacobian variety of an algebraic super curve (C,OC), where OC = ∧•(N ) is given by
a line bundle N of degree 0.
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