Errata for the book "Topics in Complex Analysis" by Dan Romik

Last updated: March 6, 2024

1. Page 242: in the proof of Lemma 6.6, change

$$
"\left|U(i t) e^{\pi t z}\right|=O\left(t^{2} e^{-\pi(\operatorname{Re}(z)+2) / t}\right) \quad(t \rightarrow 0) . "
$$

to:

$$
"\left|U(i t) e^{\pi t z}\right|=O\left(t^{2} e^{-\pi \operatorname{Re}(z) t}\right) \quad(t \rightarrow 0) . "
$$

2. Page 242: in the proof of Lemma 6.6, change
" $I_{1}(z)+I_{2}(z)$, where $I_{1}(z)=\int_{0}^{1} U(\tau) e^{\pi i \tau z} d \tau$ and $I_{1}(z)=\int_{1}^{\infty} U(\tau) e^{\pi i \tau z} d \tau, "$
to:
" $I_{1}(z)+I_{2}(z)$, where $I_{1}(z)=\int_{0}^{1} U(\tau) e^{\pi i \tau z} d \tau$ and $I_{2}(z)=\int_{1}^{\infty} U(\tau) e^{\pi i \tau z} d \tau, "$
3. Page 242: in the proof of Lemma 6.6, change
"the improper integral $I_{1}(z)$ converges in the half-plane $\operatorname{Re}(z)>-2$ and defines a holomorphic function there. Similarly, $I_{2}(z)$ converges and is holomorphic in the half-plane $\operatorname{Re}(z)>2$."
to:
"the improper integral $I_{2}(z)$ converges in the half-plane $\operatorname{Re}(z)>2$ and defines a holomorphic function there. Similarly, $I_{1}(z)$ converges for all z and is an entire function."
4. Page 244: in the paragraph following equation (6.22), change:
"It was established in that proof that this integral converges to a holomorphic function in the region $\operatorname{Re}(z)>-2$."
to:
"It was established in that proof that this integral converges to an entire function."
In the next sentence, change "a holomorphic function, also in the region $\operatorname{Re}(z)>-2$ " to "a holomorphic function, in this case in the region $\operatorname{Re}(z)>$ $-2 "$
5. Page 247: in equation (6.28), change the assumption " $\operatorname{Re}(z)>3$ " appearing in parentheses to " $\operatorname{Re}(z)>3,|\operatorname{Im}(z)|<1$ ".
6. Page 248: near the end of the proof of Lemma 6.11, change "so the bound (6.29)" to "so, if we now add the assumption that $|\operatorname{Im}(z)|<1$, the bound (6.29)"

Later on in the same sentence, change "implies a bound of the form (6.28) for $A(z)$ " to "implies a bound of the form (6.28) for $A^{(k)}(z)$ ".
7. Page 249: in the two-line expression at the bottom of the page, the first summand

$$
-i \int_{\Psi_{1}} U(\rho-1) \rho^{4} e^{\pi i \rho\|y\|^{2}} \frac{d \rho}{\rho^{2}}
$$

should be changed to:

$$
-i \int_{\Psi_{1}} U(\rho-1) \rho^{2} e^{\pi i \rho\|y\|^{2}} \frac{d \rho}{\rho^{2}}
$$

and the second summand

$$
-i \int_{\Psi-1} U(\rho+1) \rho^{4} e^{\pi i \rho\|y\|^{2}} \frac{d \rho}{\rho^{2}}
$$

should be changed to:

$$
-i \int_{\Psi-1} U(\rho+1) \rho^{2} e^{\pi i \rho\|y\|^{2}} \frac{d \rho}{\rho^{2}}
$$

8. Page 254: in the mathematical display in Lemma 6.22, change the assumption " $\operatorname{Re}(z)>3$ " appearing in parentheses to " $\operatorname{Re}(z)>3,|\operatorname{Im}(z)|<1$ ".
9. Page 263: in the statement of Lemma 6.31, change "in the region $\operatorname{Re}(z)>$ -2 " to "in the region $\operatorname{Re}(z)>-1$ ".
10. Page 264: in the two-line display on the bottom half of the page, change the second line

$$
" \widehat{\varphi}(0)=\varphi_{+}(0)-\varphi_{+}(0)=240 \pi, "
$$

to:

$$
" \widehat{\varphi}(0)=\varphi_{+}(0)-\varphi_{-}(0)=240 \pi, "
$$

11. Page 282: in the statement of Lemma A.28, change
"If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a Schwartz function that is a magic function for a lattice $\Lambda \subset \mathbb{R}^{d}, "$
to:
"If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a Schwartz function that is a magic function for a lattice $\Lambda \subset \mathbb{R}^{d}$ with $\operatorname{covol}(\Lambda)=1, "$
12. Pages 282-283: replace the proof of Lemma A. 28 with the following text: Combining the Poisson summation formula (A.6) with the assumptions on f and Λ, we have that

$$
\begin{aligned}
f(0) & \geq f(0)+\sum_{x \in \Lambda \backslash\{0\}} f(x)=\sum_{x \in \Lambda} f(x) \\
& =\sum_{y \in \Lambda^{*}} \widehat{f}(y)=\widehat{f}(0)+\sum_{y \in \Lambda^{*} \backslash\{0\}} \widehat{f}(y) \geq \widehat{f}(0)=f(0) .
\end{aligned}
$$

Since this chain of inequalities starts and ends with $f(0)$, both of the (weak) inequalities in the chain actually hold as equalities. The only way in which this can be true is if all the summation terms that were discarded to obtain those inequalities- the terms $f(x)$ for $x \in \Lambda \backslash\{0\}$ in the first inequality, which were known to be nonpositive, and the terms $\widehat{f}(y)$ for $y \in$ $\Lambda^{*} \backslash\{0\}$ in the second inequality, which were known to be nonnegative-are necessarily 0 ; this was the claim to be proved.

