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Abstract. In this article, we combine the DLA model of Witten and Sander

with ideas from optimal transportation. We propose a modification of the
DLA model in which the probability of sticking is inversely proportional to

the additional transport cost from the point to the root. We used a family of

cost functions parametrized by a parameter α as studied in ramified optimal
transportation. α < 0 promotes growth near the root whereas α > 0 promotes

growth at the tips of the cluster. α = 0 is a phase transition point and

corresponds to standard DLA. What makes this model interesting is that when
α is negative enough (e.g. α < −2) the final cluster is an one dimensional curve.

On the other hand, when α is positive enough (e.g. α > 2) we get a nearly

two dimensional disk. Thus our model encompasses the full range of fractal
dimension from 1 to 2.

1. Introduction

Diffusion-limited aggregation, or DLA, has been extensively employed since its
proposition in 1981 by Witten and Sander [8] to model cluster growth controlled
by the random process of diffusion. This leads to structures with very regular
fractal properties: for instance, off-lattice DLA in the plane evolves a cluster with
fractal dimension 1.71 [7]. While the use of different lattices has an effect on the
resulting fractal dimension, yet they fall within a narrow range. This makes it
difficult to model processes in which varying a certain parameter affects the shape
of the cluster. In particular, electrodeposition experiments use a range of voltages
and produce a range of cluster shapes only one of which can correspond to DLA.
A number of researchers [9],[1] have proposed a modification of DLA in which
the probability of sticking is not always 1. Barlow, Pemantle and Perkins studied
the trees produced by a probability function p = α−n where n is the path length
to the root [1]. They note that α > 1 promotes growth near the root whereas
α < 1 promotes growth at the tips of the tree. α = 1 is a phase transition point
and corresponds to the Eden model (p = 1 for all n). While this greatly extends
the range of possible DLA-like structures, the probability function is not easily
related to physical properties because it ignores effects of branching in the tree. In
the example of electrodeposition, the amount of current at any point of the cluster
depends on the relative resistance of all possible paths to the root electrode. Because
current in this model corresponds to the movement, and ultimately aggregation,
of ions we should expect that positions of higher current should experience faster
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growth. To make DLA accessible to processes relating to physical phenomena which
optimize some parameter, commonly energy, we introduce a probability dependent
on the cost function used in the study of optimal transport paths [10]. This increases
the utility of the d-ary trees studied by Barlow et al while retaining similar growth
properties such as the phase transition of the factor α.

This article is organized as follows. We first recall some basic concepts about
optimal transport paths between measures of equal total mass as studied in [10]
etc. Then we propose a modification of DLA in which the probability of sticking is
inversely proportional to the additional transport cost from the point to the root.
We use a family of cost functions parametrized by a parameter α as studied in
optimal transport paths [10]. Similar to Barlow et al [1], α < 0 promotes growth
near the root whereas α > 0 promotes growth at the tips of the tree. α = 0 is a phase
transition point and corresponds to DLA. What makes this model interesting is that
when α is negative enough (e.g. α < −2) the final cluster is an one dimensional
curve. On the other hand, when α is positive enough (e.g. α > 2) we get a
nearly two dimensional disk. Thus our model encompasses the full range of fractal
dimension from 1 to 2.

2. Transport paths between positive Radon measures

Recently, optimal transportation systems with branching structures have raised
a lot of interest and some attempts have been made to formalize their description
[2],[5],[4],[6],[10],[11],[12],[13],[14]. Here, we only recall some basic concepts about
optimal transport paths between measures as studied in [10] etc, and then propose
a modification of DLA using ideas from optimal transportation.

Let X be a convex compact subset of a Euclidean space Rm. For any x ∈ X, let
δx be the Dirac measure centered at x. A positive atomic measure in X is in the
form of

a =
k∑

i=1

aiδxi

with distinct points xi ∈ X, and ai > 0 for each i = 1, · · · , k.
For any two positive atomic measures

(2.1) a =
k∑

i=1

aiδxi
and b =

l∑
j=1

bjδyj

of equal total mass
k∑

i=1

ai =
l∑

j=1

bj ,

a transport path from a to b is a weighted directed graph G consisting of a vertex
set V (G), a directed edge set E (G), and a weight function

w : E (G) → (0,+∞)

such that {x1,x2,··· ,xk} ∪ {y1, y2, · · · , yl} ⊂ V (G) and for any vertex v ∈ V (G) ,

(2.2)
∑

e∈E(G)

e−=v

w (e) =
∑

e∈E(G)

e+=v

w (e) +

 ai, if v = xi for some i = 1, · · · , k
−bj , if v = yj for some j = 1, · · · , l
0, otherwise
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where e− and e+denotes the starting and ending endpoints of each directed edge
e ∈ E (G). Here, the balanced equation (2.2) simply means that the total mass
flowing into v equals the total mass flowing out of v. When G is viewed as a
polyhedral chain, (2.2) can be simply expressed as

∂G = b− a.

Let
Path (a,b)

be the space of all transport paths from a to b. Among all paths in Path (a,b)
we want to find an optimal path which allows for the possibility that some parts
overlap in a cost efficient fashion. For this reason we introduce the following cost
function on transport paths in [10].

For each transport path G ∈ Path (a,b) as above and any α ∈ (−∞,+∞), the
Mα cost of G is defined by

Mα (G) :=
∑

e∈E(G)

[w (e)]α length (e) .

When α < 1, a “Y-shaped” path from two points to one point is usually more
preferable than a “V-shaped” path. In general, a ramifying structure is more effi-
cient than a “linear” structure. An Mα minimizer in Path(a,b) is called an optimal
transport path from a to b.

3. Modification of DLA using ideas of optimal transportation

Now, we want to use the idea of optimal transportation to propose a modifi-
cation of the standard diffusion-limited aggregation (DLA). Here the key idea is
that the probability of sticking is inversely proportional to the additional cost of
transporting the new particle to the root via the existing transport system in the
current aggregate.

The model of diffusion-limited aggregation begins with any number of seeds in
a space. A particle is released at a radius slightly larger than the maximum radius
of the current aggregate and undergoes a random walk (Brownian motion). Once
it comes within some critical distance of the existing aggregate it sticks and the
process starts over. We may represent the current aggregate by a weighted directed
tree G. When a new particle arrives at a position x which is adjacent to a vertex
v of G, then we get a new aggregate represented by another weighted directed tree
G̃. Suppose Γv is the unique path on the weighted directed tree G from the vertex
v to the root. Then the additional transport cost for transporting a mass ε at x
through Γv to the root is

Mα

(
G̃
)
−Mα (G)

=
∑
e∈Γv

([w (e) + ε]α − [w (e)]α) length (e) + εαL

= εαL

(∑
e∈Γv

([
w (e)

ε
+ 1
]α

−
[
w (e)

ε

]α)
length (e)

L
+ 1

)
,

where L is the distance from x to v. Now we take a unit mass ε = 1, and also
take the length of each edge of the path to be a constant (e.g. the diameter of the
particle). DLA is often done on a square, triangular or hexagonal lattice in which
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case the edge length would be the lattice size. Then we may assume the additional
cost is

c (v) =
∑
e∈Γv

([w (e) + 1]α − [w (e)]α) + 1,

and set the probability p (v) of a new particle sticking at vertex v to be inversely
proportional to c (v), e.g. p(v) = 1

c(v) .
Note that when α = 0 we always have c (v) = 1 and p (v) = 1

c(v) = 1. Thus
we get the standard DLA structure. When α > 0, c (v) ≥ 1 and p(v) = 1

c(v) ≤ 1.
However, when α < 0 we have that c (v) ≤ 1 and 1

c(v) ≥ 1. To get a probability we
normalize 1

c(v) and set

p (v) =
cG

c (v)

where cG is the normalization factor. An ideal normalization factor cG is the mini-
mum of all values c(v) over all vertices v of G. Nevertheless, instead of calculating
this number directly we approximate it by taking cG to be the minimum of all
possible c(v) that have been calculated before (including the current one). When
α ≥ 0 we have cG = 1, and when α < 0 then cG becomes a small positive number.
So for each v, p(v) ≤ 1 as cG ≤ c(v).

We use the following process to aggregate a cluster:

(1) We release a particle from infinity which in practice is a point on a circle
whose radius is slightly larger than the maximum radius of the cluster.

(2) The particle undergoes a random walk through unoccupied spaces until it
moves adjacent to the cluster.

(3) The additional cost c(v) of attaching to one of the adjacent cluster points is
calculated for each adjacent point v and this is translated into a probability
p(v).

(4) If the particle sticks, it is added to the cluster and the process starts anew
at step 1. If the particle does not stick it continues its random walk from
step 2.

Using this algorithm we form the following clusters on a square lattice with
different parameters α.
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3.1. Dimensional Analysis. The modified DLA clusters were analyzed using the
standard box counting dimension for different values of the parameter α. We cal-
culated five sets of 5000 particles with α valued in [−2, 2]. The following figure is
the plot of the average box counting dimensions of these clusters with respect to
the variable α.

Figure 1. box counting dimensions of clusters with respect to α
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Here is another way to compare these clusters. For a particle v on the cluster,
we may also calculate the length of the path Γv from the particle v to the root.
The average length of paths of all particles in the cluster may indicate properties
such as roundness of the cluster. Using our data, we have the following plot.

From these figures, we see that different values α do give us quantitatively dif-
ferent clusters. Both the box counting dimension and the average path length of
the resulting cluster tends to be nearly monotone with respect to the parameter
α. α = 0 is the standard DLA. When α becomes negative, particles tend to ag-
gregate near tips. When α is negative enough, the final cluster becomes nearly
one dimensional, and the average length of paths in the cluster tends towards the
maximum (mass+1)/2 or 50% of the mass. On the other hand, when α is positive,
particles tend to aggregate near the root. When α is positive enough, the final
cluster approaches a two dimensional disk, and the average length of paths in the
cluster decreases.
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