
ON THE CURVATURE OF METRIC TRIPLES

QINGLAN XIA

Abstract. In this article we introduce a notion of curvature, denoted by

kX(T ), for a metric triple T inside a (possibly discrete) metric space X. To

define the notion, we employ the information consisting of side lengths of the
triple as well as the minimum total distance from vertices of the triple to points

of the metric space. This information provides us a unique number kX(T ) such

that the triple T can be isometrically embedded into the model space M2
k up

to k ≤ kX(T ). The value kX(T ) agrees with the usual curvature when X is

a convex subset of a model space. We also show that the curvature kX(T ) of

any metric triple T inside a CAT (k) space is bounded above by k.

1. Introduction

The purpose of this article is to introduce a notion of curvature for a metric triple
inside a (possibly discrete) metric space. Our motivation comes from considering
the following problem: suppose X is a (possibly finite) subset of an unknown metric
space Y , how can we discover geometric information of Y from those of X? People
are interested in finding some intrinsic and numerically computable geometric quan-
tities of X that could be used to indicate properties of the unknown ambient space
Y . As development of scientific computation grow rapidly, this problem becomes
even more interesting since X may simply be some scientific data collected from
experiments or observations. As an example, we investigate curvature information
of X in this article.

As one of the fundamental concepts in geometry, curvature has been studied
extensively from those of smooth curves to Riemannian manifolds [4], to geodesic
metric spaces (see [1],[2] and references therein), and beyond (e.g. [3], [6]). In the
literature, most works about curvature assume that the space itself is at least locally
path-connected. In the more general setting when the metric space is not necessarily
path-connected, or even simply a finite set, one may consider Menger curvature of
metric triples (see [5] and references therein). Menger defined the curvature of a
triple of points in a metric space as the reciprocal of the radius of the circle in the
Euclidean plane which is circumscribed to a comparison configuration associated
to that triple. Later Wald [7] considered the curvature of quadruple of points in a
metric space as the curvature k of the model surface M2

k (i.e., the surface of constant
curvature k) into which the metric quadruple can be isometrically embedded.

In the definition of Menger curvature of a triple T , one uses a comparable triangle
of the triple in the Euclidean space. Nevertheless, since the triple could also be
isometrically embedded into other model spaces M2

k of constant curvature k, one
may also consider comparison configurations of the triple in other model surfaces
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M2
k and get analogous concepts of curvature. In this sense, Menger’s curvature is

thoroughly Euclidean.
On the other hand, existence of other points in X may prohibit the triple T ,

together with other points, to be isometrically embedded into some M2
k . This

motives us to consider the minimum distance from the triple to points in X, and
enable us to find a unique number kX (T ) so that T can only be isometrically
embedded into M2

k up to k ≤ kX (T ).
The triple-wise defined curvature kX(T ) has some nice properties.

• When X is a convex subset of a model space M2
k , the value kX(T ) agrees

with the pointwise defined curvature k of X, for each non-degenerate triple
T in X.
• The value kX(T ) is intrinsically defined. It depends only on the side lengths

of the triple as well as the minimum distance of the triple to X.
• Suppose X is a subset of an unknown metric space Y , then according to

Proposition 5.7, kX(T ) ≥ kY (T ). Adding more data of Y to X will decrease
the gap between kX(T ) and kY (T ), and provide a better approximation.
• Suppose X is a CAT(k) space. Then, according to Theorem 6.1, every

metric triple (with a bounded perimeter) in X will have the curvature
kX(T ) bounded above by k. This result indicates that one could study
properties of a more general CAT(k)-type space X by assuming that every
triple-wise curvature kX(T ) in X is bounded above by k. Note that in this
general setting, the space X is not necessarily locally path connected.

The article is organized as follows. In section §2, we define the function S(a, b, c, k)
by studying the Steiner problem on the model space M2

k . For a metric triple T in-
side M2

k of side lengths a, b, c, the value S(a, b, c, k) gives the minimum distance
from the vertices of the triple to points in M2

k . In section §3, we calculate the
values of S(a, b, c, k) numerically, and showed its continuity and monotonicity in
§4. In section §5, we define the curvature kX(T ) of a metric triple T in any metric
space X using the function S(a, b, c, k). We also investigate properties of kX(T )
afterwards. In section §6, we show that in a CAT(k) space X, any metric triple
T (with a bounded perimeter) in X will also have the curvature kX(T ) bounded
above by k.

2. The Steiner problem on triples in the model surfaces

For a real number k, the model space M2
k with distance |·|k is the simply con-

nected surface with constant curvature k. That is, if k = 0, then M2
k is the Eu-

clidean plane. If k > 0, then M2
k is obtained from the sphere S2 by multiplying

the distance function by the constant 1√
k

. If k < 0, then M2
k is obtained from

the hyperbolic space H2 by multiplying the distance function by the constant 1√
−k .

The diameter of M2
k is denoted by Dk := π/

√
k for k > 0 and Dk :=∞ for k ≤ 0.

Suppose a, b, c ∈ (0,∞) with a ≤ b ≤ c ≤ a + b. For any k ∈ (−∞,
(

2π
a+b+c

)2

],

i.e. a+ b+ c ≤ 2Dk, there exists a triangle ∆ABC in M2
k with side length |BC|k =

a, |AC|k = b and |AB|k = c. Then, we consider the Steiner problem of minimizing

(2.1) S (a, b, c, k) := min
P∈∆ABC

{|PA|k + |PB|k + |PC|k}
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in the model space M2
k . The minimum value is denoted by S (a, b, c, k), which is

independent of the choice of the triangle ∆ABC in M2
k .

In general, when the side lengths a, b, c, are not necessarily in increasing order,
one can simply extend the definition of S by requiring S(a, b, c, k) to be a symmetric
function of variables a, b, c. Nevertheless, in the following context, we will simply
assume that a ≤ b ≤ c.

In the space M2
k , if the angle ]ACB ≥ 2π

3 , then the minimum value of S is

achieved at the vertex C. When the angle ]ACB < 2π
3 , the minimum value of S

is achieved at an interior point O of the triangle ∆ABC. In this case, the point O
is called the Fermat’s point of the triangle. A useful fact about the Fermat’s point
O is that the angles ]AOB = ]BOC = ]COA = 2π

3 in M2
k .

Lemma 2.1. For any a, b, c ∈ (0,∞) with a ≤ b ≤ c ≤ a + b, and any k ∈
(−∞,

(
2π

a+b+c

)2

], it holds that

a+ b+ c

2
≤ S (a, b, c, k) ≤ a+ b.

In particular, if a+ b = c, then for any k ∈ (−∞,
(

2π
a+b+c

)2

],

S (a, b, c, k) = a+ b = c.

Proof. Clearly, by the triangle inequality, for each P ∈ ∆ABC,

2 {|PA|k + |PB|k + |PC|k} ≥ |BC|k + |AC|k + |AB|k .

Thus, 2S (a, b, c, k) ≥ a+ b+ c. Also,

S (a, b, c, k) ≤ |CA|k + |CB|k = a+ b.

�

The function S has the following properties:

Proposition 2.2. Let S be the function defined by (2.1). Then,

(1) For any λ > 0, we have

(2.2) S

(
λa, λb, λc,

k

λ2

)
= λS (a, b, c, k) .

In particular,

(a+ b+ c)S

(
a

a+ b+ c
,

b

a+ b+ c
,

c

a+ b+ c
, (a+ b+ c)

2
k

)
= S (a, b, c, k) .

(2) If k > 0, then

(2.3) S (a, b, c, k) =
1√
k
S
(
a
√
k, b
√
k, c
√
k, 1
)
,

and

S

(
a√
k
,
b√
k
,
c√
k
, k

)
=

1√
k
S (a, b, c, 1) .

(3) If k < 0, then

(2.4) S (a, b, c, k) =
1√
−k

S
(
a
√
−k, b

√
−k, c

√
−k,−1

)
,
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and

S

(
a√
−k

,
b√
−k

,
c√
−k

, k

)
=

1√
−k

S (a, b, c, 1) .

Proof. These results follow from direct calculations using the definition of S as well
as the relationships between distance functions of M2

k and those of S2 or H2. �

Definition 2.3. For any a, b, c ∈ (0,∞) with a ≤ b ≤ c ≤ a + b, we consider the
number k∗ defined as follows:

• If c2 = a2 + b2 + ab = a2 + b2 − 2ab cos
(

2π
3

)
, then k∗ = 0;

• If c2 < a2 + b2 + ab, then let k∗ > 0 be the number such that

cos
(
c
√
k∗
)

= cos
(
a
√
k∗
)

cos
(
b
√
k∗
)
− 1

2
sin
(
a
√
k∗
)

sin
(
b
√
k∗
)

;

• If c2 > a2 + b2 + ab, then let k∗ < 0 be the number such that

cosh
(
c
√
−k∗

)
= cosh

(
a
√
−k∗

)
cosh

(
b
√
−k∗

)
+

1

2
sinh

(
a
√
−k∗

)
sinh

(
b
√
−k∗

)
.

We denote the number k∗ by Λ (a, b, c).

Geometrically, the number k∗ = Λ (a, b, c) is the critical parameter so that in any
space M2

k with k < k∗, there exists a Fermat’s point O in the triangle ∆ABC with
side lengths (a, b, c). For any side lengths (a, b, c) not necessarily in an increasing

order, we may simply reorder it into an increasing order (ã, b̃, c̃) and extend the

definition Λ (a, b, c) := Λ
(
ã, b̃, c̃

)
.

From the definition of Λ(a, b, c), it clearly holds that

Λ(ta, tb, tc) =
1

t2
Λ(a, b, c)

for any t > 0. As an example, in Figure 1, we plot the graph of Λ(a, b, c) with
a = 1, b = 1.2 and c varies from (0.2, 2.2).

Figure 1. Graph of the curve Λ(a, b, c) with a = 1, b = 1.2 and c
varies from (0.2, 2.2).
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3. Calculation of the function S(a, b, c, k)

Let a, b, c be fixed real values with 0 < a ≤ b ≤ c ≤ a + b. For any k ∈
(−∞,

(
2π

a+b+c

)2

], there exists a triangle ∆ABC in the model space M2
k with a, b, c

as its side lengths. We now consider the properties of S(a, b, c, k) as a function of

the variable k ∈ (−∞,
(

2π
a+b+c

)2

].

For any k ∈ [Λ (a, b, c) ,
(

2π
a+b+c

)2

], by the definition of Λ(a, b, c), it follows that

]ACB ≥ 2π
3 in M2

k . In this case, the minimum value of S in (2.1) is achieved at
the point C and thus

S (a, b, c, k) = a+ b.

For any k ∈ (−∞,Λ (a, b, c)), the angle ]ACB < 2π
3 in M2

k , and the minimum
value of S in (2.1) is achieved at the Fermat point O in the interior of the triangle
∆ABC. In this case,

(3.1) S(a, b, c, k) = x+ y + z,

where x = |OA|k , y = |OB|k and z = |OC|k. Note that the angles ]AOB =
]BOC = ]COA = 2π

3 in M2
k .

We now calculate the value of S(a, b, c, k) in (3.1) based on the signs of k.

3.1. Calculation of S(a, b, c, 0). When Λ (a, b, c) > 0, i.e., when a2 + b2 +ab > c2,
one can explicitly calculate the value of S(a, b, c, 0) as follows.

In this case, ∆ABC is a triangle in the Euclidean plane. At the Fermat’s point
O, by the law of cosines, it holds that

a2 = y2 + z2 + yz,(3.2)

b2 = x2 + z2 + xz,(3.3)

c2 = x2 + y2 + xy.(3.4)

On the other hand, when calculating the area ∆ of the triangle, we have

1

2
xy sin(2π/3) +

1

2
yz sin(2π/3) +

1

2
xz sin(2π/3) = ∆

Thus, xy + yz + zx = 4∆√
3
. As a result, 2(x + y + z)2 = a2 + b2 + c2 + 4

√
3∆.

Therefore,

(3.5) S(a, b, c, 0) = x+ y + z =

√
a2 + b2 + c2 + 4

√
3∆

2
,

where the area ∆ can be calculated by Heron’s formula

∆ =
√
s(s− a)(s− b)(s− c),

with s = a+b+c
2 .

3.2. Calculation of S(a, b, c, k) with k > 0. To calculate S (a, b, c, k) with k > 0,
by (2.3) and (2.4), it is sufficient to calculate S (a, b, c, 1).

In this case, ∆ABC is a triangle in the unit sphere S2. When Λ(a, b, c) > 1, i.e.,
when cos c > cos a cos b− 1

2 sin a sin b, S achieves its minimum at the Fermat’s point
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O. Since the angles at O are all 2π
3 , according to the spherical law of cosines, the

values x, y, z are giving by solving the following system of trigonometric equations:

cos a = cos y cos z − 1

2
sin y sin z,(3.6)

cos b = cosx cos z − 1

2
sinx sin z,(3.7)

cos c = cosx cos y − 1

2
sinx sin y.(3.8)

Proposition 3.1. For the x, y, z, and a, b, c given as above, let X = sinx, Y =
sin y, Z = sin z and u = cos a, v = cos b, w = cos c. Then, X,Y, Z satisfy the
following system of multivariate polynomial equations:(

3u2 + 1
)
X2 +

(
3v2 + 1

)
Y 2 + (6uv − 2w)XY − 3X2Y 2 + 4w2 = D,(3.9) (

3u2 + 1
)
X2 +

(
3w2 + 1

)
Z2 + (6uw − 2v)XZ − 3X2Z2 + 4v2 = D,(3.10) (

3v2 + 1
)
Y 2 +

(
3w2 + 1

)
Z2 + (6vw − 2u)Y Z − 3Y 2Z2 + 4u2 = D,(3.11)

where D = 4u2 + 4v2 + 4w2 − 8uvw.

Proof. By symmetry, it is sufficient to prove the equation (3.9). Indeed, from (3.6)
and (3.7), we have

cos a cosx− cos b cos y =
sin z

2
sin (x− y)

and
cos a sinx− cos b sin y = sin (x− y) cos z.

These two equations as well as (3.8) give

sin2 (x− y) = sin2 (x− y) (sin2 z + cos2 z)

= 4 (cos a cosx− cos b cos y)
2

+ (cos a sinx− cos b sin y)
2

= 4 cos2 a cos2 x+ 4 cos2 b cos2 y − 8 cos a cos b cosx cos y

+ cos2 a sin2 x+ cos2 b sin2 y − 2 cos a cos b sinx sin y

= 4 cos2 a− 3 cos2 a sin2 x+ 4 cos2 b− 3 cos2 b sin2 y

−8 cos a cos b(cos c+
1

2
sinx sin y)− 2 cos a cos b sinx sin y

= 4 cos2 a+ 4 cos2 b− 3 cos2 a sin2 x− 3 cos2 b sin2 y

−8 cos a cos b cos c− 6 cos a cos b sinx sin y.

On the other hand, by using (3.8) again, we have

sin2 (x− y) = (sinx cos y − cosx sin y)
2

= sin2 x cos2 y + cos2 x sin2 y − 2 sinx sin y cosx cos y

= sin2 x− 2 sin2 x sin2 y + sin2 y − 2 sinx sin y

(
cos c+

1

2
sinx sin y

)
= sin2 x− 3 sin2 x sin2 y + sin2 y − 2 sinx sin y cos c.

Therefore, it follows that

sin2 x− 3 sin2 x sin2 y + sin2 y − 2 sinx sin y cos c

= 4 cos2 a+ 4 cos2 b− 3 cos2 a sin2 x− 3 cos2 b sin2 y

−8 cos a cos b cos c− 6 cos a cos b sinx sin y.
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Figure 2. Graph of the parametric surface S(a, b, c, 1) with a =
1, b = (t− s)/2, c = (t+ s)/2) for t ∈ (a, 2π − a) and s ∈ (−a, a).

That is,

(1 + 3 cos2 a) sin2 x− 3 sin2 x sin2 y + (1 + 3 cos2 b) sin2 y

+(6 cos a cos b− 2 cos c) sinx sin y

= 4 cos2 a+ 4 cos2 b− 8 cos a cos b cos c,

which is the equation (3.9). �

From either equations (3.6), (3.7), (3.8) or equations (3.9), (3.10), (3.11), one can
calculate the numerical values of S(a, b, c, 1) via numerical methods e.g. Newton’s
method. In Figure 2, we plot the graph of the parametric surface S(a, b, c, 1) with
a = 1, b = (t− s)/2, c = (t+ s)/2) for t ∈ (a, 2π − a) and s ∈ (−a, a).

3.3. Calculation of S(a, b, c,−1). Similarly, by the hyperbolic law of cosines, it
follows that

cosh a = cosh y cosh z +
1

2
sinh y sinh z(3.12)

cosh b = coshx cosh z +
1

2
sinhx sinh z(3.13)

cosh c = coshx cosh y +
1

2
sinhx sinh y(3.14)

for x, y, z and then S (a, b, c,−1) = x+ y + z.

Proposition 3.2. For the x, y, z, and a, b, c given as above, let X = sinhx, Y =
sinh y, Z = sinh z and u = cosh a, v = cosh b, w = cosh c. Then, X,Y, Z satisfy the
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following system of multivariate polynomial equations:(
3u2 + 1

)
X2 +

(
3v2 + 1

)
Y 2 + (6uv − 2w)XY + 3X2Y 2 − 4w2 +D = 0,(3.15) (

3u2 + 1
)
X2 +

(
3w2 + 1

)
Z2 + (6uw − 2v)XZ + 3X2Z2 − 4v2 +D = 0,(3.16) (

3v2 + 1
)
Y 2 +

(
3w2 + 1

)
Z2 + (6vw − 2u)Y Z + 3Y 2Z2 − 4u2 +D = 0,(3.17)

where D = 4u2 + 4v2 + 4w2 − 8uvw.

Proof. Follows from an analogous proof of Proposition 3.1. �

Again, from either equations (3.12), (3.13), (3.14) or equations (3.15), (3.16),
(3.17), one can calculate the numerical values of S(a, b, c,−1) via Newton’s method.

As a result, one can (numerically) calculate the values of S(a, b, c, k) for all k ∈
(−∞,Λ(a, b, c)]. In Figure 3, we plot of the graph of S(a, b, c, k) with a = 1, b = 1.2
and c = 1.3. Note that S(a, b, c, k) is a continuous strictly increasing function of
k ∈ (−∞,Λ(a, b, c)].

Figure 3. Graph of the strictly increasing curve S(a, b, c, k)
with a = 1, b = 1.2, c = 1.3 and the variable k varies from
(−∞,Λ(a, b, c)] with Λ(a, b, c) = 2.5081 here.

4. Continuity of the function S(a, b, c, k)

As motivated by Figure 3, in this section, we consider the continuity and the
montonicity of the function S(a, b, c, k).

Lemma 4.1. For each k ∈ R, S(a, b, c, k) is a continuous function of variables

a, b, c in the region given by the inequalities 0 < a ≤ b ≤ c ≤ a+b and k ≤
(

2π
a+b+c

)2

.

Proof. When k = 0, by (3.5), S(a, b, c, 0) is continuous in a, b, c.
When k > 0, by (2.3), it is sufficient to show the continuity of S(a, b, c, 1). In the

case that Λ(a, b, c) > 1, the function S(a, b, c, 1) is defined by using the equations
(3.6)–(3.8). The continuity of S(a, b, c, 1) also follows from the continuity of these
equations. Indeed, let (x∗, y∗, z∗) be the solution of the equations (3.6)– (3.8)
corresponding to (a, b, c). For any sequence {(an, bn, cn)} converges to (a, b, c), let
(xn, yn, zn) be its corresponding solution of the equations. So S(an, bn, cn, 1) =
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xn + yn + zn. We want to prove that the sequence {(xn, yn, zn)} converges to
(x∗, y∗, z∗). Let (x̄, ȳ, z̄) be any limit point of the sequence {(xn, yn, zn)}. By the
continuity of the implicit equations (3.6)- (3.8), (x̄, ȳ, z̄) is also the solution to the
equations corresponding to (a, b, c). As a result, (x̄, ȳ, z̄) equals to (x∗, y∗, z∗) due
to the fact that the system of equations has a unique solution. This shows that the
bounded sequence {(xn, yn, zn)} converges to (x∗, y∗, z∗). Therefore, S(a, b, c, 1) =
x∗+y∗+z∗ = limn→∞ xn+yn+zn = limn→∞ S(an, bn, cn, 1), and hence S(a, b, c, 1)
is continuous.

In other cases (e.g., Λ(a, b, c) ≤ 1 when k > 0, or the case that k < 0), the same
continuity result follows from analogous statements derived from the continuity of
the corresponding equations. �

Lemma 4.2. Given (a, b, c), S(a, b, c, k) is a continuous function of k.

Proof. When k 6= 0, the continuity of S(a, b, c, k) in k follows from Lemma 4.1 and
equations (2.3), (2.4). Thus, we only need to show the continuity of S(a, b, c, k) at
k = 0.

We first show that limk→0+ S(a, b, c, k) = S(a, b, c, 0). When ∆(a, b, c) ≤ 0, then
limk→0+ S(a, b, c, k) = limk→0+ (a+ b) = a+ b = S(a, b, c, 0). When ∆(a, b, c) > 0,
by definition,

S(a, b, c, 0) = x∗ + y∗ + z∗

where (x∗, y∗, z∗) is the solution to the equations (3.2)–(3.4). Similarly,

S(a, b, c, k) = x(k) + y(k) + z(k)

where (x(k)
√
k, y(k)

√
k, z(k)

√
k) is the solution to the equations (3.6)–(3.8) corre-

sponding to (a
√
k, b
√
k, c
√
k). To show that (x(k), y(k), z(k)) coverges to (x∗, y∗, z∗)

as k → 0+, it is sufficient to show that any limit point of (x(k), y(k), z(k)) equals
to (x∗, y∗, z∗). Indeed, let (x̄, ȳ, z̄) be the limit of a sequence (x(kn), y(kn), z(kn))
for some kn > 0 with limn→∞ kn = 0. Then by (3.6),

cos(a
√
kn) = cos(y(kn)

√
kn) cos(z(kn)

√
kn)− 1

2
sin(y(kn)

√
kn) sin(z(kn)

√
kn).

Using the little-oh notation, we can rewrite it as follows:

1− a2

2
kn + o(kn)

=

(
1− y(kn)2

2
kn + o(kn)

)(
1− z(kn)2

2
kn + o(kn)

)
−1

2

(
y(kn)

√
kn + o(

√
kn)
)(

z(kn)
√
kn + o(

√
kn)
)

=

(
1− ȳ2

2
kn + o(kn)

)(
1− z̄2

2
kn + o(kn)

)
− 1

2

(
ȳ
√
kn + o(

√
kn)
)(

z̄
√
kn + o(

√
kn)
)

=

(
1− ȳ2

2
kn −

z̄2

2
kn + o(kn)

)
− 1

2
(ȳz̄kn + o(kn))

= 1− ȳ2 + z̄2 + ȳz̄

2
kn + o(kn).

As a result, a2 = ȳ2 + z̄2 + ȳz̄. i.e., (x̄, ȳ, z̄) satisfies the equation (3.2). Simi-
larly, it follows that (x̄, ȳ, z̄) also satisfies the equations (3.3) and (3.4). Therefore,
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(x̄, ȳ, z̄) equals to (x∗, y∗, z∗), the solution to the equations (3.2)–(3.4). Therefore,
limk→0+ S(a, b, c, k) = S(a, b, c, 0). Analgous approach also shows that

lim
k→0−

S(a, b, c, k) = S(a, b, c, 0),

and thus S(a, b, c, k) is continuous at k = 0 as desired. �

By the previous two lemmas, we have the following result.

Proposition 4.3. S(a, b, c, k) is a continuous function.

We now study the monotonicity of the function S(a, b, c, k) in k ∈ (−∞,Λ(a, b, c)]
for each fixed (a, b, c). To avoid the lengthy analytic proof, we give geometric
reasoning here. Consider a collection of spheres representing M2

k in the upper half
space of R3. Each of them is tangent to the xy-plane at the origin O. Now, let
∆ABC be a triangle in the xy-plane with O being its Fermat’s point, and we
wrap it onto each sphere M2

k to get a triangle ∆AkBkCk while keeping O being its
Fermat’s point. Note that when one fixes the side lengths |OAk|k = x, |OBk|k =
y, |OCk|k = z, the corresponding side lengths |AkBk|k = c(k), |AkCk|k = b(k)
and |BkCk|k = a(k) are strictly decreasing. Reversely, if one fixes the side lengths
|AkBk|k = c, |AkCk|k = b and |BkCk|k = a, the corresponding lengths |OAk|k =
x(k), |OBk|k = y(k), |OCk| = z(k) will be strictly increasing. As a result, the
function S(a, b, c, k) = x(k) + y(k) + z(k) is strictly increasing in k when k ≥ 0.
Similarly, it is also strictly increasing when k ≤ 0.

In summary, S(a, b, c, k) is a continuous strictly increasing function of k.

5. Curvature of a metric triple

Definition 5.1. Let (X, d) be a metric space. A metric triple is a set T =
{p1, p2, p3} ⊆ X, together with a set of mutual distance dij = d (pi, pj) ; 1 ≤
i ≤ j ≤ 3.

Without losing of generality, we may assume that d12 ≤ d23 ≤ d13 ≤ d12 + d23.

Definition 5.2. For any metric triple T in (X, d), define

gX (T ) := inf
x∈X

3∑
i=1

d (pi, x) .

Note that gX(T ) ≥ d12+d23+d13
2 .

Definition 5.3. Let T be a metric triple in a metric space (X, d), and S be the
function as defined in (2.1). The curvature kX (T ) of the metric triple T with
respect to X is the number k ∈ [−∞,Λ (d12, d23, d13)] such that

gX (T ) = S (d12, d23, d13, k) .

Example 5.4. Suppose (X, d) is a convex subset in the model space M2
k for some

real number k, and T is a metric triple in X. Then gX(T ) = S(d12, d23, d31, k).
Thus, kX(T ) ≤ k. Moreover, if k ≤ Λ(d12, d23, d31), i.e. the angle at each vertex of
the corresponding triangle is no more than 2π/3, then kX(T ) = k.

Example 5.5. Let T be a metric triple in a discrete metric space (X, d) with
d (x, y) = 1 whenever x 6= y. Then, gX(T ) = 2. In this case, the curvature

kX(T ) = Λ(1, 1, 1) = 3.6505 =
(
π − arccos 1

3

)2
. The comparable triangle in the

model space M2
kX(T ) has an angle 2π/3 at each of its vertices.
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According to (2.2), we immediately have the following proposition:

Proposition 5.6. Let T = {p1, p2, p3} be a metric triple in the metric space

(X, dX), and T̃ = {p̃1, p̃2, p̃3} be a metric triple in the metric space (Y, dY ). If for

some λ > 0, dY (p̃i, p̃j) = λdX(pi, pj) for each i, j = 1, 2, 3 and gY (T̃ ) = λgX(T ),

then kY (T̃ ) = 1
λ2 kX(T ).

Proposition 5.7. Suppose (X, dX) can be isometrically embedded in (Y, dY ).
Then, for any metric triple T in (X, dX), we have kY (T ) ≤ kX(T ).

Proof. This is because gY (T ) ≤ gX(T ) and S(d12, d23, d31, k) is an strictly increas-
ing function of k. �

Lemma 5.8. Let T = {p1, p2, p3} and T̃ = {p̃1, p̃2, p̃3} be two metric triples in a
metric space (X, d). Then,

(5.1) |gX(T )− gX(T̃ )| ≤
3∑
i=1

d(pi, p̃i).

Proof. For all x ∈ X, by the triangle inequality,

3∑
i=1

d(x, pi) ≤
3∑
i=1

d(x, p̃i) +

3∑
i=1

d(pi, p̃i).

Taking the infimum over x ∈ X on both sides of the inequality, we have gX(T ) ≤
gX(T̃ ) +

∑3
i=1 d(pi, p̃i). Similarly, gX(T̃ ) ≤ gX(T ) +

∑3
i=1 d(pi, p̃i). �

Proposition 5.9. Let T (n) = {p(n)
1 , p

(n)
2 , p

(n)
3 } be a sequence of metric triples in a

metric space (X, d). If T (n) converges to a metric triple T = {p1, p2, p3} in (X, d)

in the sense that for each i = 1, 2, 3, d(p
(n)
i , pi)→ 0 as n→∞, then

lim
n→∞

kX(T (n)) = kX(T ).

Proof. By (5.1), limn→∞ gX(T (n)) = gX(T ). Since S is also a continuous function,
we have limn→∞ kX(T (n)) = kX(T ). �

6. Curvature of metric triples in CAT(k) spaces

For a real number k, a geodesic metric space (X, d) is said to be CAT(k) if
every geodesic triangle ∆ABC in X with perimeter less than 2Dk satisfies the
CAT(k) inequality. That is, let ∆A′B′C ′ be a comparison triangle in the model
space (M2

k , |·|k), with sides of the same length as the sides of ∆ABC, such that for
any D in edge BC, there is a corresponding point D′ in the comparison edge B′C ′

with d(B,D) = |B′D′|k, d(C,D) = |C ′D′|k and satisfies the inequality d(A,D) ≤
|A′D′|k.

Define

Hk =


π

2
√
k
, if k > 0

∞, if k = 0
1.3877√
−k , if k < 0.

Theorem 6.1. Suppose (X, d) is a CAT(k) space for some real number k. Then, for
any metric triple T = {A,B,C} in X with max{d(A,B), d(A,C), d(B,C)} ≤ Hk,
it holds that kX(T ) ≤ k.
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Proof. It is sufficient to show that gX(T ) ≤ gM2
k
(T ∗) where T ∗ = {A∗, B∗, C∗}

is the comparison configuration of T in the model space (M2
k , |·|k) of equal side

lengths. Without losing of generality, we may assume that the Fermat’s point O∗ of
the triangle A∗B∗C∗ exists in M2

k . Then, gM2
k
(T ∗) = |A∗O∗|k+ |B∗O∗|k+ |C∗O∗|k.

LetD∗ be the point on the edge B∗C∗ such that O∗ is located on the geodesic A∗D∗.
Suppose |A∗O∗|k = s|A∗D∗|k and |B∗D∗|k = t|B∗C∗|k for some s, t ∈ (0, 1). Then,
let D be the point on the edge BC in the metric space X corresponding to D∗, i.e.
d(B,D) = td(B,C). Also, let O be the point on the geodesic AD corresponding
to O∗, i.e. d(A,O) = sd(A,D). Note that gX(T ) ≤ d(A,O) + d(B,O) + d(C,O).
By the CAT(k) inequality, it holds that |A∗D∗|k ≥ d(A,D) = σ|A∗D∗|k for some
σ ≤ 1. Thus, it follows that d(A,O) = σ|A∗O∗|k and d(O,D) = σ|O∗D∗|k.

Now, we consider a comparison triangle A′B′D′ (and A′C ′D′) in M2
k of ABD

(and ACD, respectively) in (X, d). Also, let O′ on A′D′ be the corresponding
point of O on AD in X. So, |A′O′|k = d(A,O) = σ|A∗O∗|k. Again, by the CAT(k)
inequality, we have d(B,O) ≤ |B′O′|k and d(C,O) ≤ |C ′O′|k. Thus,

gX(T ) ≤ d(A,O) + d(B,O) + d(C,O) ≤ |A′O′|k + |B′O′|k + |C ′O′|k.
Note that when σ = 1, then one can simply take A′ = A∗, B′ = B∗, C ′ =

C∗, D′ = D∗, O′ = O∗. In this case, |A′O′|k + |B′O′|k + |C ′O′|k = |A∗O∗|k +
|B∗O∗|k + |C∗O∗|k = gM2

k
(T ∗). Denote

(6.1) f(σ) = |A′O′|k + |B′O′|k + |C ′O′|k.
for all σ ∈ [0, 1]. By Lemma 6.2, Lemma 6.5 and Lemma 6.8 given below, we have
f(σ) ≤ f(1) whenever σ ∈ [0, 1]. Thus, gX(T ) ≤ gM2

k
(T ∗). �

Lemma 6.2. Let f be the function as given in (6.1). When k = 0, then f(σ) ≤ f(1)
whenever σ ∈ [0, 1].

Proof. In the case that k = 0, we haveO′ = (1−s)A′+sD′ with s = ||A∗O∗||/||A∗D∗||.
Here, || · || = | · |0 denotes the Euclidian distance on M2

0 = R2. Thus, by means of
the law of cosines, we have

||B′O′||2 = ||(1− s)B′A′ + sB′D′||2

= (1− s)2||B′A′||2 + s2||B′D′||2 + s(1− s)(||B′A′||2 + ||B′D′||2 − ||A′D′||2)

= (1− s)||B′A′||2 + s||B′D′||2 − s(1− s)||A′D′||2

= (1− s)||B∗A∗||2 + s||B∗D∗||2 − s(1− s)σ2||A∗D∗||2

=
1

||A∗D∗||2
(||D∗O∗|| × ||B∗A∗||2 + ||A∗O∗|| × ||B∗D∗||2)− ||A∗O∗|| × ||A∗D∗||σ2.

Similarly, we have

||C ′O′||2 =
1

||A∗D∗||2
(||D∗O∗||×||C∗A∗||2+||A∗O∗||×||C∗D∗||2)−||A∗O∗||×||A∗D∗||σ2.

As a result,

f(σ) = ||A′O′||+ ||B′O′||+ ||C ′O′||

= σ||A∗O∗||+

√
||A∗O∗|| × ||B∗D∗||2 + ||D∗O∗|| × ||A∗B∗||2

||A∗D∗||
− σ2||A∗O∗|| × ||O∗D∗||

+

√
||A∗O∗|| × ||C∗D∗||2 + ||D∗O∗|| × ||A∗C∗||2

||A∗D∗||
− σ2||A∗O∗|| × ||O∗D∗||.
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Direct calculation yields that f ′′(σ) ≤ 0 and

f ′(σ) = ||A∗O∗|| − ||A
∗O∗|| × ||O∗D∗||
||B′O′||

σ − ||A
∗O∗|| × ||O∗D∗||
||C ′O′||

σ.

Thus,

f ′(1) = ||A∗O∗|| − ||A
∗O∗|| × ||O∗D∗||
||B∗O∗||

− ||A
∗O∗|| × ||O∗D∗||
||C∗O∗||

.

Since O∗ is the Fermat point, the angles at O∗ are all 2π
3 . Denote the angle

]O∗B∗D∗ = α, then by the law of sine, we have

f ′(1) = ||A∗O∗||(1− ||O
∗D∗||

||B∗O∗||
− ||O

∗D∗||
||C∗O∗||

)

= ||A∗O∗||(1− sinα

sin( 2π
3 − α)

−
sin(π3 − α)

sin(π3 + α)
)

= ||A∗O∗||(1− 1) = 0.

Now, since f ′′(σ) ≤ 0 and f ′(1) = 0, it holds that f ′(σ) ≥ f ′(1) = 0 for σ ∈ [0, 1].
Thus, f is increasing on [0, 1], and f(σ) ≤ f(1) whenever σ ∈ [0, 1]. �

To consider the case when k > 0, we need the following two lemmas first. For
simplicity, we let | · | denote the standard distance | · |1 on the unit sphere S2.

Lemma 6.3. Let ∆B′D′O′ be a triangle in the unit sphere (S2, | · |). Then,

(6.2) cot(|O′B′|) = cot(|O′D′|) cos(α) + cot(γ)
sin(α)

sin(|O′D′|)
where α = ]B′O′D′ and γ = ]B′D′O′.

Proof. By the spherical laws of cosines and sines, it follows that

cot(|O′B′|) =
cos(|O′B′|)
sin(|O′B′|)

=
cos(|B′D′|) cos(|O′D′|) + sin(|B′D′|) sin(|O′D′|) cos(γ)

sin(|O′B′|)

=
[cos(|O′B′|) cos(|O′D′|) + sin(|O′B′|) sin(|O′D′|) cos(α)] cos(|O′D′|)

sin(|O′B′|)

+
sin(|B′D′|) sin(|O′D′|) cos(γ)

sin(|O′B′|)

= cot(|O′B′|) cos2(|O′D′|) + sin(|O′D′|) cos(|O′D′|) cos(α) +
sin(α) sin(|O′D′|)

sin(γ)
cos(γ).

Simplifying it leads to (6.2). �

Lemma 6.4. Let ∆A∗B∗C∗ be a triangle on the unit sphere S2 with a Fermat’s
point O∗ inside the triangle. Let D∗ be the point on the arc B∗C∗ such that O∗

is on the arc A∗D∗. Also, let ∆A′B′D′ be a triangle on S2 such that |A′B′| =
|A∗B∗|, |B′D′| = |B∗D∗| and |A′D′| = σ|A∗D∗| for some σ ∈ (0, 1]. Let O′ be
the point on the arc A′D′ such that |A′O′| = σ|A∗O∗| and |O′D′| = σ|O∗D∗|. If
max{|A∗B∗|, |A∗C∗|, |B∗C∗|} ≤ π

2 , then for all σ ∈ [0, 1],

(6.3)
d(|O′B′|)

dσ
≥ −|O

∗A∗|
2

− |A
∗D∗| sin(|A∗O∗|)

sin(|A∗D∗|)
sin(

π

3
) cot(γ),
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where γ = ]B′D′O′.

Proof. By the spherical law of cosines, we have

cos(|O′B′|) = cos(|A′B′|) cos(|A′O′|) + sin(|A′B′|) sin(|A′O′|) cos(]B′A′O′)

= cos(|A′B′|) cos(|A′O′|) + sin(|A′B′|) sin(|A′O′|)cos(|B′D′|)− cos(|A′B′|) cos(|A′D′|)
sin(|A′B′|) sin(|A′D′|)

= cos(|A′B′|) sin(|O′D′|)
sin(|A′D′|)

+ cos(|B′D′|) sin(|A′O′|)
sin(|A′D′|)

.

Thus,

(6.4) cos(|O′B′|) = cos(|A∗B∗|) sin(|O∗D∗|σ)

sin(|A∗D∗|σ)
+ cos(|B∗D∗|) sin(|A∗O∗|σ)

sin(|A∗D∗|σ)
.

By the law of cosines, it follows that

(6.5) cos(|A∗B∗|) = cos(|B′O′|) cos(|A∗O∗|σ)− sin(|B′O′|) sin(|A∗O∗|σ) cos(α)

and

(6.6) cos(|B∗D∗|) = cos(|B′O′|) cos(|O∗D∗|σ) + sin(|B′O′|) sin(|O∗D∗|σ) cos(α).

Now, by taking derivatives on (6.4) with respect to σ, and a simplification using
(6.5) and (6.6), we have

− sin(|O′B′|)d(|O′B′|)
dσ

=
|O∗D∗| cos(|O∗D∗|σ) sin(|A∗D∗|σ)− |A∗D∗| sin(|O∗D∗|σ) cos(|A∗D∗|σ)

sin2(|A∗D∗|σ)
cos(|A∗B∗|)

+
|O∗A∗| cos(|O∗A∗|σ) sin(|A∗D∗|σ)− |A∗D∗| sin(|O∗A∗|σ) cos(|A∗D∗|σ)

sin2(|A∗D∗|σ)
cos(|B∗D∗|)

=
cos(|B′O′|)

sin(|A∗D∗|σ)
[|A∗D∗| sin(|O∗D∗|σ) sin(|A∗O∗|σ)] +

sin(|B′O′|)
sin(|A∗D∗|σ)

cos(α)

×[|O∗A∗| cos(|O∗A∗|σ) sin(|O∗D∗|σ)− |O∗D∗| cos(|O∗D∗|σ) sin(|A∗O∗|σ)].

Thus, by means of (6.2), it follows that

−d(|O′B′|)
dσ

=
|A∗D∗| sin(|O∗D∗|σ) sin(|A∗O∗|σ)

sin(|A∗D∗|σ)
cot(|B′O′|)

+
|O∗A∗| cos(|O∗A∗|σ) sin(|O∗D∗|σ)− |O∗D∗| cos(|O∗D∗|σ) sin(|A∗O∗|σ)

sin(|A∗D∗|σ)
cos(α)

=
|A∗D∗| sin(|O∗D∗|σ) sin(|A∗O∗|σ)

sin(|A∗D∗|σ)
(cot(|O∗D∗|σ) cos(α) + cot(γ)

sin(α)

sin(|O∗D∗|σ)
)

+
|O∗A∗| cos(|O∗A∗|σ) sin(|O∗D∗|σ)− |O∗D∗| cos(|O∗D∗|σ) sin(|A∗O∗|σ)

sin(|A∗D∗|σ)
cos(α)

= |O∗A∗| cos(α) +
|A∗D∗| sin(|A∗O∗|σ)

sin(|A∗D∗|σ)
sin(α) cot(γ).

As a result, we have for all σ ∈ [0, 1],

(6.7)
d(|O′B′|)

dσ
= −|O∗A∗| cos(α)− |A

∗D∗| sin(|A∗O∗|σ)

sin(|A∗D∗|σ)
sin(α) cot(γ).
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Now, we want to show that d2(|O′B′|)
dσ2 ≤ 0 for all σ ∈ [0, 1]. Let p(σ) = cos(|O′B′|).

Then,

d2(|O′B′|)
dσ2

=
−p′′(σ)√
1− p(σ)2

− (p′(σ))2p(σ)

(
√

1− p(σ)2)3
.(6.8)

Now, we investigate p(σ) via the equation (6.4). Clearly, when

max{|A∗B∗|, |A∗C∗|, |B∗C∗|} ≤ π

2
,

both cos(|A∗B∗|) ≥ 0 and cos(|B∗D∗|) ≥ 0. On the other hand, direct calculations
give that when b ≥ a > 0,

d2

dx2

(
sin(ax)

sin(bx)

)
=

sin(ax)

sin(bx)
[(b cot(bx)− a cot(ax))2 + (

b2

sin2(bx)
− a2

sin2(ax)
)] ≥ 0.

Thus, by equation (6.4), it follows that p(σ) ≥ 0 and p′′(σ) ≥ 0 for all σ ≤ 1. This

shows that d2(|O′B′|)
dσ2 ≤ 0. As a result, when 0 ≤ σ ≤ 1,

d(|O′B′|)
dσ

≥ d(|O′B′|)
dσ

|{σ=1} = −|O
∗A∗|
2

− |A
∗D∗| sin(|A∗O∗|)

sin(|A∗D∗|)
sin(

π

3
) cot(γ).

Here, in the last equality, we used (6.7) and the fact that O∗ is the Fermat’s
point. �

Lemma 6.5. Let f be the function as given in (6.1). When k > 0, then f(σ) ≤ f(1)
whenever σ ∈ [0, 1].

Proof. Without losing generality, we may assume that k = 1. So for any σ ≤ 1, by
(6.3),

f ′(σ) =
d(|A′O′|+ |B′O′|+ |C ′O′|)

dσ

≥ |A∗O∗| − |A
∗O∗|
2

− |A
∗D∗| sin(|A∗O∗|)

sin(|A∗D∗|)
sin(

π

3
) cot(γ)

− |A∗O∗|
2

− |A
∗D∗| sin(|A∗O∗|)

sin(|A∗D∗|)
sin(

π

3
) cot(π − γ) = 0.

Thus, f(σ) ≤ f(1). �

Now, we consider the case of k < 0.

Lemma 6.6. Using the same notations as in the Lemma 6.4 except that the unit
sphere S2 is replaced by the hyperbolic plane (H2, | · |h) = (M2

−1, | · |−1). If

(6.9) max{|A∗B∗|h, |A∗C∗|h, |B∗C∗|h} ≤ 1.3877,

then for all σ ∈ [0, 1],

(6.10)
d(|O′B′|h)

dσ
≥ −|O

∗A∗|h
2

− |A
∗D∗|h sinh(|A∗O∗|h)

sinh(|A∗D∗|h)
sin(

π

3
) cot(γ),

where γ = ]B′D′O′.
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Proof. In the hyperbolic case, analogous statements as in the proof of Lemma 6.4
still give
(6.11)

cosh(|O′B′|h) = cosh(|A∗B∗|h)
sinh(|O∗D∗|hσ)

sinh(|A∗D∗|hσ)
+ cosh(|B∗D∗|h)

sinh(|A∗O∗|hσ)

sinh(|A∗D∗|hσ)
,

and for all σ ∈ [0, 1],

(6.12)
d(|O′B′|h)

dσ
= −|O∗A∗|h cos(α)− |A

∗D∗|h sinh(|A∗O∗|hσ)

sinh(|A∗D∗|hσ)
sin(α) cot(γ).

To prove (6.10), it is sufficient to show that for all σ ∈ [0, 1], d2(|O′B′|h)
dσ2 ≤ 0. The

proof of this fact requires some further works.
Let p(σ) = cosh(|O′B′|h). Then,

d2(|O′B′|h)

dσ2
=

p′′(σ)√
p(σ)2 − 1

− (p′(σ))2p(σ)

(
√
p(σ)2 − 1)3

.(6.13)

Together with equation (6.11), Lemma 6.7 below implies that p′′(σ) ≤ 0 under the

condition (6.9). Since p(σ) > 1, it follows that d2(|O′B′|h)
dσ2 ≤ 0. �

Lemma 6.7. Suppose 0 < a ≤ b ≤ 1.3877, then for all x ∈ [0, 1], it holds that

d2

dx2

(
sinh(ax)

sinh(bx)

)
≤ 0.

Proof. Direct calculations give that

d2

dx2

(
sinh(ax)

sinh(bx)

)
=

sinh(ax)

sinh(bx)
g(x),

where

g(x) = (b coth(bx)− a coth(ax))2 +
b2

sinh2(bx)
− a2

sinh2(ax)

= 2b coth(bx)(b coth(bx)− a coth(ax)) + a2 − b2.

Note that on the interval (−π, π), the function coth(x) can be expressed as its
Taylor series

coth(x) =
1

x
+

∞∑
n=1

22nB2n

(2n)!
x2n−1 =

1

x
+
x

3
− x3

45
+

2x5

945
− · · · ,

where B2n is the 2n-th Bernoulli number given by

B2n = (−1)n+1 2(2n)!

(2π)2n
(1 +

1

22n
+

1

32n
+

1

42n
+ · · · ).

Thus, when 0 ≤ ax ≤ bx < π,

0 ≤ b coth(bx)− a coth(ax)

= b(
1

bx
+
bx

3
− b3x3

45
+

2b5x5

945
− · · · )− a(

1

ax
+
ax

3
− a3x3

45
+

2a5x5

945
− · · · )

=
x

3
(b2 − a2)− x3

45
(b4 − a4) +

2x5

945
(b6 − a6)− · · ·

≤ x

3
(b2 − a2)− x3

45
(b4 − a4) +

2x5

945
(b6 − a6).
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Also,

0 ≤ b coth(bx) = b(
1

bx
+
bx

3
− b3x3

45
+

2b5x5

945
− · · · ) ≤ b( 1

bx
+
bx

3
) =

1

x
+
b2x

3
.

As a result,

g(x) = 2b coth(bx)(b coth(bx)− a coth(ax)) + a2 − b2

≤ 2(
1

x
+
b2x

3
)[
x

3
(b2 − a2)− x3

45
(b4 − a4) +

2x5

945
(b6 − a6)] + a2 − b2

=
a2 − b2

3
[1 +

2a2 − 8b2

15
x2 +

12b4 + 12a2b2 − 2a4

315
x4 − 4b2(a4 + b4 + a2b2)

945
x6]

≤ a2 − b2

3
[1 +

0− 8b2

15
x2 +

12b4 + 0− 2b4

315
x4 − 4b2(b4 + b4 + b4)

945
x6]

=
a2 − b2

945
[315− 168(bx)2 + 10(bx)4 − 4(bx)6] ≤ 0,

whenever 0 < a ≤ b and (bx)2 ≤ 1.9257. Thus, when 0 < b ≤
√

1.9257 = 1.3877, it
holds that g(x) ≤ 0 for all x ∈ [0, 1] and for all 0 < a ≤ b. �

Lemma 6.8. Let f be the function given in (6.1). When k < 0, then f(σ) ≤ f(1)
whenever σ ∈ [0, 1].

Proof. Follows from an analogous proof of Lemma 6.5, via equation (6.10). �

References

1. M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Springer-Verlag,
Berlin Heidelberg, 1999.

2. D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, in: Graduate Studies in

Math., vol. 33, Amer. Math. Soc., Providence, RI, 2001.
3. R. Forman, Bochner’s method for cell complexes and combinatorial Ricci curvature, Discrete

Comput. Geom. 29:3 (2003), 323—374.

4. J. M. Lee, Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathe-
matics, Vol. 176. (1997)

5. E. Saucan, Curvature – Smooth, Piecewise-Linear and Metric, book chapter in What is Geom-

etry?, Advanced Studies in Mathematics and Logic, 237-268, Polimetrica, Milano, 2006.
6. J. M. Sullivan, Curvatures of Smooth and Discrete Surfaces. Discrete Differential Geometry,

Oberwolfach Seminars 38, Birkhauser, 2008.
7. A. Wald, Begründung einer koordinatenlosen Differentialgeometrie der Flächen, Ergebnisse
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