TO THE ANALYTICAL THEORY OF ALGEBRAIC EQUATIONS
P. Turdn (Budapest) '
1. This paper contains a modest contribution to the subject in

the title, to which Prof. L. Cakalov added many important contributi-
ons. Some results of 3 lecture* will be detailed in which the necessity

v of the study of polynomials in their Hermité-development was syste-

matically discussed, i. e. in the form

[(B)) f(z)=2 a,H,(2)
y==0
.where H,(2), the yth Hermite-polynomial is, as usual,.defined by
(1.2) e=" Hy(2)=(—1)(e=")"
y=0,1,...

Many signs show that in the questions of reality of zeros or gx-
ving strips for the zeros the Hermite- development is a much more sui-
-table tool than the Taylor-development

( i.3) f(2)= 2 b,z’.

The significance of all results in this direction would be greatly enhan-
ced if the Hermite-coefficients of Riemann’s Z-function could be given
in a simple closed form. What is easy to show is that this expansion
has the form™*

E(f) ~ —1)yd,, H,, (¢
4 () Z}( Y ds, Ha, (8)
’ . dy,>0, »=0, 1,...

_ * Turan [1}. The results announced in this lecture were found.- in 1938-—39.
\ #* For the dn's the following explicit representation can be given

“ s 5 5 Y
\ dgy= 1 fe" P g 2 (2m4ae ¥ ! —3m2e’ ! )e—"l"' dt.
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124 P. Turdn

In lack of such forms we are not aiming best-possible results, rather
we confine ourselves to obtain characteristical results with possibly

short proofs.
The first result we are going to prove is ,
n ”

Theorem l.Iff(z)=2¢,,~H,,(z) with arbitrary complex
=0

coeffig:ients and
max |c,, | =M,

y==0,1, ., . .,A—1

then all zeros of f(2) lie in~t-ﬁe strip

: 1 5 M
1.5 Imzj = — (1 = }
e 0= 5 1 e
We have to compare this theorem to the other one* according
. which all zeros of . '

n

g22)=2, a,H(2)

=0

with
max |a,|=M,
y==0,1, ..., n—1 ’

lie in the strip M

1
1.6 mz)< (1 -—)
(1) iz = 5 (1475

The constant —;— in (1.6) is best-possible.

2. For the proof we need a simple inequality concerning Hermite-
polynomials. We consider for m =2 the guotient

Hpny(2)

‘ ' Hu (2)
Since the x,n— zeros of Hp(2) are simple,

m .
Hp4(2) ___2 Hm-s(xlwr). 1 .
Hn(2) = Hy'(Xjm) 2—Xjm -

As well-known**

* Turan |1] p. 283 and [2]). By a more careful estimation- the strip (1.5) can
be replaced by | Imz} < -Vf—; (l—{-l—c-—-l) with a numerical A -constant.

2n
** This follows easily from the generator-function

=0
easily after ditferentiation after z.
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(2.1) b H(2)=2mH,_(2), '
ic e-' ¥
S ,,,-,(2') ‘1 i -2 (%m 1
Hn(2) — Hon i (Xim) 12— Xm
Using the recursnon-formula*
22) Hn(2)=22Hp_1(2)—2(m— 1)Hn—o(2),
we get
ie .
Haa@)_ 1 Xm
23) Finz) ~ omm— 1,2 7—xm
Since** for j=1, 2,..., m
24 —V2m 1 < Xjm < Y2mF ],
) N we have ,
. (25) [ H,,_g(z) < y2m+] 1 .
Hp(z) | = 2(m—1) |Imz|
' This is the required inequality. For m=2n this gives
‘ 26 Hins@)|_ VinFl 1
) Han(2) 22n—1) Imz
further for 1<<I=n-2
‘H:l(z) | Hul2) Hu-}-: (z) . Hap_3(2) <
H,,,(Z) H,,_,_,(z) Hu+¢ (2) Hin(2) | ™
' 1 1 1
. (27) é(? Imz )(2 Imz’)' T (W)X
X( jan¥l 1 )_( 1 )"""V«tn-i—l
22n—1) Imzl) \27Imz 2n—1

and*** for /=0

* This can be easily verified, since differentiation of (1.2) gives

H'm—r(2)=22Hm—1 (2)—Hm(2)
and then (2.1) gives (2.2).

** See e. g. G. Szeg6 (3], p. 125,

#** Using (2.6) with n=1, 2, ..., N and multiplying we get the inequality

2%, 1.3.5... (2N —
Vi§5.9...(4N+D)

valid for N=1, 2, ... and all complex z-values. This method of estimation can be
grestly improved if necesnry

JH o2 = 1)~(lmz N,
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Ho(@)| _ |Ho(@)! H(2) <
H!rl .Hz ' H:u - )
(28) . @ el (z)
—( 1 \ Yin¥1
§V5(2»|1m1) 2n—1 -
Thus we obtain
¥ | (@)
[ f(2)] E}Hu(z)l(lc’ﬂl - M,g, ;-I,,,(z) ),>
V3 1 a—1 1 n—I{
> H @ (1ol = VS22 M 3 () )

Suppose |Imz| >-%—; then

\f2)| > IH,,(z)l(lC»nl—MVgV;,,n_Jrf] :(2[ Imlzl —1)

Since for n =1 we have

4n+l .52n-1),

we get
5 1
) [#2)] > lHu(Z)I(!le ~M =1 2lime] -1)>0’
l*
! 5 ..M
nmz|>?{1+ BT Icm] } Qe d

3. Owing to the possible application to Riemann's Z-function it is
of interest to replace strips by equilateral hyperbolas where the real
axis is an asymotota. It holds the

.
Theorem II. [f z=x-+iy and g(2) =) ¢, M, (2) With
=0

max lc,,]:M, then all zeros of g(2) lie in the hyper-
20,8, ..., N—]
bola

5 M
yl=—(14++—}
(wisg ()
For the proof we start from the identity (2.3). Taking in account
the symmetry of the x;,4,—zeros this gives

Hoaos@_ 1 s X
H,,(2) '2»(2»-1)2 2

* Since (2.1) and (2.2) characterize the Hermite-polynomials, Theorem I. ex-
presses a property of the Hermite-expansion. This was not the case with (1.5), since
it uses oy (2.1). Ore can prove however easily that property (2.1) together with
the orthogonality property along the real axis characferizes again the Hermite-polyno-
mials ,essentially®, :

X ?
J=1 xj’ » -
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and from (2. ;%) . pto
Hy2(2)] o dr1 Z L
| Hi(2) ] 2v(2v—1) o2—x 1

]nv
Since

lz’ x}n !‘lx’—y’— J’,'+2Xy‘l 22lxy|
we get for v=>1

Huis@))| 2 o+1 1 <5 _1_
| " FA:(2) §@—1) =y~ 4 [xy
and thus for k -0, 1,. n—1
' H,‘(z) ( 1 )‘
Ho(2)| =\ % Txyl
“Hence again for fxy >—§— ) . o
M
1g<z)|am,(z>|{|c,,1—<4—————}
. |xy|—1

which proves the theorem.

4. Next we. turn to the proof-of the following
Theorem IIi. I1f the coefficients of

G@)=2, e, H(2)
ra=0
are réaland - '
¢ n—p * o
(4.1) 22'110’ 2"(n——l)!c’
v =0

is fulfilled, then all zeros of G(2) are real and smlple
For the proof of this theorem we shall.need a simple formula.
We start from the well’known tormula of Christoffel-Darboux*

S Hu(X)Huly) 1 Hu(X)Hn_; (9)— Ho y)Ha—s()
(4.2) Z 2m"m! n—I)l : xX—y ’

We shall ‘denote by - _ i
43) - . x1>)t,> >xn~—1.
the zeros of F,_,(2). For an arbitrary mteger I between I and n—1
putting x=x, into (4.2) we get

Bt n=-2

D TR ST o)

m 1 .
: el Haf ) = gy M) oL
*See . g. G. Szegs [3]. p. 102,

1
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If 3> x; this'gives - o
e . ,, W e )
T Hm(x . .
(4.4) ) oy M)
m=0

But, as it follows froni-footnote(*), p. 125 for x=x, .
H' gy (X1} = —~Ha(x)).
Putting it into (4.4) we get for [=1,.2,...; n=1 T
3 g x"'.” 1 )
45 3 Bl Hix).

&7 eml =)

This is the required formula. g
5. We shall prove Theorem Ill. by showing that the zeros of
H,_,(z) separate ifl our -case the zeros of G(z). Without loss”of gene-
rality we ‘may suppose ‘the ledding coefficient' ¢,’in G(2) is positive.
w‘iting LT - i . o LT LT R
e K= Fio, Hpm—oco ¥

we shall prove

@6.1) sign G(x))=(—1), - ey’

=0, 1,...,n,
Since :
Hix)=2"xm - -,

this is for [=0 and [=n trivial. In order to prove it for /=1, 2, ...,
n—1, we remark first, that as well knewn* the zeros of H,_,(2) sepa-*:
rate those of H,(2), . .

sign Hn(x)=(=1), - 1=0,1,..., n
Hence R 7 B e U2 g ’
(—VYenttu(xs)=| €nl| Halxs)

. P
and thus for /=1, 2,..., n—1 we have
. . . A
N ;=3
(=D G(x) = ca)l Halx))| + 3, (—1Ye,H(x0)-
. " L y==0 “
From this we obtain '
n—2
(—1YG(x) = | ea || Halx)| — 2 V6. || Hix |=' Do
. »==0 .
n—2
: 2o o LHL(
= ]c,,\]H,,(x,)l—z 2% 1! [c,|l——-_£’)—'-
y==0 . 2T

27y »!
Cauchy’s inequality giVeé

; ) PR
: [ Gy

* See e. g G. Szegd [3], p.‘45.
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o !

(~1YGG)> o | Fii] V(z_z/' ‘. a][z"!i’&))

)

and using 4.5) -

i R—2 R
(- l)l(;(xl)> }Hn(xl“ {[ Cn [A '"‘:,,"l—* 2 f?" r! $ c.|? }>0
97 (rz“-—l)l r=0

indeed owing to (4.1). Since x;, Xg,. .., X,~; are all simple zeros, also
the simplicity of .the zeros of G(z) follows.
One can obtain of course a similar theorem for the reality of all
n

zeros of Gl(z)=2c,,[1,,(z) with real ¢,,’s. We shall do not go into
r=0
details of its proof.

< 4

6. ‘The condition (4.1): of the previous theorem is obviously fulfil-
led if the .coefficients ¢, do not. decrease .too quickly“. Now we are
going to prove as a counterpart of Theorem Il that the same conclu-
sion holds if the coefficients decrease sufficiently quickly. More exactly
we shall prove the .

Theorem IV. If f(2) has the form

n
(6.1) f@)=2 (—1)aHy (2 -

r=0
with positive c)’s and for »=1,2,..., n—1 we have
(6.2) c;y > 402v—2 C2 2

then all zeros of f(2) are real
1. For the proof of this theorem we need two lemmas.

Lemma 1 If the coefficients c,, of

H

Foy=3 (—1yey 2

satisfie the condition (6.2), then all zeros of f(z)=0 are real and simple.
Proof: Let .

(7.1) o=l 5.

From (6.2) it follows-evidently that

(7.2) 0< o<t v v e <&nye

We fix any, of our s with 1<j<n—1 and consider F(z). Owing to
(6.2) we have for v<j
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“ VCQ' £VCQI—2 <)E- - <.

Cori-2 Coj " -
i. e
(7.3) . co<caif <EEH< e - <ear &Y
and for u>j :
P c. .
g <V 2/ <V e
Cojio Caute

i e .
(7.4) Caset > Cojial TS - > Canl" :

Hence writing
(—1YF(gj) = Cojif —(Cajmgl PP —Coj 44 o+ ) —
—(Cajpoll e —Copp e+ - 1),
we may observe that the terms in the brackets decrease monotonically

. € g

(=1

1)/ .
e F(8)) 2608/ —~Cajmp —Cajpal/ =

_ o’ =49 Caira
49/ 42
Since F(0)>0 and (—1)* F(4-00)>0, we obtained that- each of the in-
tervals
' (07 51)’ (51: 52): B} K&n—zv .-.":'n——l)v (fn—'v+°°)

contain at least one zero and owing to the evenness of F(2) the samé-
holds for the intervals

(—o0, —&n qdyeees (=& n“‘fl)’ (=& 0)'

Since F(z) is of 2nth degree, Lemma L is proved.
Lemma Il. If the polynomial

P(2)= i a2

has only real zeros, then. all zcros of

~ )=, a.H(2)
. »=0
are also real*. .
Theorem IV follows evidently from lemmata I and II. A trivial limit-
process shows that Theorem IV. holds under condition (6.2) also for
infinite Hermite-developments.

# This was stated in my quoted lecture. Quite recently ! observed that it was

, stated, as an incoherent remark, in a paper of G. Pélya 4], in part p. 242, though

with another normalisation of Han(x). Since the necessary changes are ‘obvious, we omit
the proof.
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8. /The condition (4 1) is, as egsy to" see, certamly fulfilled if f£(2)
has the form(6.1) -and _

! Capipar | “ i
(8.1) —?,’—> 4 ) v=0, 14, oy n—1
In this case we shall prove mere.

i
N

Theorem V. If f(2)= 2(,-—1) ¢y, Hy () with positivec,’s and
for an integer l§k<n wehave
. c C « 1
8.2 2> ‘>— 2 ,
( ) s§0> 4 Csk—2>4

then f(z) has at least 2k real zeros with odd multipli-
cities.

* For :the,.proof- we -shall use the well-known: formula* .
e
2"' & rl (= 2r)Y‘H""“~"(z)
m=0, 1,
We form the mtegrals for »=0, 1,..., &

(8:3)

8.4) = f e~ x% (x)dx
Using (8.3) we get
j ——Lf — X7 42y d —_
»=9 ) e¥x"flx)dx=

»)! <
= (29.)“2 7 (ﬁ_g,ﬂfe H,.__,,,(x)f(x)dx

Since**

s ‘0 if ugky
f e—*’H,.(x)H-(X)dxz{ eulfa if u=v,
—0 !

* For fhe sake of completeness we reproduce a proof of (8.3). Using the gene-
rator-function in footnote(*) p..124 we have

z (22) m=ezzv—¢w’ ¢22H’ =

L

-E (Eo )

from which (8‘3) eésily follows. . i
* See e. g..G. Szegb [3}, p. 101.- '
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we obtain

OV G e e BT L
5 J”=-(§’W"V;2 (.f‘l)?—'c!':i’ﬂ_‘r—lﬁ- ) N W, \
r==0

or ,
@)lyafzr o o
L= N1 ]thi L R

But the condition (2.2) together with the positivity of the cg;'s
results, that the terms in the bracket form a monotonically decreasing

("" l)'-’!v =

sequenice with alternating signs and-thus we get
| (=14, >0 ~ o
y=0, 1,...,R '

But then owing to a theorem of Fekete [5], and Fejér [ﬁ‘] f(x) has in,(0,+ )
at,least % sign-changes and since f(X) is an .even unction of x, it has
on the real axis at least 2% sign=changes. Q. e. d. L

9. Inserting in the integrals (8.4) e.g. a suitably chosen non-nega-
tive polynomial k(x), Theorem V. can be greatly improved; a good
choice might be suggested by the required simple form of the ds,’s in
(1.4). Having no such a guide we confine ourselves to the case k(x)=1.
What is curious in Theorem V., is -the fact, that apart from the reality
of the coefficients and evenness of f(2), restrictions are made only upon
the first £+1 coefficients and by this the reality of at least 2k zeros
of f(2) is assured, independently upon the other cy's and upon n. This
reminds orie to the thedréms of Landéh;Fe’iéf*-fMQntel—type,’the most
general of whose asserting that the.-polyndmial ‘ .

9.1) egtezt - - - FepzPtepp 2t F 1 - bz
with e, 0 and integer R A
, Py e e Lo .
has at least p zeros in a circle ,

. (Z['__S_Q,:go(eo,..., €p, k)
and suggest the existence of a g;=g; (o - - ., €,) such that (perhaps if
¢, ¥ 0) any :
. n

f@)=3 c.H,(2)
y=0

polynomial with n=p has at least p zeros in the strip |Imz| < ¢;. The
somewhat weaker assertion about the existence of a gy =g(Co» €11+ €py )
such that with ¢,3-0 any

f(@)=2,c.HL2)
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1

> polynomial with- ».= p has at_least p zeros in the strip }{Imz | < gq,
/ would follow from the above quoted theofem (9.1) of Montel with

02=00(Cr -« +» Cpm M),

if the following assertion is true. For any Az0 the polynomial

Fz)~ ¢z
r=0

has in the strip Imz| < A at most as many zeros (counted with mul-
tiplicity).as.

f2)=2, c.H,(2).

As | mentioned in my quoted congress-lecture, 1 can prove this at the
present only for A=0 and for suc¢h A’s, for whose all zeros of F(2)
are contained in- our strip |Imz| < A

Received 2, 2. 1957
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