Errata for the book "Topics in Complex Analysis" by Dan Romik Last updated: March 6, 2024

1. Page 242: in the proof of Lemma 6.6, change

"
$$|U(it)e^{\pi tz}| = O\left(t^2 e^{-\pi(\operatorname{Re}(z)+2)/t}\right)$$
 $(t \to 0).$ "

to:

"
$$|U(it)e^{\pi tz}| = O\left(t^2 e^{-\pi \operatorname{Re}(z)t}\right)$$
 $(t \to 0).$ "

2. Page 242: in the proof of Lemma 6.6, change

" $I_1(z) + I_2(z)$, where $I_1(z) = \int_0^1 U(\tau) e^{\pi i \tau z} d\tau$ and $I_1(z) = \int_1^\infty U(\tau) e^{\pi i \tau z} d\tau$," to:

"
$$I_1(z) + I_2(z)$$
, where $I_1(z) = \int_0^1 U(\tau) e^{\pi i \tau z} d\tau$ and $I_2(z) = \int_1^\infty U(\tau) e^{\pi i \tau z} d\tau$,"

3. Page 242: in the proof of Lemma 6.6, change

"the improper integral $I_1(z)$ converges in the half-plane $\operatorname{Re}(z) > -2$ and defines a holomorphic function there. Similarly, $I_2(z)$ converges and is holomorphic in the half-plane $\operatorname{Re}(z) > 2$."

to:

"the improper integral $I_2(z)$ converges in the half-plane $\operatorname{Re}(z) > 2$ and defines a holomorphic function there. Similarly, $I_1(z)$ converges for all z and is an entire function."

4. Page 244: in the paragraph following equation (6.22), change:

"It was established in that proof that this integral converges to a holomorphic function in the region $\operatorname{Re}(z) > -2$."

to:

"It was established in that proof that this integral converges to an entire function."

In the next sentence, change "a holomorphic function, also in the region $\operatorname{Re}(z) > -2$ " to "a holomorphic function, in this case in the region $\operatorname{Re}(z) > -2$ "

- 5. Page 247: in equation (6.28), change the assumption " $\operatorname{Re}(z) > 3$ " appearing in parentheses to " $\operatorname{Re}(z) > 3$, $|\operatorname{Im}(z)| < 1$ ".
- 6. Page 248: near the end of the proof of Lemma 6.11, change "so the bound (6.29)" to "so, if we now add the assumption that $|\operatorname{Im}(z)| < 1$, the bound (6.29)"

Later on in the same sentence, change "implies a bound of the form (6.28) for A(z)" to "implies a bound of the form (6.28) for $A^{(k)}(z)$ ".

7. Page 249: in the two-line expression at the bottom of the page, the first summand

$$-i \int_{\Psi_1} U(\rho - 1) \rho^4 e^{\pi i \rho \|y\|^2} \frac{d\rho}{\rho^2}$$

should be changed to:

$$-i \int_{\Psi_1} U(\rho - 1) \rho^2 e^{\pi i \rho \|y\|^2} \frac{d\rho}{\rho^2}$$

and the second summand

$$-i \int_{\Psi_{-1}} U(\rho+1) \rho^4 e^{\pi i \rho \|y\|^2} \frac{d\rho}{\rho^2}$$

should be changed to:

$$-i \int\limits_{\Psi_{-1}} U(\rho+1) \rho^2 e^{\pi i \rho \|y\|^2} \frac{d\rho}{\rho^2}$$

- 8. Page 254: in the mathematical display in Lemma 6.22, change the assumption " $\operatorname{Re}(z) > 3$ " appearing in parentheses to " $\operatorname{Re}(z) > 3, |\operatorname{Im}(z)| < 1$ ".
- 9. Page 263: in the statement of Lemma 6.31, change "in the region Re(z) > -2" to "in the region Re(z) > -1".
- 10. Page 264: in the two-line display on the bottom half of the page, change the second line

"
$$\hat{\varphi}(0) = \varphi_+(0) - \varphi_+(0) = 240\pi$$
, "

to:

"
$$\widehat{\varphi}(0) = \varphi_+(0) - \varphi_-(0) = 240\pi$$
, "

11. Page 282: in the statement of Lemma A.28, change

"If $f: \mathbb{R}^d \to \mathbb{R}$ is a Schwartz function that is a magic function for a lattice $\Lambda \subset \mathbb{R}^d$,"

to:

"If $f : \mathbb{R}^d \to \mathbb{R}$ is a Schwartz function that is a magic function for a lattice $\Lambda \subset \mathbb{R}^d$ with $\operatorname{covol}(\Lambda) = 1$,"

12. Pages 282–283: replace the proof of Lemma A.28 with the following text:

Combining the Poisson summation formula (A.6) with the assumptions on f and Λ , we have that

$$f(0) \ge f(0) + \sum_{x \in \Lambda \setminus \{0\}} f(x) = \sum_{x \in \Lambda} f(x)$$
$$= \sum_{y \in \Lambda^*} \widehat{f}(y) = \widehat{f}(0) + \sum_{y \in \Lambda^* \setminus \{0\}} \widehat{f}(y) \ge \widehat{f}(0) = f(0).$$

Since this chain of inequalities starts and ends with f(0), both of the (weak) inequalities in the chain actually hold as *equalities*. The only way in which this can be true is if all the summation terms that were discarded to obtain those inequalities—the terms f(x) for $x \in \Lambda \setminus \{0\}$ in the first inequality, which were known to be nonpositive, and the terms $\widehat{f}(y)$ for $y \in \Lambda^* \setminus \{0\}$ in the second inequality, which were known to be nonnegative—are necessarily 0; this was the claim to be proved.