ON THE CURVATURE OF METRIC TRIPLES

QINGLAN XIA

ABSTRACT. In this article we introduce a notion of curvature, denoted by
kx (T), for a metric triple T inside a (possibly discrete) metric space X. To
define the notion, we employ the information consisting of side lengths of the
triple as well as the minimum total distance from vertices of the triple to points
of the metric space. This information provides us a unique number kx (7") such
that the triple T' can be isometrically embedded into the model space M ,3 up
to k < kx(T). The value kx (T') agrees with the usual curvature when X is
a convex subset of a model space. We also show that the curvature kx (T') of
any metric triple T inside a C AT (k) space is bounded above by k.

1. INTRODUCTION

The purpose of this article is to introduce a notion of curvature for a metric triple
inside a (possibly discrete) metric space. Our motivation comes from considering
the following problem: suppose X is a (possibly finite) subset of an unknown metric
space Y, how can we discover geometric information of Y from those of X? People
are interested in finding some intrinsic and numerically computable geometric quan-
tities of X that could be used to indicate properties of the unknown ambient space
Y. As development of scientific computation grow rapidly, this problem becomes
even more interesting since X may simply be some scientific data collected from
experiments or observations. As an example, we investigate curvature information
of X in this article.

As one of the fundamental concepts in geometry, curvature has been studied
extensively from those of smooth curves to Riemannian manifolds [4], to geodesic
metric spaces (see [1],[2] and references therein), and beyond (e.g. [3], [6]). In the
literature, most works about curvature assume that the space itself is at least locally
path-connected. In the more general setting when the metric space is not necessarily
path-connected, or even simply a finite set, one may consider Menger curvature of
metric triples (see [5] and references therein). Menger defined the curvature of a
triple of points in a metric space as the reciprocal of the radius of the circle in the
Fuclidean plane which is circumscribed to a comparison configuration associated
to that triple. Later Wald [7] considered the curvature of quadruple of points in a
metric space as the curvature k of the model surface M7 (i.e., the surface of constant
curvature k) into which the metric quadruple can be isometrically embedded.

In the definition of Menger curvature of a triple T', one uses a comparable triangle
of the triple in the Euclidean space. Nevertheless, since the triple could also be
isometrically embedded into other model spaces M} of constant curvature k, one
may also consider comparison configurations of the triple in other model surfaces

2010 Mathematics Subject Classification. Primary: 51F99, 53C23. Secondary: 46B85.
Key words and phrases. Curvature of metric triple, CAT (k) space, Menger curvature, Steiner
problem, Fermat’s point.



2 QINGLAN XIA

M} and get analogous concepts of curvature. In this sense, Menger’s curvature is
thoroughly Euclidean.

On the other hand, existence of other points in X may prohibit the triple T,
together with other points, to be isometrically embedded into some M,? This
motives us to consider the minimum distance from the triple to points in X, and
enable us to find a unique number kx (T) so that T can only be isometrically
embedded into M2 up to k < kx (T).

The triple-wise defined curvature kx (7') has some nice properties.

e When X is a convex subset of a model space M ,f , the value kx (T') agrees
with the pointwise defined curvature k of X, for each non-degenerate triple
Tin X.

o The value kx (T') is intrinsically defined. It depends only on the side lengths
of the triple as well as the minimum distance of the triple to X.

e Suppose X is a subset of an unknown metric space Y, then according to
Proposition 5.7, kx (T') > ky (T'). Adding more data of Y to X will decrease
the gap between kx(T') and ky (T'), and provide a better approximation.

e Suppose X is a CAT(k) space. Then, according to Theorem 6.1, every
metric triple (with a bounded perimeter) in X will have the curvature
kx(T) bounded above by k. This result indicates that one could study
properties of a more general CAT (k)-type space X by assuming that every
triple-wise curvature kx (7') in X is bounded above by k. Note that in this
general setting, the space X is not necessarily locally path connected.

The article is organized as follows. In section §2, we define the function S(a, b, ¢, k)
by studying the Steiner problem on the model space M?. For a metric triple T in-
side M? of side lengths a, b, c, the value S(a,b,c, k) gives the minimum distance
from the vertices of the triple to points in M7?. In section §3, we calculate the
values of S(a,b,c, k) numerically, and showed its continuity and monotonicity in
§4. In section §5, we define the curvature kx (T') of a metric triple 7' in any metric
space X using the function S(a,b,c, k). We also investigate properties of kx(T)
afterwards. In section §6, we show that in a CAT(k) space X, any metric triple
T (with a bounded perimeter) in X will also have the curvature kx(7") bounded
above by k.

2. THE STEINER PROBLEM ON TRIPLES IN THE MODEL SURFACES

For a real number k, the model space M ,f with distance |-|, is the simply con-
nected surface with constant curvature k. That is, if & = 0, then M? is the Eu-
clidean plane. If k£ > 0, then M ,f is obtained from the sphere S? by multiplying

the distance function by the constant ﬁ If k < 0, then M? is obtained from

the hyperbolic space H? by multiplying the distance function by the constant \/%7
The diameter of M? is denoted by Dy, := 7/vVk for k > 0 and Dy, := oo for k < 0.

2
Suppose a,b, ¢ € (0,00) with a < b < ¢ <a+b. For any k € (—o0, (afl;:-c) 1,
i.e. a+b+c < 2Dy, there exists a triangle AABC in M7 with side length |BC|, =

a,|AC|, = b and |AB|, = c¢. Then, we consider the Steiner problem of minimizing

(21) S(a?b7 c, k) = PEIE?BC“PA']C + |PB‘I<: + |PC|k}
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in the model space MZ. The minimum value is denoted by S (a,b, ¢, k), which is
independent of the choice of the triangle AABC in M?.

In general, when the side lengths a, b, ¢, are not necessarily in increasing order,
one can simply extend the definition of S by requiring S(a, b, ¢, k) to be a symmetric
function of variables a, b, c. Nevertheless, in the following context, we will simply
assume that a < b <ec.

In the space M7, if the angle LACB > %’T, then the minimum value of S is
achieved at the vertex C'. When the angle {ACB < %’T, the minimum value of S
is achieved at an interior point O of the triangle AABC. In this case, the point O
is called the Fermat’s point of the triangle. A useful fact about the Fermat’s point

O is that the angles {AOB = {BOC = £COA = 2% in M}.
Lemma 2.1. For any a,b,c € (0,00) with a < b < ¢ < a+b, and any k €

2
(—o0, (Q_EILC) ], it holds that

at+b+ec

9 SS(a,b,c,k)Sa—i—b.

In particular, if a + b = ¢, then for any k € (—o0, (afg;rc)z]}
S(a,b,c,k)=a+b=c.
Proof. Clearly, by the triangle inequality, for each P € AABC,
2{|PA|, +|PB|, +|PC|,} = |BC|, + |AC], + |AB,.
Thus, 25 (a,b,c, k) > a+ b+ c. Also,
S (a,b,c,k) < |CA|, +|CB|, =a+b.

The function S has the following properties:

Proposition 2.2. Let S be the function defined by (2.1). Then,
(1) For any A > 0, we have

k
(2.2) S ()\a, b, Ac, )\2> = AS (a,b,c, k).

In particular,

a b 2
b b+ )2k ) =5 (abe,k).
@005 (i e e b O = S b )
(2) If k > 0, then
1
(2.3) S(asb,e k)= 7 (a\/E ok, vk, 1) ,
and

S( i Ck)—l
\/Ev\/E7\/E, 7\/%
(3) If £ <0, then

S(a,b,c,1).

b

(2.4) S(a,b,c, k)= —

S@V?Emﬁ%¢¢?afg,

ﬁ
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and

S(ﬁ,&,h,k):ﬁsm,b,c,l).

Proof. These results follow from direct calculations using the definition of S as well
as the relationships between distance functions of M7 and those of S? or H?. O

Definition 2.3. For any a,b,c¢ € (0,00) with a < b < ¢ < a+ b, we consider the
number k* defined as follows:
o If  =a®+b? +ab=a? +b* — 2abcos (%), then k* = 0;
o If ¢ < a® + b? + ab, then let k* > 0 be the number such that
1
cos (c k‘*) = cos (a k‘*) cos (b\/ k*) —3 sin (a k*) sin (b\/ k*) ;
o If ¢ > a® + b? + ab, then let k* < 0 be the number such that

cosh (m/—ikj*) = cosh (am) cosh (b\/—ikj*) + %sinh (a\/Tk*> sinh (b\/—ik*) .
We denote the number k&* by A (a, b, c).

Geometrically, the number k* = A (a, b, ¢) is the critical parameter so that in any
space M} with k < k*, there exists a Fermat’s point O in the triangle AABC with
side lengths (a, b, c). For any side lengths (a,b,c) not necessarily in an increasing
order, we may simply reorder it into an increasing order (a,b,¢) and extend the
definition A (a,b,c) :== A (&, b, 6).

From the definition of A(a,b, ¢), it clearly holds that

1
A(ta, th,tc) = t—gA(a, b, c)
for any ¢ > 0. As an example, in Figure 1, we plot the graph of A(a,b,c) with
a=1,b=1.2 and ¢ varies from (0.2,2.2).

21,12, ¢)

i L i L i L i L
02 04 06 ik} 1 12 14 16 1.8 2 22

FIGURE 1. Graph of the curve A(a,b,c) with a =1,b=1.2 and ¢
varies from (0.2,2.2).
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3. CALCULATION OF THE FUNCTION S(a,b, ¢, k)
Let a,b,c be fixed real values with 0 < a < b < ¢ < a+b. For any k €
(—o0, (ﬁ)z], there exists a triangle AABC' in the model space M? with a,b, ¢
as its side lengths. We now consider the properties of S(a,b, ¢, k) as a function of

2
the variable k € (—oo, (afl:r-i—c) -

2
For any k € [A (a,b,¢), (%) ], by the definition of A(a, b, ¢), it follows that
LACB > % in M}?. In this case, the minimum value of S in (2.1) is achieved at

3
the point C and thus

S(a,b,c,k) =a+b.
For any k € (=00, A (a,b,¢)), the angle LACB < ZF in M}, and the minimum

value of S in (2.1) is achieved at the Fermat point O in the interior of the triangle
AABC. In this case,

(3.1) S(a,b,c,k) =x+y+ z,

where z = |OA|,,y = |OB|, and z = |OC|,. Note that the angles LAOB =
4BOC = £LCOA = & in M?.
We now calculate the value of S(a,b, ¢, k) in (3.1) based on the signs of k.

3.1. Calculation of S(a,b,c,0). When A (a,b,c) > 0, i.e., when a? 4+ b? +ab > 2,
one can explicitly calculate the value of S(a, b, c,0) as follows.

In this case, AABC is a triangle in the Euclidean plane. At the Fermat’s point
O, by the law of cosines, it holds that

(3.2) a® = 422 4yz,
(3.3) Vo= 22422z,
(3.4) A = 224y 4oy

On the other hand, when calculating the area A of the triangle, we have
1 1 1
2%y sin(27/3) + Jv? sin(27/3) + %% sin(27/3) = A

Thus, zy + yz + zx = 47%. As a result, 2(z +y + 2)? = a® + b> + % + 4V/3A.

Therefore,

a2 + b2 + 2 + 4v/3A
2 i

(3.5) S(a,b,c,O)—x—i—y—i—z—\/
where the area A can be calculated by Heron’s formula

A=/s(s—a)(s—b)(s —c),

with s = %b"'c.
3.2. Calculation of S(a,b,c, k) with k > 0. To calculate S (a,b, ¢, k) with k > 0,
by (2.3) and (2.4), it is sufficient to calculate S (a,b, ¢, 1).

In this case, AABC is a triangle in the unit sphere S2. When A(a, b,c) > 1, i.e.,
when cosc > cosacosb— % sinasin b, S achieves its minimum at the Fermat’s point
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O. Since the angles at O are all 2?“, according to the spherical law of cosines, the
values x, ¥y, z are giving by solving the following system of trigonometric equations:

1
(3.6) cosa = cosycosz-—g siny sin z,
(3.7) cosb = cosxcosz— 5 sin z sin z,
1
(3.8) cOSC = COSTCOSY — isinxsiny.

Proposition 3.1. For the x,y, 2z, and a,b, c given as above, let X = sinz,Y =
siny,Z = sinz and u = cosa,v = cosb,w = cosc. Then, XY, Z satisfy the
following system of multivariate polynomial equations:

(39)  (Bu*+1) X*+ (30 + 1) Y? + (6uv — 2w) XY — 3X*Y? + 4w* = D,
(3.10)  (3u*+1) X* + (3w® + 1) Z° + (buw — 20) X Z — 3X*Z* 4+ 4v® = D,
(311) (3 +1)Y?+ (3w’ +1) 2%+ (6vw — 2u) YZ — 3Y?Z* + 4u* = D,
where D = 4u? + 4v? + 4w? — Suvw.

Proof. By symmetry, it is sufficient to prove the equation (3.9). Indeed, from (3.6)
and (3.7), we have

sinz |
cosacosx — cosbcosy = sin (z — y)

and
cosasinz — cosbsiny = sin (z — y) cos z.
These two equations as well as (3.8) give
sin? (x — y) = sin? (z — y) (sin” z + cos? 2)
= 4(cosacosz — cosbeosy)® + (cosasinz — cosbsiny)?
= 4cos?acos® x4 4cos?beos? y — 8cosacosbcos z cosy

2

+ cos? asin? z + cos? bsin? y — 2 cosacosbsin z siny

= 4cos’a —3cos®asin® x + 4cos? b — 3cos? bsin? y

1
—8cosacosb(cosc + 3 sinxsiny) — 2 cosacosbsin x siny

= 4cos’a+ 4cos®b — 3cos? asin?

x —3cos?bsin®y
—8cosacosbcosc— 6cosacosbsinzsiny.
On the other hand, by using (3.8) again, we have
sin? (z —y) = (sinzcosy— coszsiny)?
= sin®zcos? y + cos® xsin® y — 2sin x siny cos z cos y

= sin’z— 2s1n2xs1n2y+51n2y— 2sinxsiny (cosc+ §s1nxsmy

= sin?z — 3sin® zsin? y 4 sin® y — 2sinz siny cos c.

Therefore, it follows that

sin? z — 3sin? zsin? y 4 sin? y — 2sinz siny cos ¢
= 4cos?a+4cos?b— 3cos® asin® x — 3cos® bsin?y

—8cosacosbcosc — 6cosacosbsinxsiny.
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Graphs of the parametric surface S{1,01-5 W2,0t+s 02,17

FIGURE 2. Graph of the parametric surface S(a,b,c,1) with a =
L,b=(t—138)/2,c=(t+s)/2) for t € (a,2m —a) and s € (—a,a).

That is,
(1 + 3cos?a)sin?x — 3sin® zsin®y + (1 + 3 cos? b) sin? y
+(6cosacosb — 2cosc)sinzsiny
= 4cos’a+4cos’>b— 8cosacosbcose,
which is the equation (3.9). O

From either equations (3.6), (3.7), (3.8) or equations (3.9), (3.10), (3.11), one can
calculate the numerical values of S(a, b, ¢, 1) via numerical methods e.g. Newton’s
method. In Figure 2, we plot the graph of the parametric surface S(a,b, ¢, 1) with
a=1,b=(t—9)/2,c=(t+s)/2) for t € (a,2m —a) and s € (—a,a).

3.3. Calculation of S(a,b,c,—1). Similarly, by the hyperbolic law of cosines, it
follows that

1

(3.12) cosha = coshycoshz+ 5 sinh y sinh 2
1

(3.13) coshb = coshacoshz+ B sinh z sinh z
1

(3.14) coshe = coshxcoshy + 3 sinh z sinh y

for x,y, z and then S (a,b,c,—1) =z +y + 2.

Proposition 3.2. For the z,y, z, and a, b, c given as above, let X = sinhz,Y =
sinhy, Z = sinh z and v = cosha,v = cosh b, w = coshec. Then, X,Y, Z satisfy the
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following system of multivariate polynomial equations:
. u” + + (ov” + + (buv — 2w + —4dw "+ D=0,
(3.15) (3u®+1) X%+ (3v® + 1) Y2 + (6uv — 2w) XY +3X?Y? —4uw?+ D =0
. u” + + (sw” + + (buw — 2v + —4dv”+ D =0,
3.16) (3u® +1) X? + (3w +1) Z? + (6 20) XZ +3X*Z? — 4> + D=0
. V7 + + (sw” + + (bvw — 2u + —4du”+D =0,
3.17) (30 +1) Y2+ (Buw?+1) 22 + (6 2u)YZ +3Y?Z* — 4>+ D=0
where D = 4u? + 4v? + 4w? — Suvw.

Proof. Follows from an analogous proof of Proposition 3.1. O

Again, from either equations (3.12), (3.13), (3.14) or equations (3.15), (3.16),
(3.17), one can calculate the numerical values of S(a,b, ¢, —1) via Newton’s method.

As a result, one can (numerically) calculate the values of S(a,b, ¢, k) for all k €
(=00, A(a, b, ¢)]. In Figure 3, we plot of the graph of S(a,b, ¢, k) witha =1,b=1.2
and ¢ = 1.3. Note that S(a,b,c, k) is a continuous strictly increasing function of
k € (—o0,A(a,b,c)].

FIGURE 3. Graph of the strictly increasing curve S(a,b,c, k)
with ¢ = 1,b = 1.2,¢ = 1.3 and the variable k£ varies from
(—o00,A(a, b, )] with A(a, b, c) = 2.5081 here.

4. CONTINUITY OF THE FUNCTION S(a,b,c, k)

As motivated by Figure 3, in this section, we consider the continuity and the
montonicity of the function S(a, b, ¢, k).

Lemma 4.1. For each k € R, S(a,b,c, k) is a continuous function of variables

2
a,b, c in the region given by the inequalities 0 < a < b < c < a+bandk < (af;+c) .

Proof. When k = 0, by (3.5), S(a,b,c,0) is continuous in a, b, c.

When k£ > 0, by (2.3), it is sufficient to show the continuity of S(a,b,¢c,1). In the
case that A(a,b,c) > 1, the function S(a,b, ¢, 1) is defined by using the equations
(3.6)—(3.8). The continuity of S(a,b,c, 1) also follows from the continuity of these
equations. Indeed, let (z*,y*,2*) be the solution of the equations (3.6)- (3.8)
corresponding to (a,b, c). For any sequence {(an,, by, c,)} converges to (a,b,c), let
(Zn, Yn, zn) be its corresponding solution of the equations. So S(an,bn,cn,1) =
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Tn + Yn + 2n. We want to prove that the sequence {(xy,yn,2,)} converges to
(z*,y*,2*). Let (Z,y, 2z) be any limit point of the sequence {(z, yn, zn)}. By the
continuity of the implicit equations (3.6)- (3.8), (zZ,¥, z) is also the solution to the
equations corresponding to (a,b,c). As a result, (Z,7,Z) equals to (z*,y*, z*) due
to the fact that the system of equations has a unique solution. This shows that the
bounded sequence {(zy, yn, 2n)} converges to (x*,y*, z*). Therefore, S(a,b,c,1) =
*Hy* 2 = lmy oo T+ yYn+2n = limy, o0 S(an, by, ¢n, 1), and hence S(a, b, ¢, 1)
is continuous.

In other cases (e.g., A(a,b,c) <1 when k > 0, or the case that k£ < 0), the same
continuity result follows from analogous statements derived from the continuity of
the corresponding equations. ([

Lemma 4.2. Given (a,b,c), S(a,b,c, k) is a continuous function of k.

Proof. When k # 0, the continuity of S(a,b, ¢, k) in k follows from Lemma 4.1 and
equations (2.3), (2.4). Thus, we only need to show the continuity of S(a,b,c, k) at
k=0.

We first show that limy_,g+ S(a, b, c, k) = S(a,b,¢,0). When A(a,b,c) <0, then
limy,_,g+ S(a,b,¢, k) = limy_,o+ (a +b) =a+ b= S(a,b,¢,0). When A(a,b,c) > 0,
by definition,

S(a,b,c,0) =a* +y* + 2"
where (z*,y*, z*) is the solution to the equations (3.2)—(3.4). Similarly,
S(a,b, ¢, k) = x(k) +y(k) + z(k)

where (x(k)Vk, y(k)V'k, 2(k)VE) is the solution to the equations (3.6)—(3.8) corre-
sponding to (av'k, bvk, cvk). To show that (z(k), y(k), z(k)) coverges to (z*, y*, 2*)
as k — 07, it is sufficient to show that any limit point of (z(k),y(k),z(k)) equals
to (z*,y*, 2*). Indeed, let (7,7, Zz) be the limit of a sequence (z(ky),y(kn), 2(kn))
for some k,, > 0 with lim,,_, k, = 0. Then by (3.6),
1
cos(av/ky) = cos(y(kn)V/ kn) cos(z(kn)v/kn) — 3 sin(y(kn)\/ kn) sin(z(kn) vV kn).

Using the little-oh notation, we can rewrite it as follows:

2
17%%m+0®w

_ <1y%f2m+o@m)<1z%f2m+ow@>
5 (1) 0o(VED) (k) v + 0 VR)
Gfﬁ§m+ﬂW0><L4iMﬁﬂ%@>—l(%ﬂh+d¢ED(AﬂM+d¢Eﬂ

2

52

-
_ (1, _F _ s
= (1 5 k, 5 k, + o(kn)> 5 (yzkn + o(ky))

P+ +yz
2

As a result, a? = 32 + 22 + yz. ie., (Z,7,2) satisfies the equation (3.2). Simi-
larly, it follows that (Z, g, Z) also satisfies the equations (3.3) and (3.4). Therefore,

=1 kn + o(ky).



10 QINGLAN XIA

(Z,7, 2) equals to (z*,y*, z*), the solution to the equations (3.2)—(3.4). Therefore,
limy,_,o+ S(a,b, ¢, k) = S(a,b,c,0). Analgous approach also shows that

lim S(a,b,c, k) = S(a,b,c,0),
k—0-
and thus S(a,b, ¢, k) is continuous at k = 0 as desired. |
By the previous two lemmas, we have the following result.

Proposition 4.3. S(a,b,c, k) is a continuous function.

We now study the monotonicity of the function S(a,b, ¢, k) in k € (—o0, A(a, b, ¢)]
for each fixed (a,b,c). To avoid the lengthy analytic proof, we give geometric
reasoning here. Consider a collection of spheres representing M7 in the upper half
space of R3. Each of them is tangent to the xy-plane at the origin O. Now, let
AABC be a triangle in the xy-plane with O being its Fermat’s point, and we
wrap it onto each sphere M? to get a triangle A Ay By Cy, while keeping O being its
Fermat’s point. Note that when one fixes the side lengths |OAg|x = z,|OBg|r =
y,|OCklr = z, the corresponding side lengths |Ax Bl = c(k), |AxCklr = b(k)
and |BxCk|r = a(k) are strictly decreasing. Reversely, if one fixes the side lengths
|Ax Bl = ¢, |AkCk|r = b and |BpCg|r = a, the corresponding lengths |OAg|, =
x(k), |OBglr = y(k),|OCk| = z(k) will be strictly increasing. As a result, the
function S(a,b,c, k) = x(k) + y(k) + z(k) is strictly increasing in k when k& > 0.
Similarly, it is also strictly increasing when k£ < 0.

In summary, S(a,b, ¢, k) is a continuous strictly increasing function of k.

5. CURVATURE OF A METRIC TRIPLE

Definition 5.1. Let (X,d) be a metric space. A metric triple is a set T =
{p1,p2,p3} C X, together with a set of mutual distance d;; = d(p;,p;); 1 <
1< j <3

Without losing of generality, we may assume that dio < dog < di3 < di2 + das.

Definition 5.2. For any metric triple T in (X, d), define
3

gx (T) :== zlg( 2 d(pi,x) .

dio+dos+d
Note that gx(T") > batdzntda,

Definition 5.3. Let T be a metric triple in a metric space (X, d), and S be the
function as defined in (2.1). The curvature kx (T) of the metric triple T with
respect to X is the number k € [—o0, A (d12, das, di3)] such that

g9x (T) = S (d12,das, d13, k) .

Example 5.4. Suppose (X, d) is a convex subset in the model space M} for some
real number k, and T is a metric triple in X. Then gx(T') = S(d12,das,ds1, k).
Thus, kx (T) < k. Moreover, if k < A(d12,d23,ds1), i-e. the angle at each vertex of
the corresponding triangle is no more than 27/3, then kx(T') = k.

Example 5.5. Let T be a metric triple in a discrete metric space (X,d) with
d(z,y) = 1 whenever z # y. Then, gx(T) = 2. In this case, the curvature

Ex(T) = A(1,1,1) = 3.6505 = (7r — arccos %)2 The comparable triangle in the

model space M, ,fx(T) has an angle 27/3 at each of its vertices.
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According to (2.2), we immediately have the following proposition:

Proposition 5.6. Let T = {p1,p2,p3} be a metric triple in the metric space
(X,dx), and T = {P1, P2, P3} be a metric triple in the metric space (Y,dy). If for
some A > 0, dy (p;,p;) = Adx(p;,p;) for each ¢,j = 1,2,3 and gy (T) = \gx(T),
then ky (T) = %]{ix(T)

Proposition 5.7. Suppose (X,dx) can be isometrically embedded in (Y,dy).
Then, for any metric triple T in (X, dx), we have ky (T) < kx(T).

Proof. This is because gy (T) < gx(T) and S(d12,dss,d31, k) is an strictly increas-
ing function of k. |

Lemma 5.8. Let T = {p1,pa, ps} and T = {p1, P2, s} be two metric triples in a
metric space (X,d). Then,

3
(5.1) l9x(T) = gx(T)] <> d(pi, pi)-
i=1

Proof. For all z € X, by the triangle inequality,

3 3 3
Zd(xapl) < Zd(xaﬁl) =+ Zd(puﬁz)
=1 i=1 =1

Taking the infimum over z € X on both sides of the inequality, we have gx(T) <
gx(T) + 20, d(pi, o). Similarly, gx (T) < gx (T) + X5, d(pi, Bi)- m

Proposition 5.9. Let 7" = {pgn),pé"),pén)} be a sequence of metric triples in a
metric space (X,d). If T(™) converges to a metric triple T = {p1,p2, p3} in (X, d)
in the sense that for each ¢ = 1,2, 3, d(pl(."),pi) — 0 as n — oo, then

lim kx(T™) = kx(T).
n—oo

Proof. By (5.1), lim,,_,00 gx (T™) = gx(T). Since S is also a continuous function,
we have lim,, o kx (T™) = kx (T). O

6. CURVATURE OF METRIC TRIPLES IN CAT(K) SPACES

For a real number k, a geodesic metric space (X,d) is said to be CAT(k) if
every geodesic triangle AABC in X with perimeter less than 2D; satisfies the
CAT(k) inequality. That is, let AA’B’C’ be a comparison triangle in the model
space (M2, ||,), with sides of the same length as the sides of AABC, such that for
any D in edge BC, there is a corresponding point D’ in the comparison edge B'C’
with d(B,D) = |B'D'|,d(C, D) = |C'D’|;, and satisfies the inequality d(A, D) <

|A’' D'
Define
ﬁ, ifk>0
Hy = < oo, ifk=0
LISTT i < .

Theorem 6.1. Suppose (X,d) is a CAT(k) space for some real number k. Then, for
any metric triple T = {A, B,C} in X with max{d(A, B),d(A,C),d(B,C)} < Hy,
it holds that kx (T) < k.
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Proof. Tt is sufficient to show that gx (7)) < gps2(T) where T* = {A*, B*,C"}
is the comparison configuration of 7' in the model space (M2, |-|,) of equal side
lengths. Without losing of generality, we may assume that the Fermat’s point O* of
the triangle A* B*C* exists in M. Then, 9rz(T7) = [A*O* [k +[B*O* [ +|C* O |y
Let D* be the point on the edge B*C™* such that Ox is located on the geodesic A* D*.
Suppose |A*O*|, = s|A*D*|;, and |B*D*|;, = t|B*C*|, for some s,t € (0,1). Then,
let D be the point on the edge BC' in the metric space X corresponding to D*, i.e.
d(B,D) = td(B,C). Also, let O be the point on the geodesic AD corresponding
to O*, i.e. d(A,O) = sd(A, D). Note that gx(T) < d(A,O) + d(B,0) + d(C,O).
By the CAT(k) inequality, it holds that |[A*D*|;, > d(A4, D) = o|A*D*|;, for some
o < 1. Thus, it follows that d(A, O) = o|A*O*|;, and d(O, D) = o|O* D*|}.

Now, we consider a comparison triangle A’B'D’ (and A’C’'D’) in M} of ABD
(and ACD, respectively) in (X,d). Also, let O" on A’D’ be the corresponding
point of O on AD in X. So, |A’O'|;; = d(A,O) = | A*O*|;. Again, by the CAT (k)
inequality, we have d(B,0) < |B'0’|; and d(C,0) < |C'O|,. Thus,

9x(T) < d(A,0) + d(B,0) + d(C,0) < |A'O'|x + |B'O'|), + |C"O'.

Note that when o = 1, then one can simply take A’ = A*, B’ = B*,C' =
C*,D' = D*,0' = O*. In this case, |[A'O'|p + |B'O'|; + |C'O'|x, = |A*O*| +
|B*O*[i +|C*O*[k = gas2(T™). Denote

(6.1) flo) = [A'O|i + |B'O'| + |C"O|.
for all o € [0,1]. By Lemma 6.2, Lemma 6.5 and Lemma 6.8 given below, we have
f(o) < f(1) whenever o € [0,1]. Thus, gx (1) < gas2(T™). O

Lemma 6.2. Let f be the function as given in (6.1). When k = 0, then f(o) < f(1)
whenever o € [0,1].
Proof. In the case that k = 0, we have O' = (1—s)A’+sD’ with s = ||A*O*||/||A*D*||.
Here, || - || = | - |o denotes the Euclidian distance on M3 = R2. Thus, by means of
the law of cosines, we have
I1B'O'|]? = /(1 = s)B'A" + sB'D'||?
(1= s)?[|B"A||* + 8[| B'D'||* + s(1 = s) (|| B'A'||> + || B'D'||* - || A'D'||?)
(L= s)|B'A|] + s||B'D'[|* — s(1 — s)||A'D'||*
= (L= 9)[[B*A"|]* + ]| B*D*[]” — 5(1 — 5)o*|| A" D*|?
1 * )k * A%k * )k * Tk * )k * Yk
= W(HD O*[| x [|B*A||* + ||A*O7|| x || B*D*||*) — [|A*O*|| x [|A*D*||o*.

Similarly, we have

lcro'|? = (DO [|x||C* A*[[P+[|A*O*[|x||C* D*||*) ~||A*O*|| x| A*D*[|o*.

|[A*Dx[|?
As a result,
flo) = ||AO'|| +[|B'O|| +|C"O']]

- || A0 x || B*D*[|? + || D*O[| x ||A*B*||? O * D
=U||A0||+\/ — 02| A*O*[[ x [|O*D~|]

|| A= D[]

A* * *D* 2 D* * A* *||2
+\/H Ol NCDIE A ID O AR _ Ly 4ot 0° D,

||A* D]
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Direct calculation yields that (o) <0 and

|40 x [|0*D|| _ [|A*07|| x ||0*D7|]
f'(o) =147 0%|| - o— ;
: | ||[B"O"|| [|lcro||
Thus,
#1(1) = Jav07|| - AO I NIO*Del|_ 140" x 0" D

||B*0|| lc=0|

Since O* is the Fermat point, the angles at O* are all %’T Denote the angle
ALO*B*D* = a, then by the law of sine, we have

oD oD

(1) = (147 0*|(
W= W= pon ~ ievor))
. sin o sin(% — o
R [fep— G-,

sin(5 — «) a sin(§ + )
[|A*O*||(1 —1) = 0.

Now, since (o) <0 and f’(1) = 0, it holds that f'(¢) > f/(1) = 0 for o € [0, 1].
Thus, f is increasing on [0, 1], and f(o) < f(1) whenever o € [0, 1]. O

To consider the case when k > 0, we need the following two lemmas first. For
simplicity, we let | - | denote the standard distance | - |; on the unit sphere S?.

Lemma 6.3. Let AB'D'O’ be a triangle in the unit sphere (S?,|-|). Then,
sin(«)

(6.2) cot(|O'B'|) = cot(|O’D’|) cos(ar) + Cot(v)m

where « = LB'O’'D’ and v = £B’'D'0O’.

Proof. By the spherical laws of cosines and sines, it follows that

o cos(|O'B)
cot(|O'B'|) = Sn(0'B))
_cos(|B'D’|) cos(|O'D'|) + sin(|B'D’|) sin(|O’ D'|) cos ()
B sin(|O0'B’))
_ [cos(JO"B’|) cos(|O’D'|) + sin(|O’' B'|) sin(|O’ D'|) cos(ar)] cos(|O"D’|)
B sin(|O’B’|)
Jrsin(|B’D’|)sin(|O’D’|)cos(’y)
sin(|0' B])
: : O/D/
= cot(|O'B'|) cos*(|0'D’|) + sin(|O'D'|) cos(|O'D'|) cos(a) + Sln(a)sj;fzg) D cos(7).
Simplifying it leads to (6.2). O

Lemma 6.4. Let AA*B*C* be a triangle on the unit sphere S? with a Fermat’s
point O* inside the triangle. Let D* be the point on the arc B*C* such that O*
is on the arc A*D*. Also, let AA'B'D' be a triangle on S? such that |A'B'| =
|A*B*|,|B'D'| = |B*D*| and |A'D'| = o|A*D*| for some o € (0,1]. Let O" be
the point on the arc A'D’ such that |A'O’| = o|A*O*| and |O'D’| = o|O*D*|. If
max{|A*B*|,|A*C*|,|B*C*|} < %, then for all o € [0,1],

d(O'B)) _ _|0"A"| _|A*D*|sin(|A°0"|)

. m
do 2 sm( A D) Sn(g) et

(6.3) .
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where v = £B'D'O’.
Proof. By the spherical law of cosines, we have
cos(|O'B'|) = cos(|A'B’|) cos(|]A’O']) + sin(|A’B'|) sin(|]A’O’'|) cos(£ B’ A’O")
cos(|B'D’|) — cos(|A’B'|) cos(|]A’D'|)
sin(|A’B'|) sin(|A’D’|)

cos(|A’B'|) cos(|A'O'|) + sin(]A’ B'|) sin(|A'O'])

sin(|O'D’|)
sin(|A’D’))

sin(|A'0'))

- COS(|A/B/|) m

+ cos(|B'D'|)

Thus,
sin(|O* D*|o)
sin(|A4*D*|o)
By the law of cosines, it follows that
(6.5) cos(|A*B*|) = cos(|B'O'|) cos(|A*O*|c) — sin(|B’'O’]) sin(|A*O*|o) cos(a)
and
(6.6) cos(|B*D*|) = cos(|B'O’|) cos(|O* D*|o) + sin(|B'O’|) sin(|O* D*|7) cos(a).
Now, by taking derivatives on (6.4) with respect to o, and a simplification using
(6.5) and (6.6), we have
. , s d(JO'B'))
—sin(|O'B DT
|O* D*| cos(|O* D*|o) sin(|A* D*|o) — |A* D*| sin(|O* D*|o) cos(|A* D*|o)
sin?(|A* D*|o)
n |O* A*| cos(|O* A*|o) sin(|A*D*|o) — |A* D*| sin(|O* A*|o) cos(|A*D*|o)
sin?(|A*D*|o)

sin(|A*O*|o)

(64) COS(|O B |) = COS(|A B |) m

+ cos(|B*D*))

cos(|A*B*|)

cos(|B*D*|)

. COS(‘B’O’D o . . . sin(|B’O’|)
x[|O* A*| cos(|O* A*|o) sin(|O* D*|o) — |O* D*| cos(|O* D*|o) sin(|A*O*|0)].
Thus, by means of (6.2), it follows that
_d(|O'B))
do
_ |A*D*|sin(|O*D*|o) sin(|A*O*|o) i
- sin(|4" Do) t(IBO
|O* A*| cos(|O* A*|o) sin(|O*D*|o) — |O* D*| cos(|O* D*|o) sin(|]A*O*|o)
+ :
sin(|A* D*|o)
|A*D*|sin(|O*D*|o) sin(]A*O*|o) .k sin(a)
= D — T
Sn([A"D"[o) (cot(|O |o) cos(ar) + cot(y) sin(\O*D*\a))
|O* A*| cos(|O* A*|o) sin(|O* D*|o) — |O* D*| cos(|O* D*|o) sin(]A*O*|o)
+ :
sin(|A*D*|o)
|A*D*|sin(|A*O*|o)
sin(|A*D*|o)
As a result, we have for all o € [0, 1],

(6.7) @ = —|O* A*| cos(a)

cos(a)

cos(a)

cos(a)

= [0"A"|cos(a) + sin(a) cot (7).

_ |A*D*|sin(|A*O*|o)
sin(|A*D*|o)

sin(a) cot(7).
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Now, we want to show that % <0 for all o € [0,1]. Let p(o) = cos(|O'B’|).
Then,

(6.8) 2(0B) _ _ —p'(0)  (#(0))plo)

o VI=p0P (VT p(o))?

Now, we investigate p(o) via the equation (6.4). Clearly, when

max{|A*B*|,|[A*C"|, |B*C"|} < 3.,

both cos(|]A*B*|) > 0 and cos(|B*D*|) > 0. On the other hand, direct calculations
give that when b > a > 0,

= (Gim) = e

b? a?

beot(bx) — acot(ax))? + -
[(beot(bz) — acot(az)) (sinz(ba:) sin?(ax)
Thus, by equation (6.4), it follows that p(c) > 0 and p”’(c) > 0 for all o < 1. This

2 IRoY
shows that MQBD < 0. As aresult, when 0 <o <1,

do
d(|0'B)) _ d(|0'B]) 07A"|  |A"D*[sin(|A0"])
> _ = — — _ .
o = do o 2 (A ng)eot)

Here, in the last equality, we used (6.7) and the fact that O* is the Fermat’s
point. O

Lemma 6.5. Let f be the function as given in (6.1). When k > 0, then f(o) < f(1)
whenever o € [0,1].

Proof. Without losing generality, we may assume that k = 1. So for any ¢ < 1, by
(6.3),

d(A’0" + |B'O'| + |C'0"))

f'(o) e |
> |470"| - \A*20*| B |A*§;|<Slﬁ(l|ﬁ)0*|) sin(T) cot()
|A*2O*\ _ lA*ﬁ;LT;(zl)ﬁ)o*D Sin(g) cot(m — ) = 0.
Thus, f(o) < f(1). O

Now, we consider the case of k < 0.

Lemma 6.6. Using the same notations as in the Lemma 6.4 except that the unit
sphere S? is replaced by the hyperbolic plane (H2,| - |p) = (M?,,] - |-1). If

(6.9) max{|A* B*|p,, |A*C*|p, |B*C*|n} < 1.3877,
then for all o € [0,1],

d(O'Bs) _ |0*A*|n  |A*D*|ysinh(|A*O%|y)
> _ _ il
o - 2 smh([A Dy Snlg)eot(y),

where v = £B'D'O’.

(6.10)
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Proof. In the hyperbolic case, analogous statements as in the proof of Lemma 6.4
still give

(6.11)

inh(|O*D*
cosh(|0'B'|) = cosh(|A* B*[) 220 o)

sinh(|A* D*|0)

« sy SIDh(|JA*O*|po

sh(|B*D |h)sinhE|A*D*|ha;’

and for all o € [0,1],

d(|O'B'|n)
do

|A* D* |, sinh(|A*O*|p0)
sinh(|A*D*|0)

(6.12) —|O* A*|p, cos(ar) — sin(a) cot (7).

To prove (6.10), it is sufficient to show that for all o € [0, 1], % < 0. The
proof of this fact requires some further works.
Let p(o) = cosh(|O’B’|). Then,
2 /B/ /! / 2
619 PIOB _ _p0)  (0)le)

do? VPP -1 (v/p(o) =

Together with equation (6.11), Lemma 6.7 below implies that p” () < 0 under the
2 2>
condition (6.9). Since p(c) > 1, it follows that % <0. O

Lemma 6.7. Suppose 0 < a < b < 1.3877, then for all x € [0, 1], it holds that
2 .
d® (sinh(ax) <o
dx? \ sinh(bx) ) —
Proof. Direct calculations give that

= (Sni) = Sonie

g(),

where

b2 a?

sinh? (bx) - sinh?(az)
2b coth(bx) (b coth(bz) — acoth(ax)) + a® — b°.

g(z) = (bcoth(bx) — acoth(azx))? +

Note that on the interval (—m, ), the function coth(xz) can be expressed as its
Taylor series

22 Bgn g1 _ 1z 23 22°
th _ n— — - — - ...
€ + Z : 7373 o ’
where By, is the 2n-th Bernoulh number given by
2(2n)! 1 1 1
By, = (1)1 — t+ ——F = +-).
2 (=1) (27T)2n( 92n + 32n + 42n +)

Thus, when 0 < az < bx < m,

0 < beoth(bx) — acoth(ax)
1 br b3z 289z° 1 ar a®r®  2a°x®

(= ) —a(— .

et 3~ 15 o e M T VT )
3 5

_To ooy T a4y 287 06 6y

—3(b a’) 45(b a)+945(b a®)

T 3 210

<*b2* 2771)47 4 71)67 6

<P a?) - Tt a1 2 )



Also,

1 br b3z 2b%aP 1 bx 1 bz
0<bcoth(bz)=b(—+ — — — + —— — ... )< b(—+ =)= -+ —.
< beoth(br) = b0+ 5 = 75+ 55 )bt 3=t 3

As a result,
g(z) = 2bcoth(bx)(bcoth(bzr) — acoth(azx)) + a? — b2
1 bz .z x3 2P
P A Lo+ e N X S A A X R ¢ 2 _ 2
<o+ SO0 — ) = T — )+ (0~ )] 4
_ a? — bg[ n 2a° — 8b? 2 12b* + 12a%h? — 2a* o 4b%(a* + b* + a?b?)
3 15 315 945
a? —b? 0 — 8b2 126% +0 — 2v* 402 (b* + bt + %)
< 1 2 4 6
S R A T 315 945 7]
a? —b?
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—o15 1315 168(bx)? + 10(bz)* — 4(bx)®] < 0,

whenever 0 < a < b and (bz)? < 1.9257. Thus, when 0 < b < /1.9257 = 1.3877, it
holds that g(z) < 0 for all z € [0,1] and for all 0 < a <b. O

Lemma 6.8. Let f be the function given in (6.1). When k < 0, then f(o) < f(1)
whenever o € [0, 1].

Proof. Follows from an analogous proof of Lemma 6.5, via equation (6.10). O

1.

2.
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